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Abstract: Hospitals play an important role on ensuring a proper treatment of human health. One
of the problems to be faced is the increasingly overcrowded patients care queues, who end up
waiting for longer times without proper treatment to their health problems. The allocation of health
professionals in hospital environments is not able to adapt to the demands of patients. There are
times when underused rooms have idle professionals, and overused rooms have fewer professionals
than necessary. Previous works have not solved this problem since they focus on understanding the
evolution of doctor supply and patient demand, as to better adjust one to the other. However, they
have not proposed concrete solutions for that regarding techniques for better allocating available
human resources. Moreover, elasticity is one of the most important features of cloud computing,
referring to the ability to add or remove resources according to the needs of the application or
service. Based on this background, we introduce Elastic allocation of human resources in Healthcare
environments (ElHealth) an IoT-focused model able to monitor patient usage of hospital rooms
and adapt these rooms for patients demand. Using reactive and proactive elasticity approaches,
ElHealth identifies when a room will have a demand that exceeds the capacity of care, and proposes
actions to move human resources to adapt to patient demand. Our main contribution is the definition
of Human Resources IoT-based Elasticity (i.e., an extension of the concept of resource elasticity in
Cloud Computing to manage the use of human resources in a healthcare environment, where health
professionals are allocated and deallocated according to patient demand). Another contribution
is a cost–benefit analysis for the use of reactive and predictive strategies on human resources
reorganization. ElHealth was simulated on a hospital environment using data from a Brazilian
polyclinic, and obtained promising results, decreasing the waiting time by up to 96.4% and 96.73% in
reactive and proactive approaches, respectively.
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1. Introduction

The Internet-of-Things (IoT) is a concept where physical objects (i.e., things) are connected through
a network structure and are part of the internet activities in order to exchange information about
themselves and about objects and things around themselves [1,2]. A particularly relevant scenario for
IoT is healthcare [3–5]. IoT-assisted patients can be supervised uninterruptedly, thus allowing risky
situations to be detected and appropriately treated right away [6]. According to Butean et al. [7], no
matter how easy or complicated a situation is, if the medical staff do not react in an appropriate time,
everything regarding patients’ health might become doubtful and unsafe. Hence, health professionals
play a major role towards patients’ well-being [8]. In this kind of scenario, a static allocation of health
professionals to health sectors may be inefficient, since some professionals may be misallocated to
low demanding sectors, while leading to a lack of professionals in highly demanding sectors. Such
a problem is illustrated in Figure 1, where the set of available attendants are statically assigned to
two service sectors, one for exams and another for medication. In the example, more attendants
are examining than medicating patients, even though the number of patients waiting for exams is
considerably smaller than those waiting to receive some medication. In this context, if each room has a
required specialty, and if each health professional has a list with all its specialties, the idle attendants
who have the required destination room specialty could be moved from the low demanding room
to the high demanding one. In fact, the allocation of attendants should always adapt to the current
conditions of the health sectors.

Legend
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Figure 1. Example scenario where there are more attendants examining than medicating patients, even
though the number of patients waiting for exams is considerably smaller than those waiting to receive
some medication, generating dissatisfaction for patients awaiting medication.

Therefore, it is necessary to find effective strategies to adapt human resources in real-time.
Elasticity in cloud computing is one of the key strategies for adapting on-demand computational
resources [9–11]. According to Rostirolla et al. [12], the elasticity concept can be extended to other
areas besides computing. Today, most resources control approaches can be classified as reactive or
proactive (also named by some authors as predictive) [9,10,13,14]. Reactive approaches are based on
both static bounds and if-condition-then rules to manage elasticity [9]. Typically, users define an upper
and a lower threshold on a target performance metric (e.g., CPU utilization, memory, response time)
to trigger activation and deactivation, respectively, of a certain resources number [15]. A problem of
using fixed thresholds is related to application overloading, illustrated in Figure 2. After the system
reaches an upper bound, there is a time interval for the delivery of the resource. During that period,
we have an application overload [9]. Also, another problem is the lack of reactivity when using these
parameters. There are situations in which is possible to anticipate the (de)allocation of resources,
however, the resource configuration remains the same due to bad choices on setting the lower and
upper thresholds [9,15].

