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Abstract: In Ambient Intelligence (AmI), the activity a user is engaged in is an essential part of the
context, so its recognition is of paramount importance for applications in areas like sports, medicine,
personal safety, and so forth. The concurrent use of multiple sensors for recognition of human
activities in AmI is a good practice because the information missed by one sensor can sometimes
be provided by the others and many works have shown an accuracy improvement compared to
single sensors. However, there are many different ways of integrating the information of each
sensor and almost every author reporting sensor fusion for activity recognition uses a different
variant or combination of fusion methods, so the need for clear guidelines and generalizations in
sensor data integration seems evident. In this survey we review, following a classification, the many
fusion methods for information acquired from sensors that have been proposed in the literature for
activity recognition; we examine their relative merits, either as they are reported and sometimes even
replicated and a comparison of these methods is made, as well as an assessment of the trends in
the area.
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1. Introduction

The use of context in modern computer applications is what differentiates them from older ones
because the context (the place, time, situation, etc.) makes it possible to give more flexibility so that the
application adapts to the changing needs of users [1].

One of the most critical aspects of context is the identification of the activity the user is engaged
in; for instance, the needs of a user when she is sleeping are completely different from the ones of the
same subject when is commuting. This explains why the automated recognition of users’ activity has
been an important research area in recent years [2]. Recognition of these activities can help deliver
proactive and personalized services in different applications [3].

Human Activity Recognition (HAR) based on sensors has received much attention in recent
years due to the availability of advanced technologies (such as IoT) and its important role in several
applications (such as health, fitness monitoring, personal biometric signature, urban computing,
assistive technology, elder-care, indoor localization and navigation) [4]. The recognized activities
could be “simple” activities defining the physical state of a user, for instance, walking, biking, sitting,
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running, climbing stairs, or more “complex” ones defining a higher level intention of the user, such as
shopping, attending a meeting, having lunch or commuting [5].

The HAR researchers have made significant progress in recent years through the use of machine
learning techniques [6,7], sometimes using single-sensor data [8–10]. Some commonly used learning
techniques are the logistic regression (LR) [11], decision tree (CART) [12], the Random Forest Classifier
(RFC) [13], Naive Bayes (NB) [14], Support Vector Machine (SVM) [15], K-nearest neighbors (KNN) [16]
and the Artificial Neural Networks (ANN) [17]. Among the sensors commonly used there are
accelerometers, gyroscopes and magnetometers [18,19]. However, the use of a single sensor in the HAR
task has been unreliable because most sensors have limited information due to sensor deprivation,
limited spatial coverage, occlusion, imprecision and uncertainty [20].

In order to address the issues of using one sensor and improve the performance (measured mainly
by accuracy, recall, sensitivity and specificity, see Section 3.6) of the recognition, researchers have
proposed methods of multi-sensor data fusion. Using multiple sensors for recognizing human activities
makes sense because the information missed by one sensor can sometimes be provided by the others
and also the imprecision of a single sensor can often be compensated by other similar ones. Many works
have shown an accuracy improvement compared to single sensor [21]. Now, there is a wide variety of
methods for combining the information acquired from several similar or different sensors and there
are active research areas called “Sensor Fusion”, “Information Fusion” and similar ones, which have
dedicated journals, conferences, and so forth. Even when restricting our attention to multi-sensor
fusion in the context of HAR, there are hundreds of specific works having used many variants of
combinations of fusion methods and each author claims to have achieved better results than others,
so the need for putting some order in this area seems evident.

For instance, we have found methods that fuse the features extracted from the sensor data, such as
Aggregation [22,23]. Methods that fuse the decisions of the classifiers associated with each sensor,
such as Bagging [24], Voting [25], Adaboost [26], Multi-view stacking [27], a system of hierarchical
classifiers proposed by He et al. [28], to mention some. “Mixed methods” fuse the characteristics of
sensor data and the decisions of the classifiers associated with the sensors, such as a method based on
a sensor selection algorithm and a hierarchical classifier (MBSSAHC) [29]. So, although these fusion
methods have in different ways improved the performance of activity recognition and have overcome
to a certain degree the problems of using a single sensor, they have been piled chaotically one on top
of the previous ones, so that there is no order, which is a hurdle both for studying the area, as well as
for identifying the specific situations where some methods could be better fitted than others.

In the view of these considerations, in this work we have made a significant effort in identifying
the main families of fusion methods for HAR and we have developed a systematic comparison of
them, which is the main substance of this survey.

Later in this paper, we will present these techniques in a structured way, providing an ontological
classification to guide the relative placement of one method with respect to the others.

In short, this paper presents a survey about multi-sensor fusion methods in the context of HAR,
with the aim of identifying areas of research and open research gaps. This survey focuses on trends
on this topic, paying particular attention to the relationship among the characteristics of the sensors
being combined, the fusion methods, the classification methods, the metrics for assessing performance
and last but not least, the datasets, which we suspect should have some traits making some fusion
methods more suitable than others.

The rest of this paper is organized as follows. In Section 2, we compare this survey with other
surveys. In Section 3, we present the background, which shows the main concepts and methods of this
area. In Section 4, we present the methodology. In Section 5, we show the fusion methods. In Section 6,
we discuss the findings and limitations of the study. Finally, we present the conclusions in Section 7.
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2. Incremental Contribution Respect to Previous Surveys

In Table 1, we compare other HAR surveys that have been published (such as the Gravina et al.
review [20], Chen et al. survey [30] and Shivappa et al. survey [31]) with this survey. In this table,
we note that one of the main differences between these surveys and ours is the type of sensors of interest.
We do not limit ourselves to a specific type of sensor; we are interested in all kinds of sensors (external
and wearable [32]) because we want a broad perspective of fusion methods. Another difference is the
way of explaining the fusion methods. Whereas these surveys explain fusion methods in a general
way, we are more interested in explaining these methods in detail. a detailed explanation of these
methods can provide insight into the main ideas behind them and, with this vision, researchers can
better understand and better choose some of them.

Also, unlike the other surveys, we are interested in contrasting the performance reached by the
fusion of heterogeneous sensors (sensors of different classes, such as accelerometers and gyroscopes)
and the fusion of homogeneous sensors (sensors of the same class). We are also interested in contrasting
the fusion methods that manually extract the features (for instance, extracting statistical features by
hand—mean, standard deviation, to mention a few) and fusion methods that automatically obtain the
features (for example, using Convolutional neuronal networks [33]). Likewise, we focus on comparing
the performance achieved by the methods that mix at least two fusion methods (“Mixed fusion”)
and the methods that use a fusion method (“Unmixed fusion”). We consider these three crucial
comparisons due to the types of sensors to be fused, the way of extracting the features during fusion
and the number of fusion methods that can be mixed can affect the performance of the recognition of
the activity, as we will see in Section 6.

In addition to these differences, other specific differences are presented per survey. The survey
by Gravina et al. [20] focuses on data fusion in HAR domains, emotion recognition and general
health. In particular, they categorize the literature in the fusion at the data level, at the feature level
and at the decision level (typical categorization) [34]. Also, they compare the literature, identifying the
design parameters (such as window size, fusion selection method, to mention some) and the fusion
characteristics (such as communication load, processing complexity, to mention a few), at these fusion
levels. Our survey differs mainly from Gravina in that we add the classification “Mixed fusion” and
we do not focus our attention on the fusion parameters, nor on the characteristics of the fusion.

Chen et al. [30] present the state of the art of the techniques that combine human activity data that
come from two types of sensors—vision (depth cameras) sensors and inertial sensors. They classify
these techniques in the fusion at the level of data, at the level of features and at the decision level.
Also, they discuss the fusion parameters. Our survey differs mainly from Chen in that we add the
“Mixed fusion” classification and do not focus our attention on the fusion parameters.

Finally, the main differences between Shivappa et al. [31] and our survey are the classification
scheme and the concepts to be recognized. Concerning the classification scheme, Shivappa uses
seven categories to classify the fusion methods, whereas we use four categories. However, we agree
on three categories with Shivappa. In the concepts to be recognized, Shivappa focuses on speech
recognition, tracking, identification of people (biometrics), recognition of emotions and analysis of the
scene of the meeting (analysis of the human activity in rooms meeting) and we focus mainly on the
recognition of physical activity. Another difference with Shivappa is that we do not focus our attention
on fusion parameters.
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Table 1. Previous surveys comparison, including ours.

Criterion Gravina [20] Chen [30] Shivappa [31] Ours

Classification
at the data level Yes Yes No Yes

Classification
at the feature level Yes Yes Yes Yes

Classification
at the decision level Yes Yes Yes Yes

Classification signal
enhancement and
sensor level fusion
strategies,
classification at
the classifier level,
classification facilitating
the natural interaction of
the human-computer and
classification exploitation
of complementary
information through
modalities

No No Yes No

Mixed fusion No No Yes Yes

Physical activity
recognition Yes Yes No Yes

Emotion recognition Yes No Yes No

Speech recognition No No Yes No

Tracking No No Yes Yes

Biometrics No No Yes No

Meeting scene
analysis No No Yes No

Fusion in the context
of general health Yes No No Yes

Fusion characteristics Yes No No No

Fusion parameters Yes Yes Yes No

Type of sensors Wearable
Depth cameras
and
inertial sensors

Microphones
and cameras

External
and
wearable

Activities Yes Yes No Yes

Datasets No Yes Yes Yes

Classifiers Yes Yes Yes Yes

Metrics No Yes Yes Yes

Explanation of fusion
methods General General General Detailed

Homogeneous sensors vs
heterogeneous sensors No No No Yes

Automatic feature
extraction vs Manual
feature extraction

No No No Yes

Unmixed Fusion
vs Mixed fusion No No No Yes
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3. Background

In this section, we present the central concepts used by our work, to unify the terminology. Also,
these notions are explained in sufficient detail so that a non-expert can get a quick understanding of
the topic.

3.1. Human Activity Recognition

In recent years there has been increased attention to research on HAR [35–38] for several reasons.
One of them is that it can lead to costs savings in the management of common diseases, such as
diabetes, heart and lung diseases, as well as mental illness, which will cost $47 trillion each year from
2030 [39]. As physical activity is key in the prevention and/or treatment of these illnesses [40–44],
research on HAR is an enabler to better performance monitoring and diagnosing [45–47]. For example,
Bernal et al. [48] propose a framework for monitoring and assisting a user to perform a multi-step
rehabilitation procedure. Kerr et al. [49] present an approach to recognizing sedentary behavior.
Rad et al. [50] put forth a framework to the automatic Stereotypical Motor Movements detection.

Another use case for HAR is to identify falls of elder people [51]. The number of old people is
increasing in the world [52] Indeed, in 25% of the cases, the population of adults over 65 will suffer at
least one fall, every year, with consequences ranging from bone rupture to death [53,54]. As examples
of studies on the care of the elderly, we list Alam’s research [55] that proposes a framework for
quantifying the functional, behavioral and cognitive health of the elderly. Also, the detection of falls of
elderly people has been studied by Gjoreski et al. [56], Li et al. [57] and Cheng et al. [58].

We find another motivation for research on HAR in sports. For example, Wei et al. [59] propose
a scheme for sports motion evaluation. Ahmadi et al. [60] present a method to assess all of an athlete’s
activities in an outdoor training environment. Also, Ghasemzadeh et al. [61] come up with a golf swing
training system that provides feedback on the quality of movements and Ghasemzadeh et al. [62]
system evaluates and gives feedback for the swing of baseball players. Other applications of HAR are
in Ambient-Assisted Living [63], marketing [64], surveillance [65] and more.

Finally, recognizing human activities is of great interest because they can give relevant information
about the situation and context of a given environment to these applications [2].

3.1.1. Definition of Human Activity Recognition

According to Lara et al. [32], the Human Activity Recognition (HAR) problem can be defined
as—Given a set S = {S0, .., Sk−1} of k time series, each one from a definite measured characteristic and
all defined within time lapse I = [tα,, tβ], the objective is to look a temporal partition 〈I0, ..., Ir−1〉 of I,
according to the data in S and a set of labels which represent the activity performed during each interval
Ij (e.g., sitting, walking, etc.). This definition implies that time lapses Ij are consecutive, they are not

empty, they do not overlap and in such a way that
⋃r−1

j=0
Ij = I. In this definition, the activities are not

concurrent. The next definition supports this concurrency with some insignificant errors [32].
Definition 2 (Relaxed HAR problem)—Given (1) a set W = {W0, .., Wm−1} of m windows

of the same size, totally or partially tagged and such that each Wi includes a set of time series
Si = {Si,0, .., Sk−1} from each of the k measured characteristics and (2) a set A = {a0, .., an−1} of activity
labels, the aim is to meet a mapping function f : Si → A that can be assessed for all possible values of
Si, such that f (Si) is as similar as possible to the actual activity carried out during Wi [32].