A proactive approach employs prediction techniques to anticipate system behavior (its load)
and thereby decide the adapting actions [9]. This capability enables the application to be ready
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to handle the increase when it actually occurs [15]. To accomplish this approach, it is common
to use time-series-based prediction techniques (such as Exponential Smoothing, Moving Averages
and Autoregressive models) and machine learning algorithms (including Neural Network, Linear
Regression, Support Vector Machine, Reinforcement Learning and Pattern Matching techniques)
[9,15]. This approach is typically classified adversely as time-consuming for sensitive performance
applications [9,16]. Also, Netto et al. [17] affirm that proactive elasticity strategies focus on method
accuracy and ignore limitations such as the scaling up operation time, although it dependents on the
workload characteristics. Hence, the reactive approach performs faster because there is no concurrent
processing concerning the application. In the proactive approach, for each monitoring step, it runs
a given prediction algorithm that can impact the normal execution of the application, since the
background task can be costly.
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Figure 2. Elasticity approaches: (a) reactive; (b) proactive.

Considering this background, we present a model of Elastic allocation of human resources in
Healthcare environments (ElHealth, for short) as an alternative to the traditional static allocation of
medical staff. ElHealth works by adjusting the medical staff allocation of smart hospitals (equipped
with IoT sensors) based on reactive and proactive elasticity approaches. In particular, ElHealth uses
IoT sensors to keep track of patients demand, which is modeled as a time series and is used to estimate
demands. Such estimations allow to identify situations where the staff availability is unlikely to meet
the demand. Building upon such estimations, ElHealth proposes an efficient allocation of the medical
staff by moving such professionals and also allocating new human resources to the most demanding
areas while taking into account their time constraints. The idea is to always offer a reasonable waiting
time for patients regardless of the workload (number of them in the hospital room). In resources
elasticity, there are advantages and disadvantages in reactive and predictive methods. Using ElHealth,
we propose an evaluation of proactive and reactive approaches for reorganizing human resources
in smart hospitals to identify which significantly decreases the waiting time regarding healthcare.
ElHealth supports both elasticity approaches at run-time. The main scientific contributions of this
article are threefold:

(i) We devise Human Resources IoT-based Elasticity, for automatic management of human
resources in healthcare environments, making use of elasticity for smart, IoT-enabled hospitals;

(ii) A cost-benefit analysis of the use of reactive and predictive strategies (of elasticity in cloud
computing) for human resources reorganization. The cost refers to the health staff allocation
costs in each approach, and the benefit is the anticipation of problems, based on the reduction
of waiting time for care.
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(iii) We introduce Human resources cost and Elastic number of human resources used metrics for
evaluating human resources elasticity.

This article is organized as follows. Section 2 presents the work related to our study. Section 3
presents ElHealth as well as the concepts of Multi-level Reactive and Proactive Elasticity of Human
Resources. Section 4 expresses the methodology of evaluation of the model. Section 5 presents an
evaluation performed with the developed implementation, as well as the results found. Finally,
Section 6 presents the conclusions and future work directions.

2. Related Work

This section describes some approaches to manage elasticity in cloud and overviews approaches
to managing the deficiency of resources to attend patients’ demand in healthcare environments. They
were divided into two groups: reactive and proactive systems in Section 2.1 (where we discuss two
papers of elasticity in cloud computing, one for each approach, and all articles found that extend the
concept of elasticity to other areas) and human resources in Section 2.2 (where we discuss some works
that focus on human resources lack in healthcare environments). Lastly, the initiatives were compared
and analyzed in order to detach the current gaps in the research area.

2.1. Reactive and Proactive Systems

Reactive managers are those based only on thresholds to take elasticity decisions; more precisely,
resource reconfiguration takes place when the lower or the upper threshold is violated. In the reactive
scope, we highlight three initiatives: Al-Dhuraibi et al. [18], Elastic-RAN [19] and ElCity [12].
Al-Dhuraibi et al. [18] presents a new elasticity management system powering both vertical and
horizontal elasticities, both VM and Container virtualization technologies, multiple cloud providers
simultaneously, and various elasticity policies based on a dynamic configuration during the execution
of the application. The experiments demonstrated that their model covers the elasticity policies
provided by the well-known cloud public providers with negligible overhead. Elastic-RAN [19]
proposes a multi-level and adaptable elasticity for Cloud Radio Access Networks (C-RANs). The
adaptive algorithm feature refers to the moldable elasticity grain where resources in BBU pools level
and BBU level are provisioned as close as possible to the current processing needs. Elastic-RAN might
achieve gains up to 64% in the execution time when compared to a traditional C-RAN. ElCity [12] is
a model that combines citizens and city devices data to enable an automatic and elastic multi-level
management of energy consumption for a particular city. ElCity explores the cloud elasticity concept
in multiple target levels (smartphones from citizens, city devices involved in the public lighting, and
data center nodes), turning on or off the target levels resources on each level regarding their demands,
estimated based on energy consumption monitoring and citizens movement. ElCity achieved a
reduction of more than 90 percent of the energy spent in public lightning in the studied city.

Proactive managers try to predict the cloud behavior to anticipate elasticity decisions before
any under or overload situation. In the proactive elasticity, we highlight two works: Hanafy et al.
[20] and Proliot [21]. Hanafy et al. [20] proposed an elasticity control algorithm for a containerized
cloud using two agents. The host agent monitors and predicts its utilization using Autoregressive
Moving Average (ARMA) [22], while the master agent performs elasticity by handling failures in
load interchange scenarios. The results demonstrated the algorithm capabilities to elasticate and
handle flash crowds along with decreasing the management overhead and maintaining proximate load
balancing. Proliot [21] combines cloud and high-performance computing to address the IoT scalability
problem in a novel EPCglobal-compliant architecture. The model offers an elastic EPCIS component
that is automatically allocated or deallocated concerning the system load. Proliot uses Autoregressive
Integrated Moving Average (ARIMA) [23] and Weighted Moving Average (WMA) [24] to predict the
IoT load behavior, anticipating scaling in or out operations. Proliot improves 300% the response time
when compared with the scenario that is not using elasticity. Table 1 summarizes the aforementioned
related work. Reactive approaches have a low computational cost compared to proactive approaches.
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However, proactive approaches can avoid overloading in applications by taking elasticity actions
in advance.

Table 1. Reactive and proactive related work comparison.

Work Focus Elasticity Prediction Algorithm

Al-Dhuraibi et al. [18] Cloud applications Reactive –

Elastic-RAN [19] C-RANs Reactive –

ElCity [12] City energy Reactive –

Hanafy et al. [20] Cloud applications Proactive Time-series (ARMA)

Proliot [21] IoT applications Proactive Time-series (ARIMA and WMA)

2.2. Human Resources in Healthcare Environments

Some approaches focused on optimizing the flow of patients to properly allocate health
resources [25–27]. Cappoci et al. [25] used discrete event simulation technique in order to improve
patients’ waiting times. To this end, using data from a Brazilian polyclinic, and queueing theory [28],
the authors proposed some changes to balance the occupancy levels of the health unit’s staff and, at
the same time, reach a shorter waiting time for patients. Results showed a significant improvement in
the performance of the Polyclinic’s system. Vieira and Hollmén [26] investigated ways of minimizing
bottlenecks in the flow of patients due to appointments, visits, usage of resources, etc. The objective
was to improve patients’ satisfaction and maximize the hospital’s profit. To this end, using data from a
Finnish hospital, the authors used k-Nearest Neighbours [29,30] and Random Forests [31] to predict
such a flow. In the same line of thinking, Graham et al. [27] aimed at predicting the arrival of patients
in the emergency department of a hospital to properly prepare the allocation of medical staff. To
accomplish such a task, the authors used logistic regression [32], decision trees [33], and gradient
boosted machines [34] with data from a British hospital. In both works [26,27], the objective was
exclusively on identifying specific data patterns, instead of proposing counter-measures to improve
the allocation of health resources.