3.2. Sensors in Human Activity Recognition

In the area of recognition of human activity, both external sensors and portable sensors have
been widely used [10]. External sensors are installed near the subject to be studied and portable
sensors are transported by the user [32]. Video cameras, microphones, motion sensors, depth cameras,
RFID tags and switches are example of external sensors. Accelerometers, gyroscopes, magnetometers
are instances of wearable sensors [10].
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About external sensors, they could be expensive due to the number of sensors that must be
purchased to increase system coverage [32]. For example, cameras and proximity sensors have limited
coverage according to their specifications [66].

Concerning such portable sensors, they consume little energy, provide large amounts of data
in open environments and can be purchased at low cost [67]. Also, these sensors are less likely to
generate privacy problems compared to external sensors, such as video cameras or microphones [10].
The central problem with wearable sensors is their elevated level of intrusion [32].

3.3. Machine Learning Techniques Used in HAR

In this section, we present the techniques of automatic learning classification commonly used by
researchers in the HAR field. This is not an extensive review of the ML field; the reader can consult
a general ML book as the ones from Bishop [6] and from Mitchell [68].

Logistic Regression (LR)[11] is a statistical technique for finding the relationship between
a dependent variable and one or two independent variables, in order to predict the occurrence
of an event by modeling the influence of the variables related to that event or to estimate the value of
the dependent one.

Decision Tree (DT) is a classification technique where a decision is taken by following the test
nodes of the tree from the root to a leaf, which defines the class label for a given sample [68]. To achieve
a good generalization and depending on the values of the available features, this tree tries to deduce
a division of training data. This division of the tree nodes is formed according to the maximum
information increase and the leaf nodes are associated with the class labels. Each of these nodes on
the route tests some characteristics of this sample. The classification and regression trees [69] and
ID3/C4.5 [70] are examples of algorithms for setting up decision trees.

Random Forest (RF) [13] method constructs a set of random variations of classification trees,
based on a feature vector. Each of these trees generates a decision that this method uses to produce the
final decision [71]. Researchers use this method extensively because of its simplicity [72].

k-Nearest Neighbors (KNN) [16] method is based on the idea that examples with similar
characteristics maintain the proximity between them. Due to this proximity, it is possible to classify
an unknown instance by observing the class of the nearest instances. Then, KNN determines the class
of some example by identifying the most frequent class tag of the nearest k examples. The value of K
is generally defined by a validation or cross-validation set.

Naïve Bayes (NB) [14] is a method based on the combined probability of the features (x vector)
given a truth label (y). This method is defined as p(x1, ..., xn | y) = ∏n

j=1 p(xi | y), where x = (xi, ..., xn)

and xi is conditionally independent given y. So, the class label c of one unknown example is assigned
according to the class with the highest probability given the observed data (c = argmaxcP(C = c |
x1, ..., xn)). Given a problem with K classes C1, ..., CK with probabilities P(C1), ..., P(CK), P(C = c) |
x1, ..., xn) = P(C = c)P(x1 | C = c)...P(xn | C = c).

Support Vector Machine (SVM) [15] uses the idea of maximizing the margins of a hyperplane
(optimal hyperplane) that divides two types of data. This hyperplane and its ρ separation margin can
be formulated as wTx + b = 0 [73] and as 2

‖w‖ , respectively. Also, this hyperplane can be optimized

by minimizing ρ with respect to x and b, min 1
2‖w‖2, s.t.yi(wTxi + b) ≥ 1, i = 1, ..., n. With the kernel

function technique, which is generally used to separate data that are not linearly separable [74],
the optimal classifier is defined as f (x) = ∑n

i=1 αiyiK(xi, x) + b, where α is the optimal Lagrange
multiplier and K(xi, x) is the kernel function. Among the kernel functions that stand out are the radial
base (exp(−y‖xi − x‖2), y > 0) and the sigmoidal (tanh(xT

1 x + c)).
Artificial Neural Network (ANN) [17] consists of a group of connected “neurons” with weights,

inspired in the structure of a brain. a detailed description of ANN is beyond the scope of this paper;
please see a detailed description in a ML book like the Mitchell one [68].
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Convolutional Neural Networks (CNNs) [33] are a type of ANN. These CNN perform
convolutional operations (matrix multiplication) on filters (matrix) to extract characteristics on a given
dataset. These features are more straightforward in shallow layers and more complex in deep layers.

Recurrent Neural Networks (RNNs) are also a type of ANN. These RNNs are comprised of
units that use the pre-activation information to produce the next information activation and the
corresponding predictions. The objective of these RNNs is using the previous information to achieve
predictions about data representing sequences over time.

Long-short-term Memory Networks (LSTMs) are a type of RNN. These LSTMs aim to remember the
dependencies between the data representing time sequences. These dependencies could be remembered
for a prolonged period. To remember this dependence over a long period, these LSTMs use gates to
update the status of the units—writing (entry door), reading (exit door) or reset (forgetting door).

Multilayer Perceptron Neural Network (MLP) is a neural network in which many input nodes are
joined with weights associated with various output nodes. The output of the network can be estimated
from the addition function oi = φ(∑i Wixi), where Wi is the weight used to fit the input xi and φ is the
activation function [75]. MLP infers the classification error through a backward propagation algorithm
and attempts to find the weights to minimize that error.

Radial Base Function Neural Network (RBF) [75] works with the RBF as an activation function.
For N hidden neurons, the activation function is f (x) = ∑N

i=1 Wi ϕ(‖ x− c ‖), where c is the central
vector for the neuron i and ϕ is a function of the nucleus.

3.4. Activity Recognition Workflow

The typical HAR workflow is a sequence of steps illustrated in Figure 1.

Figure 1. Activity recognition workflow

In the first step, the raw data is obtained from whichever sensors are used, such as accelerometers,
gyroscopes, pressure sensors (for body movements and applied forces), skin/chest electrodes
(for electrocardiogram, ECG), electromyogram (EMG), galvanic skin response (GSR) and electrical
impedance plethysmography (EIP)), microphones (for voice, ambient and heart sounds), scalp-placed
electrodes for electroencephalogram (EEG). Raw data are sampled, generating a multivariable time
series. Notice that each sensor could have a different sampling rate, as well as varied limitations
of the power supply, space restriction, and so forth. Thus, achieving synchronization between
multimode sensor data presents technical difficulties, such as the time difference between the
sensors, the corruption of unprocessed sensor data caused by physical activity, sensor malfunction or
electromagnetic interference [76]. Some techniques to sample the raw data are fixed rate, variable rate,
adaptive sampling, compressed sensing and sensor bit-resolution tuning [77,78].

In the processing step, different algorithms are applied to the raw data coming from sensors
to address the aforementioned problems and leave the data ready for the extraction of features.
For example, acceleration and gyroscope signal filtering usually include calibration, unit conversion,
normalization, resampling, synchronization or signal level fusion [79]. Physiological signals, such as
electrooculography (EOG), generally require preprocessing algorithms to eliminate noise or eliminate
baseline drift [80]. The challenge for these algorithms is that they must retain the raw data properties
that are important in the discrimination of human activities [76].

In the segmentation step, the processed data obtained from the previous step is split into
segments of adequate length. This segmentation is not an easy task because the human fluently
performs actions and there is no clear delimitation between activities [76]. However, there are several
methods to overcome to some extent this difficulty, such as the sliding window [81], energy-based
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segmentation [82], rest-position segmentation [83], the use of one sensor modality to segment data of
a sensor of another modality [84] and the use of external context sources [76].

The fourth step extracts the characteristics of the segmented data from the previous level and
organizes them into vectors that together form the space of the characteristics. Examples of these
characteristics are the mean, variance or kurtosis (statistical features). The mel-frequency cepstral
coefficients or energy in specific frequency bands (Frequency-domain features) [85]. Features extracted
from a 3D skeleton generated by body sensors (Body model features) [86]. Encoded duration,
frequency and co-occurrences of data (expressive feature) [5,87].

Also, in this step, the task of selecting features is performed because the reduction of them is
essential to reduce computational needs. Because the task of manually choosing such features is
complicated, several techniques have been developed to automate this selection [76], so that these can
be categorized into wrapper [88], filter [89] or hybrid [90] methods. Convolutional Neural Networks
(CNNs) have also been used for feature selection [91].

In the training step, the inference algorithms are trained with the features extracted in the fourth
step and the actual labels (“ground truth”). During training, the parameters of these algorithms are
learned by reducing the classification error [76]. Among the methods of inference that are usually
used are the k-NN (k-Nearest-Neighbor) [16], Support Vector Machines (SVM) [15], Hidden Markov
Models (HMM) [92], Artificial Neural Networks (ANN) [17], Decision Tree Classifiers [12], Logistic
Regression [11], Random Forest Classifier (RFC) [13] and the Naive Bayesian approach [14].

In the classification step, the model trained in the previous step is used to predict activities (mapping
feature vectors with class labels) with a given score. The final classification can be done in many ways,
such as choosing the highest score and letting the application choose how to use the scores [76].

3.5. Multi-Sensor Data Fusion on HAR

Multisensor fusion had its origins in the 1970s in the United States Navy as a technique to improve
the accuracy of motion detection of Soviet ships [93]. Nowadays, various applications use this idea for
applications such as the supervision of complex machinery, medical diagnostics, robotics, video and
image processing and intelligent buildings [94].

Multisensor fusion techniques refers to the combination of the features extracted from data of
different modalities or the decisions generated from these characteristics by classification algorithms [95].
The objective of sensor fusion is to achieve better accuracy and better inferences than a single sensor [21].
So, sensor fusion has the following advantages compared to the use of a single sensor [96]:

• Enhanced signal to noise ratio—the merging of various streams of sensor data decreases the
influences of noise.

• Diminished ambiguity and uncertainty—the use of data from different sources reduces the
ambiguity of output.

• Improved confidence—the data generated by a single sensor are generally unreliable.
• Increased robustness and reliability, as the use of several similar sensors provides redundancy,

which raises the fault tolerance of the system in the case of sensor failure.
• Robustness against interference—raising the dimensionality of the measuring space (for example,

measuring the heart frequency using an electrocardiogram (ECG) and photoplethysmogram (PPG)
sensors) notably improves robustness against environmental interference.

• Enhanced resolution, precision and discrimination—when numerous independent measures of
the same attribute are merged, the granularity of the resulting value is finer than in the case of
a single sensor.

• Independent features can be combined with prior knowledge of the target application domain in
order to increase the robustness against the interference of data sources.
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Regarding the level of abstraction of data processing, Multi-sensor fusion can be divided in three
main categories—data-level fusion, feature-level fusion and decision-level fusion [34]. These categories
are defined as:

Data-level fusion: It is generally assumed that the combination of multiple homogeneous sources
of raw data will help to achieve more precise, informative and synthetic fused data than the separate
sources [97]. Studies on data-level fusion are mainly concerned with the design and implementation of
noise elimination, feature extraction, data classification and data compression [98].

Feature-level fusion: Feature sets extracted from multiple data sources (generated from different
sensor nodes or by a single node with multiple physical sensors) can be fused to create a new
high-dimensional feature vector [30]. Also, at this level of fusion, machine learning and pattern
recognition, depending on the type of application, will be applied to vectors with multidimensional
characteristics that can then be combined to form vectors of joint characteristics from which the
classification is carried out [99].

Decision-level fusion: The decision-level fusion is the process of selecting (or generating) a class
hypothesis or decision from the set of local hypotheses generated by individual sensors [100].

These levels of fusion takes its place in the activity recognition fusion and, in doing so,
they configure an extended version of it (see Figure 2). In Figure 2, the merging at the data level
occupies the second position because the raw data of several sensors feed this level. The fusion at
the feature level is located between the step of extraction and selection of the characteristics and the
training step since this training requires the features extracted from the sensors. The decision-level
merger occurs both in the training stage and in the classification stage because the decisions of some
classifiers are combined to make a final decision.

Figure 2. Extended activity recognition workflow.

3.6. Performance Metrics

The performance for a particular method can be organized in a confusion matrix [76]. The rows
of a confusion matrix show the number of instances in each actual activity class, whereas the columns
show the number of instances for each predicted activity class. The following values can be obtained
from the confusion matrix in a binary classification problem:

True Positives (TP): The number of positive instances that were classified as positive.
True Negatives (TN): The number of negative instances that were classified as negative.
False Positives (FP): The number of negative instances that were classified as positive.
False Negatives (FN): The number of positive instances that were classified as negative.
Accuracy, precision, recall and F-measure (also F1-score or F-score) are the metrics most commonly

used in HAR [101]; as well as, the specificity. Below, we present these metrics:
Accuracy is the most standard measure to summarize the general classification performance for

all classes and it is defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision, often referred to as positive predictive value, is the ratio of correctly classified positive
instances to the total number of instances classified as positive:
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Precision =
TP

TP + FP
(2)

Recall, also called sensitivity or true positive rate, is the ratio of correctly classified positive
instances to the total number of positive instances:

Recall =
TP

TP + FN
(3)

F-measure combines precision and recall in a single value:

F-measure = 2 · Precision · Recall
Precision + Recall

(4)

Specificity measures the proportion of negatives that are genuinely negative:

Specificity =
TN

TN + FP
(5)

Although defined for binary classification, these metrics can be generalized for a problem with
n classes.

4. Methodology

To find relevant studies on the subject of this work in a structured and replicable way, in this survey,
we rely on a systematic mapping study [102]. This method provides an extensive overview of a field of
research and a structure for a given research topic [103]. Also, this method offers a guide for an exhaustive
analysis of the primary studies of a particular theme and to identify and classify the findings of this
review [104]. The process to carry out a mapping study is described in the following subsections.

Identification and Selection of Sources

For this survey, we picked the Scopus database. This database contains a broad range of scientific
writing and provides a reliable and friendly search engine and a diversity of tools for exporting results [105].
Figure 3 presents the overall workflow of the search procedure we followed in this mapping study.

Figure 3. Mapping study stages.

Next, we defined the search string by combining the logical operators “AND” and “OR” with the
terms obtained from the research question. Table 2 presents the resulting search string. This string
shows that most of these terms are related to the recognition of human activities through the use of
multiple sensors.

Table 2. Search string defined.

Search String

(multi or diverse) AND sensor AND data
AND (fusion OR combine) AND human
AND (activity OR activities) AND
(recognition OR discover OR recognize)

Once the search source was picked out and the search string was established, we reduced the
selection of primary studies by applying the inclusion criteria (CI) and the exclusion criteria (CE).
The inclusion and exclusion criteria are presented in Table 3.



Sensors 2019, 19, 3808 11 of 41

Table 3. Inclusion and exclusion criteria.

Criteria Description

IC1
Include papers whose titles are related to the recognition
of human activities through multiple modalities

IC2
Include papers that contain terms related with the defined
terms in the search string.

IC3
Include papers whose abstracts are related to the recognition
of human activities through multiple sensors

IC4 Include publications that have been partially or fully read.
EC1 Exclude documents written in languages other than English

After determining the inclusion and exclusion criteria, we executed the search string in the
Scopus database. We analyzed the search results with respect to the recognition of human activities.
Regarding the selection procedure, we admitted the studies according to the inclusion and exclusion
criteria. We examined the titles, abstracts and keywords of all article search results. Also, we reviewed
the entire document. Table 4 shows the number of resulting documents and the number of relevant
documents selected. These results include papers published up to 2018.

Table 4. Document search results and relevant selected papers.

Source Document Results Relevant Papers

Scopus 78 33

5. Fusion Methods

In this section, we classify the different fusion methods found in the literature. This classification
is guided by the merging categories presented in Section 3.5—data-level fusion, feature-level fusion
and decision-level fusion.

5.1. Methods Used to Fuse Data at the Data Level

In this section, we consider the methods that fit the merge category at the data level
(see Section 3.5). Therefore, the methods classified here share the characteristic that their final
predictions are made by trained classifiers with the combined raw data of the sensors.

5.1.1. Raw Data Aggregation

In the category of merging at the data level, we show the raw data aggregation (RDA) method that
consists of concatenating the raw data of all the sensors, extracting the features of them and training
a classification model with these features. The procedure followed for this concatenation is to first
segment the raw data of each sensor according to its sampling frequency and then concatenate these
segments taking into account the time [50].

5.1.2. Time-lagged Similarity Features

Time-lagged Similarity Features (TLSF) [106] is a method that fuse at the level of data. In this
method, the signal strength measurements are processed for pairs of devices to calculate time-lagged
similarity features, based on raw signal strength measurements or derived location measurements
using location fingerprinting [107]. Formally, these time-lagged features are computed for a pair of
devices a, b as a vector va,b, where each entry is associated with a certain time lag i ∈ [-z, ..., z] in
seconds, where z defines the range of time lags. Hence, the length of va,b is 2z + 1 and for each time
lag i, va,b then holds a feature value, which indicates the similarity of the measurements from a and b,
when shifting those of b by a time lag i. Each feature value is computed over a time window of size w
over ma and mb. Here, mat is the measurements for time step t for a device a.
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5.2. Methods Used to Fuse Data at the Feature Level

In this section, we consider the methods that fit the merge category at the characteristic level (see
Section 3.5). Therefore, the methods classified here share the characteristic that their final predictions
are made by trained classifiers with the combined features of the sensor data.

5.2.1. Feature Aggregation

In the category of fusion at the level of features, we present the method of Feature Aggregation (FA),
which consists of concatenating the characteristics extracted from all the sensors (vector of features) and
training a unique classification model with this vector [22,23,108–115]. Sometimes, FA is complemented by
Principal Component Analysis (PCA) [116] to reduce the dimension of the feature vector.

5.2.2. Temporal Fusion

Temporal Fusion (TF) [48,50] is another method used to fuse features. This method consists of
automatically extracting features from raw data of the sensors using a CNN and fusing these features
using a LSTM.

5.2.3. Feature Combination Technique

Feature Combination (FC) [117] method selects a group of characteristics that, together, achieve the
best overall performance of a neural network by measuring the impact of fixed features in this network.
FC, in addition to a neural network, uses the clamping technique [118]. The following steps describe
this method:

Given S = {}, F = { f1, f2, ..., fN} and g(), a set of selected features, a set of N features and the
generalized performance of the network, respectively.

• Calculate the feature importance for all features fi in F using Im( fi) = 1− g(F| fi= f̄i)
g(F) .

• Select the feature f s in the feature space F which has the maximum impact fs = max fi∈F Im( f i).
• If and only if g(S ∪ fs) ≥ g(S), then update S and F using S = S ∪ {Fs} and F = F \ {Fs}
• Repeat steps 2 and 3 for N-1 times.

5.2.4. Distributed Random Projection and Joint Sparse Representation Approach

In Distributed Random Projection (DRP) [119], the random projections (RP), an almost optimal
measurement scheme, of the signal measurements are made in each source node, only considering the
temporal correlation of the sensor readings.

Let aj(t) = (xj(t), yj(t), zj(t), θ j(t), ϕj(t)) ∈ R5 indicates the five measurements afforded by
sensor j at time t, where j = 1, ..., J and each j wearable sensor has a 3-axis accelerometer (x,y,z) and
a 2-axis gyroscope (θ, ϕ). Also, vj = [aj(1), aj(2), ..., aj(h)]T ∈ R5h represents an action segment of
length h by node j. In addition, let Φj be the random projection matrix (M x N) for each sensor j and
ṽj = Φjvj a vector after RP.

Each sensor j sends this vector ṽj to the base station (sink). This base station gather random
projection vectors of J sensors and aggregates them as ṽ = [ṽ1, ..., ṽJ ]T = Φv, where Φ ∈ RMJ xNj is
a matrix of diagonal blocks that was created by matrices of random projection of J sensors. In addition,
the dictionary V = [V1T

, ..., V JT
]T is built, where each V j is constructed with the training samples

of the corresponding jth sensor. Considering that all the sparse representation vectors are the same,
ṽ = ΦVβ + ε. The Joint Sparse Representation (JSR) [119] can be depicted by ṽ1

test = Φ1V1β1 +

ε1, ..., ṽJ
test = ΦJV J βJ + εJ .

5.2.5. SVM-Based Multisensor Fusion Algorithm

The SVM-based multisensor fusion (SVMBMF) algorithm [120] combines the data at the
feature level. This algorithm consists of first extracting the time and frequency domain features
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of the sensors. Within the characteristics of the time domain are the mean value, the standard
deviation, 10th, 25th, 50th, 75th, 90th percentiles and the correlation between the vector magnitudes.
The frequency-domain features are the spectral analysis, including the frequency, spectral energy [121]
and entropy [122]. Second, this algorithm performs a two-step feature selection process. The first step
consists of a statistical analysis of the distribution of these features in order to have features whose
distributions have the least overlap. The second step seeks to eliminate redundant features using
the minimal-redundancy- maximal-relevance (mRMR) heuristic [89]. The mRMR approach measures
the relevance and redundancy of the aspirant characteristics with the target class based on mutual
information and choose a “promising” subset of features that have the greatest relevance and smallest
redundancy. Finally, this algorithm combines the resulting characteristics that are introduced in the
SVM classifier.

5.3. Methods Used to Fuse Data at the Decision Level

In this section, we consider the methods that fit the merger category at the decision level [100]
(see Section 3.5). Therefore, the methods classified here share the property that their final decision is
constructed with the outputs of several classifiers.

5.3.1. Bagging

A method used to fuse the decisions of the base classifiers is Bagging [24]. This method uses the
same learning technique with different subsets that were extracted from a given dataset. This extraction
occurs with a replacement of the samples of this dataset. Each of these subsets was introduced in
an instance of the learning technique. The prediction of each of these instances provides a vote for the
final classification.

5.3.2. Lightweight Bagging Ensemble Learning

Lightweight Bagging Ensemble Learning (LBEL) [123] is an expansion of the bagging algorithm.
This extension consists of adding an inference engine based on the expression tree to help guide the
process of recognition of activities in real time. LBEL bases in the BESTree selection algorithm [124]
and Decision Tree (DT) as a base classifier. Formally, let x be a sample and mi (i = 1...k) be a set of
basic classification algorithms linked with the probability distributions mi(x, cj) for each class label
cj, j = 1..n. The output of the final classifier set y(x) for instance x can be expressed as:

y(x) = argmax
k

∑
i=1

wimi(x, cj)

where wi is the weight of base classifier mi. LBEL uses ensemble learning approaches as subjacent
methodologies for determining ideal weights for each base classification algorithm, given the
hierarchical method that consists in the recognition of micro activity recognition and combining
this with a semantic knowledge base (SKB) and location context for higher-level activity recognition.

5.3.3. Soft Margin Multiple Kernel Learning

Since the definition of multiple kernel learning (MKL) is a sum of the weighted kernels, each trained
in each sensor, this merging is done at the decision level. This MKL refers to a linear combination of
some base kernels, such as RBF or linear cores [125]. A variant of this method is the soft margin MKL
(SMMKL) [126] that makes SVM robust by entering the slack variables. This variant uses all the possible
information and avoids remaining only with one of the sensors. Also, this variant is the counterpart of
L1MKL [127] that can be seen as a hard margin MKL, which selects the combination of a subset of base
kernels that minimize the objective function and discard any other information (sensor).
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5.3.4. A-stack

A-stack [128] is a method that combines decisions of multiple classifiers. This method contain
one base learner for each sensor and a meta learner. Each base learner is trained with the information
of some sensor. The prediction scores of each base learner is combined in a vector. Finally, the meta
learner is trained with this scores vector for the final predictions.

5.3.5. Voting

Voting (Vot) is a method used to merge decisions of different classifiers [25]. In this method,
the classifiers make their predictions that turn into votes. Based on these votes, the final prediction
is made following a majority vote policy. Moreover, there is a variant of the way of voting, which is named
weighted voting. In this type of voting, the classifiers are penalized according to its performance (accuracy
or some other metric) by assigning to them a weight. In this way, the final classification is done by adding
the weighted votes of the classifiers and choosing the class that reached the highest score.

5.3.6. Adaboost

AdaBoost [26] is also a method that combines the decisions of the classifiers. Like Bagging
technique, AdaBoost uses the same classifier with different subsets of a given dataset. However,
this method focuses on the interactive training of weak instances of this classifier (poor precision).
After the first training of some instance of these classifiers, where the examples of some subset of the
dataset were assigned with the same weight, the weight of the examples that were not learned with
precision increases. The idea behind the increase is that the next instance of the classifier pays more
attention to these examples. This increase in weights produces a new subset of the dataset from which
a new instance of the classifier is trained, and so on. In the end, the predictions of each instance of the
classifier are taken into consideration in a weighted vote for the final classification. These weights are
proportional to the accuracies achieved by each instance of the classifier.

5.3.7. Multi-view Staking

Multi-view Staking (MulVS) [27] is based on multi-view learning [129,130] and stacked
generalization [131]. This method consists of training one first-level learner for each view (sensors) and
combining their outputs (class label, class predictions) using stacked generalization [131]. The final
decision is performed by training of a meta-level learner with these combined outputs.