In an attempt to increase health coverage, some studies proposed forecasting models to
understand the evolution of doctors supply and patients demand to better adjust one to the other.
Ishikawa et al. [35] concentrated on training enough physicians to meed the patients demand in Japan
until 2030. Liu et al. [36] focused on a similar problem, but from a global perspective. In contrast
to our work, the adaptation of the hospital’s resources to the patients’ flow was left aside for these
works. Table 2 summarizes the aforementioned human resources related work. As we can see, there
are several approaches to analyze and estimate the use of human resources in healthcare environments
so that that patient flow can be improved, or to understand the evolution of the problem of the health
professionals lack.
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Table 2. Human resources in healthcare related work comparison.

Work Focus Proposed Solution Data Prediction Model Human Resources Defi-
Ciency

Capocci et al.
[25]

Improve patient flow,
decreasing the waiting
time for care

Identify bottlenecks
to propose human
resources movement

Uses Queueing theory to
estimate patient’s arrivals.

Proposes a nurse
reallocation based
on waiting time for
screening process

Vieira and
Hollmén [26]

Deficiency of resources
to perform patients’
care

Identify the resources
needed to ensure the
patient’s care flow

Uses Nearest Neighbours
and Random Forest to
predict future resources
usage

Only provides data
to support decision-
making

Ishikawa
et al. [35]

Deficiency of doctors
for current patients’
care demand in Japan
(Hokkaido)

Identify health doctors
distribution and suffi-
ciency to propose
ways for guarantee
care for demand

Uses System Dynamics
(SD) and Geographic
Information System (GIS)
to predict distribution and
sufficiency of doctors

Proposes a plan for
training physicians that
considers geographic
requirements

Liu et al. [36] Deficiency of doctors
for current patients’
care demand in global
scale

Identify health doctors
distribution and suffi-
ciency until 2030 in
order to compare with
demand projections

Uses an economic model
and a Generalized Li-
near Model to predict
distribution and sufficiency
of health professionals,
and patients’ demand

Only provides data
to show the problem
escalation, to support
solutions proposal
by the international
community

Graham et al.
[27]

Emergency depart-
ments crowding and
the negative conse-
quences for patients

Use of data mining
using machine learn-
ing techniques to
predict admissions in
a hospital

Uses logistic regression,
decision trees and Gradient
Boosted Machines to
predicts patients’ arrival in
emergency

Only provides data
to support decision-
making of hospital
managers

2.3. Comparison and Research Opportunities

Tables 1 and 2 presents a comparison of the collected papers, presenting some of their main
characteristics, and pointing out some of their gaps. Based on the selected papers, we can identify that
despite the elasticity being proposed for cloud computing, and being employed in reactive [37] and
proactive [20,38] approaches, the same can also be employed in other areas such as energy [12], IoT [21]
and C-RAN [19]. In this way, we can see the potential of elasticity to be extended to other contexts,
such as human resources. When we have the problem of the lack of resources in hospital environments,
the articles found just focus on predicting the future demand of patients or the future quantity of
available doctors, not proposing solutions to the problem, leaving others in charge of decision-making.
The approaches that propose solutions, such as physician training [35], or the movement of a nurse
between two rooms [25], are very specific and can not be used in other medical environments. In this
context, we can enumerate some of the main gaps in the area as follows:

• In the best of our knowledge, there are no approaches that evaluate the use of reactive and
predictive elasticity for human resource management;

• Although several models are capable of identifying current and future demand in a hospital
environment, these models lack solutions to help to solve the problem of deficiency of
hospital resources;

The lack of enough human resources in healthcare environments is not new and, based on
studied works, we can see that this problem will remain in the future [35,36]. Hence, finding ways
of optimizing the use of existing resources and adjust hospitals’ capacity to meet patients demand
are challenges that can make all the difference. The use of data prediction and Internet of Things
contributes towards future solutions or automation of processes in the health area. However, the
potential of the technologies is being underused since it is possible to propose solutions such as
optimization and better use of existing human resources.
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3. ElHealth Model

According to the literature review, most of the approaches concentrate only on identifying the
location and current/future health status of patients, neglecting the potential benefits that efficient
health resources allocation could bring to the patients [39,40]. As presented in Section 1, one of
the major challenges faced in hospital environments refers to the large waiting queues. Moreover,
considering that doctors reaction time plays a role in patients recovery [7], long waiting times may
compromise patients’ future health.

Based on this background, we introduce ElHealth, a multi-level model for efficient allocation
of human resources based on patients’ flow within hospital environments. In particular, ElHealth
adapts the concept of elasticity in cloud computing to the context of human resources, adjusting the
hospital’s attendance capacity to the demand of patients, where professionals are allocated, deallocated
and reallocated according to the hospital needs. ElHealth groups information from several sources:
patients arrivals and needs (using IoT sensors spread over the hospital environment and a hospital
dataset), patients movement (using IoT sensors), and medical staff availability (from a dataset). Using
these data, we measure real-time demand of patients, on reactive approach (which we discuss in
Section 3.3.1), and we employ a time-series prediction algorithm to anticipate the future demand
of patients, on proactive approach (as we discuss in Section 3.3.2). This information is then useful
for applying the concept of elasticity-based allocation of resources. Based on that model, ElHealth
computes an efficient allocation of hospital resources (medical staff and equipment), which contributes
towards minimizing patients’ waiting queues. Hence, ElHealth introduces the concept of Human
Resources IoT-based Elasticity in healthcare environments, which can be defined as follows.

Definition 1 (Human Resources IoT-based Elasticity). Human Resources IoT-based Elasticity is an
extension of the concept of resource elasticity in Cloud Computing [13] to manage the use of human resources in
a healthcare environment, where health professionals are allocated and deallocated according to patients’ demand.
The Human Resources IoT-based Elasticity uses IoT sensors to keep track of patients’ demand and, based on
proactive and reactive elasticity approaches, proposes an efficient allocation of the medical staff by moving such
professionals to the most demanding areas, always considering the quality of services currently offered by these
healthcare environments.

The next subsections detail our model, bringing the main design decisions (Section 3.1), the
proposed architecture (Section 3.2), and the Multi-level Elasticity of Human Resources concept using
reactive (Section 3.3.1) and proactive (Section 3.3.2) approaches.

3.1. Design Decisions

We based our model on the premise that there are sensors scattered around the hospital, which
can identify patients who pass through them. Firstly, they must be in all the entrances and exits, so that
whenever a patient enters or leaves the hospital, it is possible to identify it. To detect the movement and
location of patients, we assume the presence of sensors at the doors of all hospital rooms. Each patient
must have a Patient Identification Wristband linked in the system and must carry it through all time in
the hospital’s internal environment. The attendant responsible for the reception of patients should be
able to perform the linking of a wristband to a given patient as soon as the patient is admitted in the
hospital. Thus it is possible to identify when and where a given patient is as soon as he enters at the
healthcare environment, along with the time he remains in each room while being attended to. Also,
each healthcare professional must have a tag linked to him in the system and must carry it with him
throughout his active period in the hospital. Thus, all available attendants can also be located inside
the hospital in the same way as patients.