5.3.8. Hierarchical Method

The hierarchical method combines the decision of different classifiers organized into several levels.
Because this method uses the results of different classifiers in the task of classification, it is considered
within the fusion at the decision level.

The Method Based on a Sensor Selection Algorithm and a Hierarchical Classifier (MBSSAHC) [29,132]
follows a hierarchical structure of two levels. In the first level, this method trains the first classifier
with the features extracted from the accelerometer data of a master node. Based on the results of this
first classifier (class distribution) and expert knowledge (the distinctive capacity of a subset of sensors
to distinguish distinct activities), this approach chooses a subset S of K sensors (nodes) different from
the master node (in this case K = 4 accelerometers ). Each node of the S subset sends its features to
a fusion module. This fusion module constructs a vector V combining the features of the selected
sensors and the information produced by the first classifier (the distribution of classes). In the second
level, the final classification is produced using the second classifier that receives the vector V.

ubiMonitor—Intelligent Fusion (ubiMonitorIF) [133] is a hierarchical approach that uses three
accelerometers and consists mainly of a Stationary detector, a Posture detector and a Kinematics
detector. The stationary detector, the first level, uses a classifier (such as CART) to detect if a user is
stationary or not. This classifier is fed with the harmonic mean and variance of the gravity acceleration
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from the three accelerometers. In the second level, for stationary users, the posture is detected using
CART as the classifier and the gravity accelerations from the accelerometers as the features. In the
third level, for non-stationary users, the user’s movement type is inferred using a binary decision tree
classification algorithm based on SVM [133] with a set of descriptive features for the recognition of
kinematic activities. This algorithm distinguishes several activities at different levels of abstraction.
Sort the activities as a binary decision tree. Each node in the tree is a binary classifier (such as SVM).
The upper node represents the highest level of abstraction of the activities. The nodes below represent
the lowest levels of abstraction.

Hierarchical Weighted Classifier (HWC) [134] is a model that combines the decisions at activity
level and sensor level. This model consists of three levels of decision making. The first level, called level
of activity or class, is responsible for the discrimination of activities or classes. To achieve this
discrimination, this level uses M by N base classifiers (Cmn, ∀m = 1, ..., M, n = 1, ..., N), where M is
the number of sensors and N is the number of classes (activities). These classifiers apply a binary
classification strategy of one against the rest. The second level of classification, called sensor level,
is configured with M sensor classifiers (Sm, ∀m = 1, ..., M). This sensor classifiers are not machine
learning algorithms but decision-making frameworks. Each sensor classifier have N basic classifiers
(one per class), whose decisions are fused through an activity-dependent weighting design. The last
layer, the network level, is responsible for the weighting and aggregation of the decisions provided by
each sensor classifier, finally providing the identified activity or class. The weights used at the network
level depend on the classification capabilities of each individual sensor classifier.

5.3.9. Product Method

Product (Prod) method combines the probabilities of the classes predicted by the classifiers.
Therefore, this method conforms to the fusion category at the decision level. The following formula
defines this method:

predictionj
i = maxK{

1
p(Ck)J−1 ∏J

j=1(P̂(j)
ik )wj}

where predictionj
i is the prediction of the classifier j trained with the input xi, P̂(j)

ik is the posterior
probability that xi belongs to class k and wj is the weight for classifier j.

5.3.10. Sum Technique

The sum technique combines the probabilities of the classes predicted by the classifiers using the sum
operation. This technique selects the class with the highest average probability. Therefore, this method
conforms to the fusion category at the decision level. The following formula defines this method:

predictionj
i = maxK{

1
J ∑J

j=1(P̂(j)
ik )wj}

where predictionj
i is the prediction of the classifier j trained with the input xi, P̂(j)

ik is the posterior
probability that xi belongs to class k and wj is the weight for classifier j.

5.3.11. Maximum Method

The Maximum (Max) method is a decision-level merger strategy that decides the results according
to the most reliable classifier. This technique selects the class with the highest probability from all
classifiers. The following equation defines this method:

predictionj
i = maxK{

maxJ(P̂(j)
ik )wj

∑K
k=1 maxJ(P̂(j)

ik )wj
}
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where predictionj
i is the prediction of the classifier j trained with the input xi, P̂(j)

ik is the posterior
probability that xi belongs to class k and wj is the weight for classifier j.

5.3.12. Minimum Method

The Minimum (Min) method is a decision-level merger strategy. This technique selects the class
that achieves the least objection for all classifiers. The following equation defines this method:

predictionj
i = maxK{

minJ(P̂(j)
ik )wj

∑K
k=1 minJ(P̂(j)

ik )wj
}

where predictionj
i is the prediction of the classifier j trained with the input xi, P̂(j)

ik is the posterior
probability that xi belongs to class k and wj is the weight for classifier j.

5.3.13. Ranking Method

The Ranking (Ran) method selects the class with the highest rank. This rank is obtained by
converting the probability P̂(j)

ik into a rank. The values of these ranges fluctuate between 1 and K.
Therefore, this method conforms to the fusion category at the decision level. The following formula
defines this method:

predictionj
i = maxK ∑J

j=1 wjrank(j)
ik

where predictionj
i is the prediction of the classifier j trained with the input xi, P̂(j)

ik is the posterior
probability that xi belongs to class k and wj is the weight for classifier j.

5.3.14. Weighted Average

The weighted average (WA) method is a decision-level fusion strategy that bases its final decision
on the sum of the weighted probabilities according to the following equation:

predictionj
i = maxK ∑J

j=1 wj P̂
(j)
ik

where predictionj
i is the prediction of the classifier j trained with the input xi, P̂(j)

ik is the posterior
probability that xi belongs to class k and wj is the weight for classifier j.

5.3.15. Classification Model for Multi-Sensor Data Fusion

Classification model for Multi-Sensor Data Fusion (CMMSDF) [135] is considered into the
decision-level fusion because combine the decision of the symbolic information extracted form sensors.
In this model, the data of each sensor is processed to get the essential information; for example, “ml01”
for the level of movement. This basic information is fed into the system, which issues the answers.
In the issuance of responses, only some of the processes are used to obtain the basic information.
These processes are ordered, selected and used by the proposed model.

The proposed model is divided into three steps—In step 1 the selection of features is made,
ordering the basic symbols that are compared in each type of activity. Step 2 compares the basic symbol
obtained at a given moment with the database, which registers the previous symbols and serves in
the training processes. Then, a table of the results of the comparison is created. Step 3 performs the
analysis of the type of activity, which indicates whether each type of activity should discover more
basic symbols or can guarantee its result without finding other basic symbols.
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5.3.16. Markov Fusion Networks

Markov Fusion Networks (MFN) [136] is a method used to combine decisions of various classifiers.
The method combines temporal series of probability distributions of the classifiers. The combination is
achieved by the following equations:

Here, I is the number of classes, M is the number of classifiers, T is the number of steps, xm,t ∈
[0, 1]I is the probability distribution of classifier m at time step t ∈ ζm where m ∈ 1, ..., M, ∑I

i=1 xm,i,t = 1
and ζm is the set of available probability distributions.

p(Y, X1, ..., Xm) = 1
Z exp(− 1

2 (Ψ + Φ + Ξ)) is the probability density function of the final
estimation Y ∈ [0, 1]IxT and the predictions of the classifier Xm ∈ [0, 1]IxT , where Z normalizes
the probability to one.

Ψ = ∑M
m=1 Ψm = ∑M

m=1 ∑I
i=1 ∑t∈ζ km,t(xm,i,t− yi,t)

2 is the data potential, where K ∈ RM,T
+ qualifies

the reliability of the classifier m in the time step t.
Φ = ∑T

t=1 ∑I
i=l ∑t̂∈N(t) wmin(t,t̂)(yi,t − yi,t̂)

2 is the smoothness potential, which models the Markov

chain, where w ∈ RT−1
+ ponders the difference between two neighboring nodes and N(t) returns the

set of contiguous nodes.
Ξ = u ·∑T

t=l((1−∑I
i=1 yi,t)

2 + ∑I
i=1 1[0>yi,t ]

· y2
it) is the distribution potential, which ensures that

the resulting estimate fits the laws of probability theory, where the parameter u ponders the pertinence
of the potential and 1[0>yi,t ]

takes the value one in case y is negative.

5.3.17. Genetic Algorithm-Based Classifier Ensemble Optimization Method

The method of classifier optimization based on genetic algorithms (GABCEO) [137] combines the
result of the measurement level of different classifiers for each activity class to form the assembly of these
classifiers. Because it combines these outputs, this method belongs to the decision level fusion category.

This method uses a Genetic Algorithm (GA) to optimize the measurement level output in terms
of weighted feature vectors of classifiers. These weighted characteristics vectors of the classifiers are
defined from their training performance for each class, which point out the chance that the values of
the input sensor belong to the class. Also, these weighted feature vectors of all the learning algorithms
are group into GA to infer the activity rules optimized for the final verdict on the activity class tag.

The architecture of this method consists of four main elements—(1) Data preprocessing, to draw
the sensory data as an observation vector for the input of the classifier, (2) base classifier for the Activity
Recognition (AR), to give details concerning the classifiers applied with the chosen configuration
of parameters, (3) an apprentice of ensemble of the classifier based on GA, to optimize the vectors
of weighted characteristics of multiple classifiers and (4) phase of recognition, to infer the activities
carried out.

5.3.18. Genetic Algorithm-Based Classifiers Fusion

Genetic Algorithm-Based Classifiers Fusion (GABCF) [138] approach consists of the following steps.
First, the method receives raw data from various sensors. For n sensors, the raw input of the approach
is defined as xi, yi, where x = S1, S2, ...Sn y y is the result of K potential activities. The raw entries are
preprocessed then using the weighted moving average (WMA). WMA is a strategy employed to soften the
signal using At = w1At + w2At−1, where A is the signal at time t. Next, the data is scaled to the range
[0 1]. Feature set F is extracted—mean, standard deviation (STD), maximum, minimum, median, mode,
kurtosis, skewness, intensity, difference, root-mean-square (RMS), energy, entropy and key coefficient.
F is entered into the feature selection process using the feature combination (FC) technique resulting in
a feature set S. S is used in a classifier and passed through a multiple-classification block that yields class
posterior probability P(j). Finally, the classifiers are merged and the fusion weights are determined using
a genetic algorithm to produce the final prediction.
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5.3.19. Adaptive Weighted Logarithmic Opinion Pools

In Adaptive Weighted Logarithmic Opinion Pools (WLOGP) [139], the individual later likelihood
pj(wi|x), (j = 1, 2, ..., n) are used to qualify the membership of the combined class as follows: w =

argmax ∑n
j=1 aj pj(wi|x), where i ∈ 1, 2, ..., C and C is the total fellow of the class, j depicts the index of

the classifier, n is linked to the total number of classifiers, aj outlines the adaptive weight and w is the
class tag of the result of the merger. In this fusion method, the multi-class relevance vector machines
(RVM) [140] have been used as base classifiers.

5.3.20. Activity and Device Position Recognition

Activity and device position recognition approach (ADPR) [141] merges the data from an
accelerometer and multiple light sensors to classify the activities and positions of the devices.
This method consists of two branches. The first branch calculates the state of motion and the position
of the device using data from the accelerometer and a Bayesian classifier. The second branch refines
the position estimates using the ambient light sensor, the proximity sensor and the intensity data
of the camera, as well as the rules of whether one side of the device is occluded, if both sides are
occluded or if none of the faces is occluded. The output of this second branch is a list of feasible device
positions. The final classification of the movement state occurs by marginalizing the position of the
device and vice-versa and eliminates the non-feasible positions. For reliability, a confidence metric is
calculated and a decision of the classifier is made only when the confidence metric is above a threshold.
Because this method combines the decision of the Bayesian classifier with the decision based on the
rules of the second branch, this approach is classified in the merger at the decision level.

5.3.21. Daily Activity Recognition Algorithm

Daily Activity Recognition Algorithm (DARA) [142] fuses the decisions of two classifiers to
recognize human activities. This algorithm obtains the features (mean, variance and covariance) of
the raw data from two inertial sensors. These features are introduced in two neural networks, one for
each sensor. The outputs of two neural networks are fed into of a fusion module, which integrates
these outputs (based on rules) and generates coarse-grained classification for three types of human
activities—zero-displacement activities, transitional activities and strong displacement activities. Next,
a heuristic discrimination module is used to accurately classify zero-displacement activities (such as
sitting and standing) and transition activities (such as standing and standing to sit). Finally, a hidden
Markov model (HMM)-based recognition algorithm is used for the detailed classification of strong
displacement activities (for example, walking, climbing stairs, walking down stairs, running).

5.3.22. Activity Recognition Model Based on Multibody-Worn Sensors

Activity Recognition Model Based on Multibody-Worn Sensors (ARMBMWS) [143] fuses the
classification results based on Bayes’ theorem. In this model, each sensor node captures the raw
activity data and extracts the features from sensor data stream. Then, the features of each sensor
feed a decision tree classifier, one for each sensor. The final classification based on a Bayesian Naïve
classifier is obtained by merging the result of each classifier. This Bayesian Naïve classifier classifies
the entry instance to the class that maximizes the posterior probability.

5.3.23. Physical Activity Recognition System

Physical activity recognition system (PARS) [144] fuses the decision of diverse classifiers. In this
system, the temporal features and the Cepstral features of the raw data of the sensors are extracted.
Temporary features are introduced in the Support Vector Machine (SVM) with the generalized linear
discriminative sequence (GLDS) kernel and the Cepstral functions are introduced in the Gaussian
Mixing Models (GMM) with the Heteroscedastic linear discriminant analysis (HLDA). The output of
these models (SVM and GMM) are combined at the score level. This Score level fusion is defined as
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follows—Let us suppose that K classifiers exist and that each of them recognizes physical activities
using a set of characteristics of a given sensor. Also, suppose that the kth classifier emits its own
normalized logarithmic likelihood vector lk(xt) for each test. Then, the logarithmic likelihood vector
combined is defined by ĺ(xt) = ∑K

k=1 βklk(xt). The weight, βk, is obtained by logistic regression based
on the training data [145].

5.3.24. Distributed Activity Recognition through Consensus

Distributed Activity Recognition through Consensus (DARTC) [146] merges similarity scores
from adjacent cameras to produce a probability for each action at the network level. In this method,
each camera calculates a measure of similarity between the activities perceived by it and a dictionary
of predefined activities. Also, it knows the likelihood of transition between activities. Based on
these computed similarities and the probability of transitions, the consensus estimate is computed.
The consensus is a likelihood of similarity of the activity seen against the dictionary, taking into
consideration the decisions of the individual cameras. Basically, the consensus is the descending
gradient algorithm. It minimizes the cost function g(wi) = (1/2)∑j∈Cn

i
(wi − wj)

2.

5.3.25. A Hybrid Discriminative/Generative Approach for Modeling Human Activities

In the Discriminative/Generative Approach for Modeling Human Activities (DGAMHA) [147],
a feature vector is calculated from raw data from the sensors. The vector includes linear and Mel-scale
FFT frequency coefficients, cepstral coefficients, spectral entropy, bandpass filter coefficients, integrals,
mean and variances. From this vector of characteristics, the fifty main characteristics per class are extracted
and entered into an AdaBoost variation [148] that uses the decision stumps [149] as weak classifiers.
Each decision stump classifier produces a verge in time t. This series of margins became probability
when adjusted to a sigmoid. The distribution of probabilities is provided to ten Hidden Markov Models
classifiers, each of which yields a probability. The most likely class is the classified class.

6. Comparison of Fusion Methods

In this section, first, we compared the fusion methods by the number of fusion methods that
were combined, by the type of sensors (external and wearable) and by the extraction strategy of the
features (manual and automatic). Then, we compare the scenarios addressed by the fusion methods
to know which of them were the most used. After that, we compare the main elements (sensors,
activities, classifiers and metrics) used by the fusion methods, to know which of them were the most
used. Finally, we discuss both our findings on these comparisons and the limitations of this survey.

6.1. Comparison between Fusion Methods that Use a Single Fusion Method and Fusion Methods that Use Two
Fusion Methods

In Table 5, we present the accuracies (minimum, average and maximum) reached as a whole by
a group, which we call “Unmixed”. This group contains methods that were classified into a single
fusion category (data-level, feature-level or decision-level). Also, in this Table, we show the accuracy
(minimum, average and maximum) reached as a whole by a group, which we call “Mixed.” This group
contains pairs of fusion methods that were used together. Each of these methods that form the pairs
fits into only one of these categories.

In Table 5, for the calculation of the accuracies (minimum, average and maximum), we perform
the next steps. (1) In the cases where there was a single paper that used one of the fusion methods
or a couple of these methods, we took the highest accuracy of those reported in that paper as the
representative performance of such a method or pair of methods. (2) In the cases where there were
two or more papers that used the same fusion method or the same pair of these methods, we took
the highest accuracy of those reported by each of those papers. Then, from these accuracies, we took
the highest one as the representative performance of such a method or pair of methods. We take
the maximum accuracy of fusion methods in all the above cases because we are interested in the
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maximum potential that these methods could achieve. 3) From these representative performances,
one for each method or pair of methods, we calculate the minimum accuracy, the average accuracy
and the maximum accuracy of the “Unmixed” group and the “Mixed” group.

In Table 5, we observe that the “Unmixed” group and the “Mixed” group got the same average
accuracy (0.95). This result suggests that mixing two fusion methods is as competitive as using a single
fusion method.

Also, in Table 5, we can see that the group “Mixed” shows a smaller range (0.044) than the range
(0.336) of the “Unmixed” group. The range is a commonly used dispersion measure that calculates
the difference between the maximum value and the minimum value in the data [150]. In our case,
the value corresponds to the accuracy and the data correspond to some of these groups. We use the
range because measures of central tendency (such as the mean) are not sufficient to describe the data
(for example, two data sets can have the equal average but can be completely different); It is required
to know its amplitude of variability [150]. This result suggests that methods that mix fusion methods
are more consistent (in terms of accuracy) than methods that use a single method of fusion.

Besides, Table 5 shows that most of the proposed fusion methods (28/33) fit only one of the fusion
categories (“Unmixed” group ). This result suggests that the mixture of fusion methods that are classified
into different categories of fusion has been less explored than the use of a single fusion method.

Furthermore, in Table 5, it is possible to observe that most of the merging methods of the
“Unmixed” group belong to the decision-level category (22/28). Also, we can see that most of the
methods that belong to the “Mixed” group use a merging method that conforms to the decision-level
category and a merging method that fits the feature-level category (4/5). These results suggest a trend
towards the development of fusion methods that conform to the category of decision level.

Table 5. The minimum, average and maximum accuracy reached by the “Unmixed” group and by the
“Mixed” group.

Unmixed Group Acurracy Mixed Group Accuracy

Data-level fusion

(1) TLSF

Feature-level fusion

(2) FA, (3) FA-PCA,
(4) TF,
(5) DRP and JSR,
(6) SVMBMF

Decision-level fusion

(7) LBEL, (8) SMMKL,
(9) a-stack, (10) Vot,
(11) AdaBoost,
(12) MulVS, (13) HWC,
(14) Prod, (15) Sum,
(16) Max, (17) Min,
(18) Ran, (19) WA,
(20) CMMSDF,
(21) MFN,
(22) GABCEO,
(23) WLOGP,
(24) ADPR,
(25) DARA,
(26) ARMBMWS,
(27) PARS and
(28) DARTC

Minimum: 0.664
Average: 0.95
Maximum: 1

(1) TF-RDA,
(2) UbiMonitorIF-FA,
(3) GABCF-FC,
(4) MBSSAHC-FA,
and (5) DGAMHA-FA

Minimum: 0.927
Average: 0.95
Maximum: 0.971
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6.2. Comparison between Fusion Methods that Merge Homogeneous Sensors and Fusion Methods That
Combine Heterogeneous Sensors

In Table 6, we present the accuracies (minimum, average and maximum) reached as a whole by
a group, which we call “Heterogeneous fused sensors.” This group contains both fusion methods
and pairs of them that merge data from heterogeneous sensors (sensors of different types, such as
accelerometers and gyroscopes). Also, in this Table, we show the accuracy (minimum, average and
maximum) reached as a whole by a group, which we call “Homogeneous fused sensors.” This group
contains both fusion methods and pairs of them that mix data from homogeneous sensors (sensors of
the same type).

In Table 6, for the calculation of the accuracies (minimum, average and maximum), we perform the
next steps. (1) In cases where there was a single work that used one of the fusion methods or a couple
of these methods, we took the highest accuracy of those reported in that work as the representative
performance of such a method or pair of methods. (2) In the cases where there were two or more
articles that used the same fusion method or the same pair of these methods, we took the highest
accuracy of those reported by each of those articles. Then, from these accuracies, we use the highest
one as the representative performance of such a method or pair of methods. We take the maximum
accuracy of the fusion methods in all the above cases as a measure of the maximum potential that these
methods could achieve. (3) From these representative performances, one for each method or pair of
methods, we calculate the minimum accuracy, the average accuracy and the maximum accuracy of the
“Heterogeneous fused sensors” group and the “Homogeneous fused sensors” group.

In Table 6, we can see that the group of “Heterogeneous fused sensors” shows higher average
accuracy than the group of “Homogeneous fused sensors.” This result suggests that the mixture of data
from heterogeneous sensors produces more discriminative information than the mixture of homogeneous
sensor data. Fusion methods could better exploit such information. Also, we can see that most of the
proposed fusion methods or pairs of them (25/36) mix data from heterogeneous sensors. This result
suggests a tendency to mix data from heterogeneous sensors, in the context of fusion methods.

Table 6. The minimum, average and maximum accuracy reached by the “Homogeneous fused sensors”
group and by the “Heterogeneous fused sensors” group.

Homogeneous Fused
Sensors Group Accuracy Heterogeneous Fused

Sensors Group Accuracy

Feature-level fusion Data-level fusion

(1) TLSF

Feature-level fusion

(1) FA
(2) FA, (3) FA-PCA,
(4) TF,
(5) DRP and JSR,
and (6) SVMBMF

Decision-level Fusion Decision-level Fusion

(2) SMMKL, (3) Vot,
(4) HWC,
(5) CMMSDF,
(6) ADPR,
(7) ARMBMWS,
and (8) DARTC

(7) LBEL, (8) A-stack,
(9) Vot, (10) AdaBoost,
(11) MulVS, (12) Prod,
(13) Sum, (14) Max,
(15) Min, (16) Ran,
(17) WA, (18) MFN,
(19) GABCEO,
(20) WLOGP,
(21) DARA,
and (22) PARS

Two-level Fusion Two-level Fusion

(9) TF-RDA,
(10) MBSSAHC-FA and
(11) UbiMonitorIF-FA

Minimum: 0.664
Average: 0.923
Maximum: 1

(23) TF-RDA,
(24) GABCF-FC and
(25) DGAMHA-FA

Minimum: 0.881
Average: 0.962
Maximum: 1
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6.3. Comparison between Fusion Methods That Automatically Extract Features and Fusion Methods That
Manually Extract Features

In Table 7, we present the accuracies (minimum, average and maximum) reached as a whole by
a group, which we call “Manual feature extraction.” This group contains fusion methods and pairs
of them, which extract the features manually; such as extracting statistical features by hand—mean,
standard deviation, to mention a few. Besides, in this Table, we show the accuracies (minimum,
average and maximum) reached as a whole by a group, which we call “Automatic feature extraction.”
This group contains fusion methods and pairs of them that extract the features automatically;
for example, using CNN. Also, in this Table, we show the accuracies (minimum, average and
maximum) reached as a whole by a group, which we call “Manual and automatic extraction of
features.” This group contains fusion methods and pairs of them that extract features both manually
and automatically.

In Table 7, for the calculation of the accuracies (minimum, average and maximum), we perform
the next steps. (1) In cases where there was a single work that used one of the fusion methods
or a couple of these methods, we took the highest precision of those reported in that work as the
representative performance of such a method or pair of methods. (2) In cases where there were two or
more articles that used the same fusion method or the same pair of these methods, we took the highest
accuracy of those reported by each of those articles. Then, from these accuracies, we took the highest
one as the representative performance of such a method or pair of methods. We take the maximum
accuracy of fusion techniques in all the above cases because we are interested in the maximum potential
that these approaches could reach. We take the maximum accuracy of fusion techniques in all the
above cases because we are interested in the maximum potential that these approaches could reach.
(3) From these representative performances, one for each method or pair of methods, we calculate the
minimum accuracy, the average accuracy and the maximum accuracy of the group “Manual feature
extraction”, the group “Automatic feature extraction” and the group “Manual and automatic extraction
of features.”

In Table 7, we can see that the group “Manual feature extraction” shows a slightly higher average
accuracy than the “Automatic feature extraction” group. Only one percentage point of difference
between both groups. This result suggests that the automatic extraction of features is as competitive as
the manual extraction of features.