We use a Real-Time Location System (RTLS) [41] with room-level localization accuracy. According
to Boulos and Berry [41] and Jachimczyk et al. [42], RTLS are systems for identifying and tracking
the location of assets and/or people in real-time or near real-time. Furthermore, RTLS provides an
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automated means of collecting operational data on clinic activity such as room utilization rates, or
patient wait times [43]. We based the choice of an RTLS on its ability to allow automatic identification,
avoiding the existence of a human error in identification processes. ElHealth should be transparent to
patients, in the sense that it does not need to report any conditions related to its movement through
the hospital environment, being an activity performed automatically by the system.

With respect to the data prediction strategy, ElHealth uses a statistical-based approach through
the implementation of the ARIMA model. According to Nisha and Sreekumar [44], ARIMA model
uses historical information to predict future patterns. ARIMA is the most general class of model
for forecasting a time series. Since we can describe the number of patients waiting for care over
time as a time series, we chose to use the approach through ARIMA because it is a very flexible
mathematical model, with an excellent predictive performance of time series when compared with
other approaches [44]. ARIMA models are extremely useful in predicting different sectorial series
since they can represent stationary series, and also non-stationary series. We use a non-stationary
model based on seasonality in demand for medical staff, since accidents, epidemics, holidays, and
other events, can alter patients’ demand for care.

3.2. Architecture

ElHealth architecture model three services: (i) a Web service, responsible for visualization layer,
and ElHealth Web Interface; (ii) an inference service, responsible for data processing, movement
records handling, patients demand prediction, and human resources allocation decisions; and (iii) a
database service. These three services are part of our proposed ElHealth Service. Figure 3 presents the
components and the network view in the proposed model.

Hospital Room Hospital Room

ElHealth
Web Interface

ElHealth
Service ElHealth 

Web Interface

Sensor

Patient with tag

Hospital Manager

Client

ElHealth
Web Interface

ElHealth
Web Interface

Smart phone

Wireless Router

Human Resource

INTRANET (local/wide area network - TCP/IP)

LEGEND

Figure 3. Components and network view in ElHealth model with (i) ElHealth Web Interface; (ii)
ElHealth Service, for information processing and decision making; (iii) a RTLS, for track users’ tags;
and (iv) Hospital managers, patients, or human resources

ElHealth model is subdivided into five modules responsible for information handling from its
capture by sensors to the final result displayed in the Web application. Each module has a specific
function, having an input information and a specific output result that can be used as input from other
modules. Figure 4 presents the proposed modules, detailing the architecture of the model.
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ElHealth ServiceRTLS
Hardware

 Client

Human Resource 
Elasticity Core

ElHealth_Capture
Format the data

ElHealth_Elastic
Elasticity Management

ElHealth 
Web Interface

View layer

ElHealth_Predict
Data Prediction

ElHealth_Formatter 
Identifies users movement

Name System

Module

LEGEND

Name
Function

Sensor

Patient with tag

Hospital Manager

Router

Human Resource

Figure 4. ElHealth model architecture detail where the information flow starts in ElHealth_Capture
module that receives users’ movement records from RTLS sensors, and goes through different handlings
over proposed modules, until the exhibition of elasticity notifications in ElHealth Web Pages.

ElHealth_Capture receives and pre-process data captured by sensors scattered around the hospital
and sends to ElHealth_Formatter, responsible for process data, and identify patients’ movement through
hospital environments and rooms. After, ElHealth_Predict identifies patients movement through the
hospital environment. Based on previously generated movement records, the path that patients travel
during their movement through the hospital, and the time spent in each environment are identified.
Thus, this module identifies patterns related to the arrival of patients in these environments, and
patterns related to the waiting time for care, using this information to predict future patients arrivals
in each hospital environment.