Also, in Table 7, we can see that the group “Automatic feature extraction” shows a smaller
difference between the maximum accuracy and the minimum accuracy (0.077 range) than the difference
between the maximum accuracy and the minimum accuracy (0.336 range) of the “Manual feature
extraction" group. This result suggests that fusion methods that automatically extract features are
more consistent (in terms of accuracy) than fusion methods that manually extract features.

Besides, in Table 7, we can see that most of the proposed fusion methods (29/33) manually extract
the features. This result indicates that fusion methods that automatically extract the characteristics
have been less explored than methods that manually extract the features. This result also suggests that
fusion methods that extract features manually and automatically have been less studied than methods
that manually extract the characteristics.

Furthermore, in Table 7, we can see a promising accuracy in the fusion method that extracts
the features manually and automatically (FA implemented by Ravi et al. [23]). This accuracy is
higher than the average accuracy achieved in both the “Automatic feature Extraction” group and the
“Manual feature Extraction” group.
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Table 7. The minimum, average and maximum accuracy reached by the group “Manual feature
extraction,” by the group “Automatic feature extraction,” and by the group “Manual and automatic
extraction of features”

Manual Feature
Extraction Accuracy Automatic Feature

Extraction Accuracy

Manual and
Automatic
Extraction
of Features

Accuracy

Data-Level
Fusion

Feature-Level
Fusion

Feature-Level
Fusion

(1) TLSF (1) TF

Feature-level
Fusion

Decision-level
Fusion

(2) FA, (3) FA-PCA,
(4) DRP and JSR,
(5) SVMBMF

(2) a-stack

Decision-level
Fusion

Two-level
fusion

(6) LBEL, (7) SMMKL,
(8) Vot, (9) AdaBoost,
(10) MulVS, (11) HWC,
(12) Prod, (13) Sum,
(14) Max, (15) Min,
(16) Ran, (17) WA,
(18) CMMSDF,
(19) MFN,
(20) GABCEO,
(21) WLOGP,
(22) ADPR,
(23) DARA,
(24) ARMBMWS,
and (25) PARS

Two-level
fusion

(26) MBSSAHC-FA,
(27) ubiMonitorIF-FA,
(28) GABCF-FC and
(29) DGAMHA-FA

Minimum: 0.664
Average: 0.95
Maximum: 1

(3) TF-RDA
Minimum: 0.923
Average: 0.96
Maximum: 1

(1) FA 0.986

6.4. Scenarios Most Used by Fusion Methods

In Table 8, we present scenarios addressed by fusion methods. These scenarios were identified by
analyzing the types of activities that were recognized by the fusion methods. We found three types
of scenarios. The first scenario is the “Activities of daily life,” which represents the activities that
people usually perform to carry out their daily life, such as walking, running, jogging; to mention
some. The second scenario is “Predetermined laboratory exercises,” which refers to sequences of
activities designed by researchers, for example, walking to falling to lying, Walk right-circle; to name
a few. The last scenario is “Situation in the medical environment,” which represents activities of some
treatment or symptoms of a disease, for instance, actions of self-injection of insulin, hand flapping,
and so forth.

In Table 8, we can see that the scenario most used by fusion methods is the “Activities of daily
life.” 28 of 33 fusion methods address this scenario. This result suggests a tendency to recognize
activities of the daily live by the fusion methods.

Also, in table 8, we can see that the least used scenario for such methods is “Situation in the
medical environment.” 3 of 33 fusion methods use this scenario. Besides, we note that the methods
used in this scenario are based on ANNs.

Furthermore, in Table 8, we can see that the FA method addresses the three scenarios found and that
the MulVS method uses two scenarios (“Activities of daily life” and “Predetermined laboratory exercise”).
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Table 8. Scenarios by fusion methods.

Fusion Method Activities
of Daily Life

Predetermined
Laboratory
Exercises

Situation in
the Medical
Environment

Data-level fusion

TLSF Yes

Feature-level fusion

FA Yes Yes Yes

FA-PCA Yes

TF Yes

DRP and JSR Yes

SVMBMF Yes

Decision-level fusion

LBEL Yes

SMMKL Yes

a-stack Yes

Vot Yes

AdaBoost Yes

MulVS Yes Yes

HWC Yes

Prod Yes

Sum Yes

Max Yes

Min Yes

Ran Yes

WA Yes

CMMSDF Yes

MFN Yes

GABCEO Yes

WLOGP Yes

ADPR Yes

DARA Yes

ARMBMWS Yes

PARS Yes

DARTC Yes

Two-level fusion

TF-RDA Yes

MBSSAHC-FA Yes

UbiMonitorIF-FA Yes

GABCF-FC Yes

DGAMHA-FA Yes
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6.5. Components Most Used by Fusion Methods

In Tables 9–11, we summarize the documents considered here (see Section 4). In these tables,
we note that the most commonly used sensors are the accelerometers (54 times) and the gyroscope
(32 times). None of the remaining sensors was used more than 18 times. This remark is consistent with
what was reported by Jovanov et al. [18] and by Zhang et al. [19].

Table 9. Summary of articles that propose methods that combine data at the level of data or at
the level of features. Ref = Reference and DId = Dataset ID. Acc(s) = Acceleromter(s), Mag(s) =
Magnetometer(s), Gyr(s) = Gyroscope(s), Kc = Kinect camera, Hr = Heart rate, Av = Anthropometric
variables, Res = Respiration, Press = Pressure Mic(s)= Microphone(s), Vid(s) = Videos(s), IMU = Inertial
measurement unit, Mot = Motion, and Ven = Ventilation.

Ref Fusion
Method Sensors Activities DId Classifiers Metrics

Data-level fusion

[106] TLSF
WiFi, and
Acc (1) following relations and (2) group leadership 1 SVM Error %: 7

Feature-level fusion

[108] FA Accs
(1) walking to falling to lying, and (2) sitting to
falling to sitting down 2 SVM

Accuracy: 0.950
Detection rate:
0.827
False alarm rate:
0.05

[115] FA Accs
(1) walking, (2) upstairs, (3) downstairs, (4) sitting,
(5) standing, and (6) lLying 3 KNN

Recall: 0.624
Precision:
0.941

[115] FA Gyrs
(1) walking, (2) upstairs, (3) downstairs, (4) sitting,
(5) standing, and (6) lying down 3 KNN

Recall: 0.464
Precision: 0.852

[22] FA
Acc, and
Gyr

(1) walking, (2) sitting, (3) standing, (4) jogging, (5)
biking, (6) walking upstairs, and (7) walking
downstairs

4 BN Accuracy:
>0.6 and <1

[22] FA
Acc, and
Gyr

(1) walking, (2) sitting, (3) standing, (4) jogging, (5)
biking, (6) walking upstairs, and (7) walking
downstairs

4 NB Accuracy: >0.4
and <1

[22] FA
Acc, and
Gyr

(1) walking, (2) sitting, (3) standing, (4) jogging, (5)
biking, (6) walking upstairs, and (7) walking
downstairs

4 LR Accuracy:
>0.6 and <1

[22] FA
Acc, and
Gyr

(1) walking, (2) sitting, (3) standing, (4) jogging, (5)
biking, (6) walking upstairs, and (7) walking
downstairs

4 SVM Accuracy: >0.6
and <1

[22] FA
Acc, and
Gyr

(1) walking, (2) sitting, (3) standing, (4) jogging, (5)
biking, (6) walking upstairs, and (7) walking
downstairs

4 KNN Accuracy:
>0.8 and <1

[22] FA
Acc, and
Gyr

(1) walking, (2) sitting, (3) standing, (4) jogging, (5)
biking, (6) walking upstairs, and (7) walking
downstairs

4 DT Accuracy: >0.8
and <1

[22] FA
Acc, and
Gyr

(1) walking, (2) sitting, (3) standing, (4) jogging, (5)
biking, (6) walking upstairs, and (7) walking
downstairs

4 RFC Accuracy:
>0.8 and <1

[22] FA
Acc, and
Gyr

(1) walking, (2) sitting, (3) standing, (4) jogging, (5)
biking, (6) walking upstairs, and (7) walking
downstairs

4 RulBC Accuracy: >0.8
and <1

[23] FA Acc
(1) walk,(2) jog, (3) ascend stairs, (4) descend stairs,
(5) sit, and (6) stand 5

CNN-
ANN-
SoftMax

Accuracy:
0.986
Precision:
0.975 Recall:
0.976

[23] FA
Acc, and
Gyr

(1) casual movement, (2) cycling, (3) no acivity
(Idle), (4) public transport, (5) running, (6)
standing and (7) walking

6
CNN-
ANN-
SoftMax

Accuracy: 0.957
Precision: 0.930
Recall: 0.933

[23] FA Acc
(1) walking, (2) jogging, (3) stairs, (4) sitting, (5)
standing, and (6) lying Down 7

CNN-
ANN-
SoftMax

Accuracy:
0.927
Precision:
0.897 Recall:
0.882

[23] FA Acc

(1) write on notepad, (2) open hood, (3) close hood,
(4) check gaps on the front door, (5) open left front
door, (6) close left front door, (7) close both left
door, (8) check trunk gaps, (9) open and close
trunk, and (10) check steering

8
CNN-
ANN-
SoftMax

Accuracy: 0.953
Precision: 0.949
Recall: 0.946
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Table 9. Cont.

Ref Fusion
Method Sensors Activities DId Classifiers Metrics

[23] FA Acc freezing of gait (FOG) symptom 9
CNN-
ANN-
SoftMax

Accuracy:
0.958
Precision:
0.826 Recall:
0.790

[109] FA Kc
(1) catch cap, (2) toss paper, (3) take umbrella, (4)
walk, (5) phone call, (6) drink, (7) sit down, and (8)
stand

10 SVM Accuracy: 1

[109] FA Kc
(1) wave, (2) drink from a bottle, (3) answer phone,
(4) clap, (5) tight lace, (6) sit down, (7) stand up, (8)
read watch, and (9) bow

11 SVM Accuracy: 0.904

[112] FA
Acc, Hr,
and Av

(1) Lying: Lying down resting; (2) low whole body
motion (LWBM): Sitting resting, sitting stretching,
standing stretching, desk work, reading, writing,
working on a PC, watching TV, sitting fidgeting
legs, standing still, bicep curls, shoulder press; (3)
high whole body motion (HWBM): Stacking
groceries, washing dishes, preparing a salad,
folding clothes, cleaning and scrubbing, washing
windows, sweeping, vacuuming; (4) Walking; (5)
Biking; and (6) Running

12 DT
Accuracy: 0.929
Sensitivity:0.943
Specificity:0.980

[113] FA
Accs, and
Res

(1) Computer work, (2) Filing papers, (3)
Vacuuming, (4) Moving the box, (5) Self-paced
walk, (6) Cycling 300 kpm, (7) Cycling 600 kpm, (8)
Level treadmill walking (3 mph), (9) Treadmill
walking (3 mph and 5% grade), (10) Level
treadmill waking (4 mph), (11) Treadmill walking
(4 mph and 5% grade), (12) Level treadmill
running(6 mph), (13) Singles tennis against
a practice wall, and (14) Basketball

13 SVM Accuracy: 0.79

[114] FA
Mics and
Vids

(1) eating- drinking, (2) reading, (3) ironing, (4)
cleaning, (5) phone answering, and (6) TV
watching

14 GMM Accuracy: 0.6597

[110]
FA-
PCA

Acc, Mag,
Gyr, and
Press

(1) sitting, (2) standing, (3) walking, (4) running, (5)
cycling, (6) stair descent, (7) stair ascent, (8)
elevator descent, and (9) elevator ascent

15 DT Accuracy: 0.894

[110]
FA-
PCA

Acc, Mag,
Gyr, and
Press

(1) sitting, (2) standing, (3) walking, (4) running, (5)
cycling, (6) stair descent, (7) stair ascent, (8)
elevator descent, and (9) elevator ascent

15 MLP Accuracy: 0.928

[110]
FA-
PCA

Acc, Mag,
Gyr, and
Press

(1) sitting, (2) standing, (3) walking, (4) running, (5)
cycling, (6) stair descent, (7) stair ascent, (8)
elevator descent, and 9) elevator ascent

15 SVM Accuracy: 0.928

[110]
FA-
PCA

Acc, Mag,
Gyr, and
Press

(1) sitting, (2) standing, (3) walking, (4) running, (5)
cycling, (6) stair descent, (7) stair ascent, (8)
elevator descent, and (9) elevator ascent

15 NB Accuracy: 0.872

[111]
FA-
PCA IMU and

Press
(1) sitting, (2) standing, and (3) walking 16 SVM Accuracy: 0.99

[48] TF
Vid and
Mot

activity of self-injection of insulin includes 7 action
class: (1) Sanitize hand, (2) Roll insulin bottle (3)
Pull air into syringe, (4) Withdraw insulin, (5)
Clean injection site, (6) Inject insulin, and (7)
Dispose needle

17
CNN-
LSTM-
Softmax

Accuracy: 1

[119]
DRP
and
JSR

Acc and
Gyr

(1) Stand, (2) Sit, (3) Lie down, (4) Walk forward, (5)
Walk left-circle, (6) Walk right-circle, (7) Turn left,
(8) Turn right, (9) Go upstairs, (10) Go downstairs,
(11) Jog, (12) Jump, and (13) Push wheelchair

18 Accuracy: 0.887

[120]
SVM
BMF

Acc and
Ven

(1) Computer work, (2) filing papers, (3)
vacuuming, (4) moving boxes, (5) self-paced walk,
(6) cycling, (7) treadmill, (8) backed ball, and (10)
tennis

19 SVM Accuracy: 0.881

Besides, in Tables 9–11, we observed that the preferable activities to infer are “simple,” such as
walking, running, climbing stairs, going downstairs, to name a few. The usual data sets used are
benchmark data sets (such as WISDM v1.1 [151], Daphnet FoG [152], KARD [153], just to mention
some), although the data set created on purpose is an evident practice (see Tables 9–12).

In Tables 9–11, we also see that the most used classifiers are some ANN and SVM (27 times each).
None of the remaining classifiers was used more than 12 times. Besides, we note that most of the
classifiers used are not of the ANN type (12/13). Non-ANN classifiers are SVM, KNN, DT, NB, LR, RFC,
Gaussian mixture models (GMM), Hidden Markov Model (HMM) [92], Conditional Random Field
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(CRF) [154], Multiclass relevance vector machines (RVM) [140], Bayesian networks (BN), Rule-based
classifiers (RulBC), such as PART and NNGE [155], and Decision stump (Ds). This finding suggests that
the ANN is a method that is gaining popularity in recognition of the activity. However, the cost-benefit
balance with respect to the processing and accuracy of this ANN is unclear compared to non-ANN
classifiers. Also, the main metrics used are the accuracy (64 times), the recall (22 times), the precision
(18 times), and the F1-score (14 times).

Table 10. Summary of works proposing methods that combine data at the decision level. Ref = Reference
and DId = Dataset ID. Acc(s) = Acceleromter(s), Mag(s) = Magnetometer(s), Gyr(s) = Gyroscope(s), ECG =
Electrocardiography, Hr = Heart rate, Alt = Altimeter, Tem = Temperature, Bar = Barometer, Lig = Light,
Mot = Motion, ElU = Electricity usage, Mic(s) = Microphone(s), OMCS = Optical motion capture system,
Kc = Kinect camera, and Vid(s) = Videos(s).

Ref Fusion
Method Sensors Activities DId Classifiers Metrics

Decision-level fusion

[123] LBEL
Acc, and
iBeacon
[156]

(1) standing, (2) walking, (3) cycling, (4) lying, (5)
sitting, (6) exercising, (7) prepare food, (8) dining,
(9) watching TV, (10) prepare clothes, (11) studying,
(12) sleeping, (13) bathrooming, (14) cooking, (15)
past times, and (16) random

20 DT Accuracy: 0.945

[108]
SMM
KL Accs

(1) walking to falling to lying, and (2) sitting to
falling to sitting down 3

MKL-
SVM

Accuracy: 0.946
Detection rate: 0.347
False alarm rate: 0.05

[157] a-stack
Acc, Gyr,
ECG, and
Mag

(1) lying, (2) sitting/standing, (3) walking, (4)
running, (5) cycling, and (6) other 21 NN, LR Accuracy: 0.923

[157] a-stack
Acc, Hr,
Gyr, and
Mag

(1) lying, (2) sitting/standing, (3) walking, (4)
running, (5) cycling, and (6) other 22 NN, LR Accuracy: 0.848

[158] Vot Acc
(1) Walking, (2) Jogging, (3) Upstairs, (4)
Downstairs, (5) Sitting, and (6) Standing 5

MLP, LR,
and DT

Accuracy: 0.916
AUC: 0.993
F1-score: 0.918

[138] Vot

Acc, Alt,
Tem, Gyr,
Bar, lig,
and Hr

(1) brushing teeth, (2) exercising, (3) feeding, (4)
ironing, (5) reading (6) scrubbing, (7) sleeping, (8)
using stairs, (9) sweeping, (10) walking, (11)
washing dishes, (12) watching TV, and (13) wiping

22
MLP, RBF,
and SVM Accuracy: 0.971

[137] Vot
Mot, and
Tem

(1) Wash Dishes, (2) Watch TV, (3) Enter Home, (4)
Leave Home, (5) Cook Breakfast, (6) Cook Lunch,
(7) Group Meeting, and (8) Eat Breakfast

24

ANN,
HMM,
CRF,
SVM

Accuracy: 0.906
Precision: 0.799
Recall: 0.7971
F1-score: 0.7984

[137] Vot
Mot, Door,
and Tem

(1) bed to toilet, (2) sleeping, (3) leave home, (4)
watch TV, (5) chores, (6) desk activity, (7) dining,
(8) evening medicines, (9) guest bathroom, (10)
kitchen activity, (11) master bathroom, (12) Master
Bedroom, (13) meditate, (14) morning medicines,
and (15) read

25

ANN,
HMM,
CRF,
SVM

Accuracy: 0.885
Precision: 0.801
Recall: 0.8478
F1-score: 0.8235

[137] Vot

Mot, item,
Door, tem,
ElU, and
Lig

(1) meal preparation, (2) sleeping, (3) cleaning, (4)
work, (5) grooming, (6) shower, and (7) wakeup 26

ANN,
HMM,
CRF,
SVM

Accuracy: 0.855
Precision: 0.752
Recall: 0.7274
F1-score: 0.7394

[137]
Ada
Boost

Mot and
Tem

(1) wash dishes, (2) watch TV, (3) enter home, (4)
leave home, (5) cook breakfast, (6) cook lunch, (7)
group meeting, and (8) eat breakfast

24 DT

Accuracy: 0.912
Precision: 0.844
Recall: 0.7983
F1-score: 0.8206

[137]
Ada
Boost

Mot, Door,
and Tem

(1) bed to toilet, (2) sleeping, (3) leave home, (4)
watch TV, (5) chores, (6) desk activity, (7) dining,
(8) evening medicines, (9) guest bathroom, (10)
kitchen activity, (11) master bathroom, (12) master
bedroom, (13) meditate, (14) morning medicines,
and (15) read

25 DT

Accuracy: 0.875
Precision: 0.824
Recall: 0.8767
F1-score: 0.805

[137]
Ada
Boost

Mot, item,
Door, Tem,
ElU, and
Lig

(1) meal preparation, (2) sleeping, (3) cleaning, (4)
work, (5) grooming, (6) shower, and (7) qakeup 26 DT

Accuracy: 0.837
Precision: 0.736
Recall: 0.7174
F1-score: 0.7266

[27] MulVS Mic, and
Acc

(1) mop floor, (2) sweep floor, (3) type on computer
keyboard, (4) brush teeth, (5) wash hands, (6) eat
chips, and (7) watch TV

27 RFC
Accuracy: 0.941
Recall: 0.939
Specificity: 0.99
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Table 10. Cont.

Ref Fusion
Method Sensors Activities DId Classifiers Metrics

[27] MulVS
Mic, Acc,
and
OMCS

(1) jumping in place, (2) jumping jacks, (3) bending,
(4) punching, (5) waving two hands, (6) waving
one hand, (7) clapping, (8) throwing a ball, (9)
sit/stand up, (10) sit down, and (11) stand up

28 RFC
Accuracy: 0.995
Recall: 0.995
Specificity: 0.99

[27] MulVS Acc, Gyr,
and Kc

(1) swipe left, (2) swipe right, (3) wave, (4) clap, (5)
throw, (6) arm cross, (7) basketball shoot, (8) draw
x, (9) draw circle CW, (10) draw circle CCW, (11)
draw triangle, (12) bowling, (13) boxing, (14)
baseball swing, 15) tennis swing, (16) arm curl, (17)
tennis serve, (18) push, (19) knock, (20) catch, (21)
pickup throw, (22) jog, (23) walk, (24) sit 2 stand,
(25) stand 2 sit, (26) lunge, and (27) squat

29 RFC
Accuracy: 0.981
Recall: 0.984
Specificity: 0.99

[27] MulVS Acc, Gyr,
and Mag

(1) stand, (2) walk, (3) sit, and (4) lie 30 RFC
Accuracy: 0.925
Recall: 0.905
Specificity: 0.96

[134] HWC Accs
(1) running, (2) cycling, (3) stretching, (4)
strength-training, (5) walking, (6) climbing stairs,
(7) sitting, (8) standing and (9) lying down

31 KNN Accuracy: 0.975

[138] Prod

Acc, Alt,
Tem, Gyr,
Bar, Lig,
and Hr

(1) brushing teeth, (2) exercising, (3) feeding, (4)
ironing, (5) reading, (6) scrubbing, (7) sleeping, (8)
usingstairs, (9) sweeping, (10) walking, (11)
washing dishes, (12) watching TV, and (13) wiping

23
MLP, RBF,
and SVM Accuracy: 0.972

[138] Sum

Acc, Alt,
Tem, Gyr,
Bar, Lig,
and Hr

(1) brushing teeth, (2) exercising, (3) feeding, (4)
ironing, (5) reading, (6) scrubbing, (7) sleeping, (8)
usingstairs, (9) sweeping, (10) walking, (11)
washing dishes, (12) watching TV, and (13) wiping

23
MLP, RBF,
and SVM Accuracy: 0.973

[138] Max

Acc, Alt,
Tem, Gyr,
Bar, Lig,
and Hr

(1) brushing teeth, (2) exercising, (3) feeding, (4)
ironing, (5) reading, (6) scrubbing, (7) sleeping, (8)
usingstairs, (9) sweeping, (10) walking, (11)
washing dishes, (12) watching TV, and (13) wiping

23
MLP, RBF,
and SVM Accuracy: 0.971

[138] Min

Acc, Alt,
Tem, Gyr,
Bar, Lig,
and Hr

(1) brushing teeth, (2) exercising, (3) feeding, (4)
ironing, (5) reading, (6) scrubbing, (7) sleeping, (8)
usingstairs, (9) sweeping, (10) walking, (11)
washing dishes, (12) watching TV, and (13) wiping

23
MLP, RBF,
and SVM Accuracy: 0.971

[138] Ran

Acc, Alt,
Tem, Gyr,
Bar, Lig,
and Hr

(1) brushing teeth, (2) exercising, (3) feeding, (4)
ironing, (5) reading, (6) scrubbing, (7) sleeping, (8)
usingstairs, (9) sweeping, (10) walking, (11)
washing dishes, (12) watching TV, and (13) wiping

23
MLP, RBF,
and SVM Accuracy: 0.969

[138] WA

Acc, Alt,
Tem, Gyr,
Bar, Lig,
and Hr

(1) brushing teeth, (2) exercising, (3) feeding, (4)
ironing, (5) reading, (6) scrubbing, (7) sleeping, (8)
using stairs, (9) sweeping, (10) walking, (11)
washing dishes, (12) watching TV, and (13) wiping

23
MLP, RBF,
and SVM Accuracy: 0.971

[135]
CMM
SDF Mot

(1) using laptop, (2) watching TV, (3) eating,
turning on the stove, and (5) washing dishes 32 Accuracy: 1

[136] MFN
Kc,
and
Mic

Recognition of objects through human actions 33
SVM, and
NB

Accuracy: 0.928
F1-score: 0.921

[137]
GAB
CEO

Mot, and
Tem

(1) wash dishes, (2) watch TV, (3) enter home, (4)
leave home, (5) cook breakfast, (6) cook lunch, (7)
group meeting, and (8) eat breakfast

24

ANN,
HMM,
CRF,
SVM

Accuracy: 0.951
Precision: 0.897
Recall: 0.9058
F1-score: 0.9013

[137]
GAB
CEO

Mot, door,
and Tem

(1) bed to toilet, (2) sleeping, (3) leave home, (4)
watch TV, (5) chores, (6) desk activity, (7) dining,
(8) evening medicines, (9) guest bathroom, (10)
kitchen activity, (11) master bathroom, (12) master
bedroom, (13) meditate, (14) morning medicines,
and (15) read

25

ANN,
HMM,
CRF,
SVM

Accuracy: 0.919
Precision: 0.827
Recall: 0.8903
F1-score: 0.8573

[137]
GAB
CEO

Mot, item,
Door,Tem,
ElU, and
lig

(1) meal preparation, (2) sleeping, (3) cleaning, (4)
work, (5) grooming, (6) shower, and (7) wakeup 26