ElHealth_Elastic manages system’s elasticity. It verifies human resources allocation in each of
hospital environments, check the current patients’ movement (in reactive approach) and the predictions
made by the previous module (on proactive approach). This module generates an intelligent and
automatic allocation of human resources to meet patient demand better. We want to emphasize that the
system generates notifications for human resources to reallocate, but effective reallocation depends on
the people accomplishing what was indicated by the application. ElHealth_Elastic and ElHealth_Predict
modules are the most important part and the core of our proposed model, since ElHealth_Elastic can
request predictions from the ElHealth_Predict module to take elastic actions, performing resources
analysis based on predictions performed by the previous module, and also can perform elastic actions
based on current patient demand. In Section 3.3 will be detailed the algorithms and how the elastic
management of the human resources in the hospital environment are performed. Finally, ElHealth Web
Interface displays to human resources the elasticity notifications generated before.

3.3. Human Resources Elasticity

ElHealth employs the term elasticity with a slightly different meaning from that used in cloud
computing. Here, it refers to the system’s ability to allocate/reallocate/deallocate human resources
capable of attending patients in order to adapt to varying patient demand in real-time. In particular, in
the context of this work, elasticity refers to:
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• Allocation, which denotes the capacity of the system to request health professionals who are not
in the hospital to attend the current patients’ demand;

• Reallocation (or migration), which denotes the ability of the system to migrate professionals
who are allocated to a particular hospital environment to some other environment where more
professionals are needed;

• Deallocation which denotes the capacity of the system to release human resources no longer
needed to attend the current patients’ demand.

In order to perform allocation, deallocation, and reallocation of human resources, ElHealth model
makes use of reactive or proactive approaches to monitor the demand of patients and the use of rooms
in the hospital. Our model considers elasticity differently for: (i) the reactive approach, where our
model must verify the use of any given room, and propose human resources movement if an upper
or lower threshold is reached (as discussed next, in Section 3.3.1), and for (ii) the proactive approach,
where ElHealth should verify if there are sufficient attendants to meet patients’ future demand from
any given room in the hospital environment, with attendants moving between rooms (as detailed
forward in Section 3.3.2). For this process, ElHealth should be able to alert people to allocate. However,
the final decision should always be made by the health professional or hospital manager.

3.3.1. Reactive Elasticity

In reactive mode, ElHealth uses a multi-level approach where our model considers elasticity
differently at (i) the room-level, where ElHealth must verify the use of a given room, and check if is
necessary more or fewer attendants to meet patients’ demand, and at (ii) the hospital-level, where
our model proposes attendants movement between rooms to meet patients’ demand. We use this
multi-level strategy, since different rooms may have different time thresholds for care. In this way,
a prior analysis of the need for each room-level is necessary in order to perform the load-balancing
procedure (hospital-level). An example of these two levels is presented in Figure 5.

Hospital environment

(i)  Room-level 
      reactive 
      elasticity

(ii) Hospital-level 
      reactive 
      elasticity

Legend

Doctor room
Don't	need
changes

Could reallocate

Triage room
Needs	one	more
human	resource

Exams room
Don't	need
changes

Reception room
Can	release	a
human	resource

Figure 5. Multi-level Reactive Elasticity of Human Resources example with (i) room-level reactive
elasticity, and (ii) hospital-level reactive elasticity.

ElHealth model adapts the reactive elasticity strategy using upper and lower thresholds for
the context of people, based on the waiting time for care in each of waiting queues of a hospital
environment. Figure 6 illustrates the use of thresholds where an upper threshold is reached (meaning
that human resources should be increased to fulfill that needs) and soon after a lower threshold is
reached (meaning that human resources could be released to other sectors). So, at room-level, in
each monitoring cycle, ElHealth first checks the specific time thresholds of each analyzed room and
compares with the waiting time in that room. In those where time is outside the upper or lower
bounds, our model defines the need for allocation or deallocation of human resources.
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Figure 6. Reactive elasticity example based on waiting time for care adopted by ElHealth, where the
delivery and release of human resources occur after the thresholds are reached.