ANN,
HMM,
CRF,
SVM

Accuracy: 0.894
Precision: 0.829
Recall: 0.8102
F1-score: 0.8197

[139]
WLO
GP

Acc, and
Gyr

(1) stand, (2) sit, (3) lie down, (4) walk forward, (5)
walk left-circle, (6) walk right-circle, (7) turn left,
(8) turn right, (9) go upstairs, (10) go downstairs,
(11) jog, (12) jump, (13) push wheelchair

18 RVM Accuracy: 0.9878
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Table 10. Cont.

Ref Fusion
Method Sensors Activities DId Classifiers Metrics

[141] ADPR Accs
(1) walk, (2) run, (3) sit, (4) stand, (5) fiddle, and (6)
rest 34

NB, and
GMM F1-score: 0.926

[142] DARA
Acc, and
Gyr

(1) zero-displacement activities AZ = {standing,
sitting, lying}; (2) transitional activities AT =
{sitting-to-standing, standing-to- sitting, level
walking-to-stair walking, stair walking-to-level
walking, lying-to-sitting, sitting-to- lying}; and (3)
strong dis- placement activities AS = {walking
level, walking upstairs, walking downstairs,
running}

35
ANN, and
HMM Accuracy: 0.983

[143]
ARM
BMWS Accs

(1) walking, (2) walking while carrying items, (3)
sitting and relaxing, (4) working on computer, (5)
standing still, (6) eating or drinking, (7) watching
TV, (8) reading, (9) running, (10) bicycling, (11)
stretching, (12) strength-training, (13) scrubbing,
(14) vacuuming, (15) folding laundry, (16) lying
down and relaxing, (17) brushing teeth, (18)
climbing stairs, (19) riding elevator, and (20) riding
escalator

31
NB, and
DT Accuracy: 0.6641

[144] PARS
ECG, and
Acc

(1) lying, (2) sitting, (3) sitting fidgeting, (4)
standing, (5) standing fidgeting, (6) playing
Nintendo Wii tennis, (7) slow walking, 8) brisk
walking, and 9) running

36
SVM, and
GMM Accuracy: 0.973

[146]
DAR
TC Vids

(1) looking at watch, (2) scratching head, (3) sit, (4)
wave hand, (5) punch, (6) kick, and (7) pointing a
gun

37

Bayes rule
and
Markov
chain.

Average probability
of correct match:
Between 3-1

Table 11. Summary of papers that propose methods that merge data at two levels. Ref = Reference and
DId = Dataset ID. Acc(s) = Acceleromter(s), Mag(s) = Magnetometer(s), Gyr(s)= Gyroscope(s), Alt =
Altimeter, Tem = Temperature, Bar = Barometer, Lig = Light, Hr= Heart rate, Mic(s) = Microphone(s),
Hum = Humidity, and Com = Compass.

Ref Fusion
Method Sensors Activities DId Classifiers Metrics

Two-level fusion

[50]
TF-
RDA

Acc, Gyr,
and Mag (1) hand flapping 38

CNN-
LSTM-
Softmax

F1-score: 0.95

[50]
TF-
RDA Accs

(1) body rocking, (2) hand flapping or (3)
simultaneous body rocking, and hand flapping 39

CNN-
LSTM-
Softmax

F1-score: 0.75

[29]
MBS
SAHC
-FA

Accs
(1) lying, (2) sitting, (3) standing, (4) walking, (5)
stairs, (6) transition 40

DT, and
NB Accuracy: 0.927

[133]

Ubi
Moni
torIF-
FA

Accs

(1) lying, (2) sitting, (3) standing, (4) walking, (5)
running, (6) cycling, (7) Nordic walking, (8)
ascending stairs, (9) descending stairs, (10)
vacuum cleaning, (11) ironing, and (12) rope
jumping

22
DT, and
SMV

Accuracy: 0.95
Precision: 0.937
Recall: 0.929
F1-score:0.93

[138]
GABC
F-FC

Acc, Alt,
Tem, Gyr,
Bar, lig,
and Hr

(1) brushing teeth, (2) exercising, (3) feeding, (4)
ironing, (5) reading, (6) scrubbing, (7) sleeping, (8)
using stairs, (9) sweeping, (10) walking, (11)
washing dishes, (12) watching TV, and (13) wiping

23
MLP, RBF,
and SVM Accuracy: 0.971

[147]
DGAM
HA-FA

Acc, Mic,
Lig, Bar,
Hum, Tem,
and Com

(1) sitting, (2) standing, (3) walking, (4) jogging, (5)
walking up stairs, (6) walking down stairs, (7)
riding a bike, (8) driving a car, (9) riding elevator
down, and (10) riding elevator up

41
Ds, and
HMM

Accuracy: 0.95
Precision: 0.99
Recall: 0.91
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Table 12. Datasets.

Id Dataset

1 Created by Kjærgaard et al. [106]

2
Localization Data for
Person Activity [159]

3 Created by Zebin et al. [115]

4 Created by Shoaib et al. [115]

5 WISDM v1.1 [151]

6 ActiveMiles [160]

7 WISDM v2.0 [161]

8 Skoda [162]

9 Daphnet FoG [152]

10 KARD [153]

11 Florence3D [163]

12 Created by Altini et al. [112]

13 Created by John et al. [113]

14 ADL corpus collection [164]

15 Created by Guiry et al. [110]

16 Created by Adelsberger et al. [111]

17 ISI [165]

18 WARD [166]

19 Created by Liu et al. [120]

20 Created by Alam et al. [123]

21 MHEALTH [167]

22 PAMAP2 [168]

23 Created by Chernbumroong at al. [138]

24 Tulum2009 [169]

25 Milan2009 [169]

26 TwoSummer2009 [169]

27 Created by Garcia-Ceja et al. [27]

28 Berkeley MHAD [170]

29 UTD-MHAD [171]

30 Opportunity [172]

31 Created by Bao et al. [121]

32 Created by Arnon [135]

33 Created by Glodek et al. [136]

34 Created by Grokop et al. [141]

35 Created by Zhu et al. [142]

36 Created by Li et al. [144]

37 IXMAS [173]

38 Created by Rad et al. [50]

39 Real [174]

40 Created in eCAALYX project [29]

41 Created by Lester et al. [147]
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Finally, after analyzing the papers considered here, we note that none of those papers explains the
reason for choosing the fusion method they propose, nor the reasons why this fusion method works
for a given data set.

6.6. Discussion and Trends

In this survey, we found that methods that combine two fusion methods that fit different fusion
classifications achieved a performance (average accuracy) as good as methods using a unique fusion
method. However, these methods that combine two fusion method were the most consistent (the
“Mixed” group got the lowest range of 0.044) and less explored. These findings suggest that the
combination of these methods is an emerging option, so knowing which of these methods could be
combined optimally from a performance standpoint is a research gap that arises accordingly.

We also observed a tendency to develop methods that merge at the decision level. This finding
suggests that the fusion at the decision level is an active field of investigation.

On the other hand, we noticed that fusion methods that combine heterogeneous sensors achieved
better performance (in terms of average accuracy) than methods that combine homogeneous sensors.
Also, we observed a tendency to develop fusion methods that mix heterogeneous sensors. This finding
suggests that the fusion of heterogeneous sensors could be one of the first options when the
performance is the target in applications based on HAR. Also, this finding opens a research gap
to know what types of sensors could be combined optimally with performance in mind.

Besides, we found that the fusion methods that automatically extract the features achieved an
average accuracy as good as the fusion methods that manually extract the characteristics. However,
the fusion methods that automatically extract the features were the most consistent (the group
“Automatic feature extraction” obtained the lowest range of 0.077) and less explored. These results
suggest that fusion methods that include automatic feature extraction are an emerging option, in the
context of HAR. Also, these findings suggest a gap in research to know the optimal model of
deep learning, in terms of accuracy and time, to automatically extract characteristics and recognize
human activities.

Also, we located an FA implementation [23] that extracts characteristics manually and
automatically with a promising performance (see Table 7). This suggests more research is required to
explore the potential of combining automatic feature extraction and manual feature extraction.

Moreover, we noticed a tendency to recognize the activities of daily life through fusion methods.
This result suggests that the recognition of activities of daily living by fusion methods is an active field
of research. One reason that could motivate this trend is that not all data fusion methods are adequate
in all cases (data sets) [175].

We also learned that the “Situation in the medical environment” is the scenario least addressed
by the fusion methods and that the fusion methods that use this scenario are based on the ANNs.
These results suggest that the recognition of activities in the context of the medical scenario through
the use of ANNs is a coming up area, so knowing the appropriate model of these ANNs for these
activities is an emerging research gap.

Likewise, we located only two fusion methods (FA and MulVS) that address at least two scenarios,
so exploring the behavior of the rest of these methods in the the three scenarios is a research gap that
arises accordingly.

Furthermore, we found that the papers studied here do not explain the reason for choosing
the fusion method they propose, nor the reasons why this fusion method works for a given data
set. This finding suggests that researchers may have trouble choosing some method of fusion for
a particular data set. When they want to combine information from various sources, they resort to
trial and error or, even worse, they use the fusion methods they know [175]. To address this problem
of choosing a fusion method, Aguileta et al. [175] proposed a method to predict the optimal fusion
method for a given data set that stores human activities. However, although this method is promising
(it predicts with an accuracy of 0.9), it only considers eight fusion methods and 65 original data sets
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with human activity data collected by accelerometers and gyroscopes. More cross-sectional studies
are needed between different combinations of data sets, classifiers and fusion methods that guide
us to choose the best algorithms and their combinations to infer human activities according to the
characteristics of a particular data set.

6.7. Study Limitations

This survey was based on a systematic mapping approach [176]. However, secondary works such
as the one reported here are subject to restrictions. The typical restrictions that can occur in a mapping
study are data extraction error (limited coverage), the selection of academic search engines and the
researcher’s bias during the mapping study process, such as selection of articles, recovery of data,
analysis, and synthesis. Now we explain how these restrictions were approached.

The restriction of the selected search terms and search engines can lead to an inadequate set of
primary studies. We addressed this problem by selecting the Scopus database, which involves a broad
spectrum of peer-reviewed articles and a user-friendly interface for advanced search capabilities.

To make this survey repeatable for other researchers, the search engine, the search terms and
the inclusion/exclusion criteria were strictly defined and informed. However, it is necessary to bear
in mind that the search terms we use are related to the recognition of human activity based on the
fusion of data from multiple sensors; existing relevant papers that do not contain any of the terms
used may have been missed. However, the relevant documents identified are a representative sample
that serves to make a drawing on the subject and provide a generalization of the current state of the
fusion methods used in recognition of human activity.

Our findings are based on articles published in English, and papers published in languages other
than English were excluded from this study. We consider that the grouped documents contain enough
information to represent the informed knowledge on the subject.

The application of the inclusion and exclusion criteria and the categorization of the documents
may be affected by the judgment and experience of the investigators, and there could have been
a personal bias. To lessen this bias, joint voting was utilized in the selection and categorization of the
document; differences were solved by consensus among the authors of this document.

7. Conclusions

Multisensor fusion, in the context of HAR, is an active research field that is growing significantly,
and there is such a variety of methods that it is often difficult to choose some of them for a particular
situation. So, organizing these methods is an action that seems obvious. In the literature, some works
examine and classify fusion methods under some classification but these works mainly limit the type
of sensors to be studied and address specific aspects of the fusion process.

In this paper, we have presented a survey of the state of the art of the literature on contributions
to the fusion of multi-sensor (external and wearable) data, in the context of HAR. We have based this
survey on a systematic mapping approach to find relevant works.

We had made a big effort to organize the many different works into the main families of fusion
methods for HAR (data level, feature level, and decision level, as suggested by Liggins [34]), and we
have organized them in variations and combinations of the main categories, task that is extremely
hard given the big amount of combinations of methods of different nature in a single system that is
often found. We have thus developed a systematic and organized comparison of the different works,
which is the main substance of this survey.

After analyzing these articles, we have identified and compared the performance of methods that
use a single fusion method and methods that use two fusion methods. Also, we have examined
the performance of techniques that merge homogeneous sensors and approaches that combine
heterogeneous sensors. Similarly, we have identified and compared approaches that manually extract
features and methods that automatically extract characteristics. Further, we have identified the
scenarios most used by the fusion methods and some of the components most used by these methods,
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such as sensors, activities, classifiers, and metrics. Finally, we have discussed relevant directions and
future challenges on fusion methods in the HAR context, as well as the limitations of this work.
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