At the hospital-level, ElHealth considers the possibility of moving health professionals between
different hospital environments in order to optimize medical care time. To this end, the available
options refer to: allocating new attendants, reallocating health professionals between different sectors,
or deallocating human resources that are no longer necessary. ElHealth’s first option should always be
the possibility of reallocating human resources already allocated to hospital care. The reallocation is
prioritized because it is the option that brings fewer costs to the hospital since it performs adjustment
of medical care without additional attendants. Algorithm 1 presents the pseudo-code for hospital-level
reactive elasticity.

Algorithm 1: Hospital-Level Reactive Elasticity.
Data: Hospital room list h, vector v with all attendants of hospital
Result: Updated hospital room list h

1 begin
2 l ← a new vector of rooms and quantity of attendants to allocate or deallocate;
3 forall Room r on hospital room list h do
4 q← execute Room-level Reactive Elasticity Algorithm using r as Data;
5 l.add(r, q);
6 end
7 sort l, available attendants;
8 l ← execute for Human Resources Deallocation Algorithm using l and allocated attendants of v as Data;
9 sort l, available attendants;

10 forall Room r on list l do
11 lr ← sort l, available attendants with room r specialty;
12 availabler ← list of all human resources available for allocation with room r specialty;
13 execute Human Resources Reallocation Algorithm using r and lr as Data;
14 if r need more attendants then
15 Execute Human Resources Allocation Algorithm using r, lr and availabler as Data;
16 end
17 end
18 h← rooms of l vector;
19 return h;
20 end

In what follows, we firstly discuss the reallocation concept, followed by the allocation procedures,
rules, and algorithms. Lastly, we present the deallocation process. We note that, although deallocation
appears first in the algorithm (line 9), it actually builds upon the human resources allocated during
the preceding iteration of the algorithm. In ElHealth model, each room has a required specialty to
the human resources that are allocated in it. In parallel, each health professional has a list of all its
specialties. The process of reallocating or allocating human resources is only performed between
professionals who have the required destination room specialty. This is necessary because in a
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laboratory exams room is required a nursing professional accustomed to blood tests for example, and
even if we have X-ray technicians available for reallocation, they are not able to improve the attendance
in the aforementioned room. In order to achieve human resources reallocation, all hospital rooms are
in a list ordered by the attendants available for reallocation. In that way, whenever a room r needs a
new human resource, the elasticity manager checks for available attendants, with room r specialty, in
the first room of the list. If there is an available attendant, then it is reallocated to the needed room.

A potential problem that arises in the context of elasticity is the so-called hysteresis [45], which
refers to the tendency of the system to return to the previous state in the absence of the impulse
that caused the change. In the context of human resources elasticity, hysteresis occurs if a resource
reallocated from a given room A to another room B and, in the subsequent time-step, room A needs
that resource back. This kind of situation happens when the stimulus that led to the reallocation ceases
to exist. However, when the resource is returned to the original room, the stimulus will emerge once
again, leading the resource to be reallocated continuously between the two rooms. In order to prevent
hysteresis of human resources, we employ a cooldown-based strategy [46]. In particular, whenever
a resource is reallocated from a given room A to another room B, and if room B need a resource in
the subsequent monitoring cycle, its need will only be met if another room has free resources, or
by the allocation of a new attendant. In other words, the resource reallocated previously cannot be
immediately returned, which avoids the hysteresis effect.

In some situations, the reallocation process may not be enough to improve the attendance level of
the hospital. In such situations, the allocation of new resources may be necessary. We emphasize that,
in order to minimize operational costs, the allocation is only performed if reallocation is not able to
meet the patients’ demand. In an emergency situation, or exceptional cases, where all hospital staff
are already in care and not available for reallocation, ElHealth proposes the allocation of new human
resources. Thus, our model allocates health professionals who are not in the hospital but are available
for allocation. We highlight that the hospital must have a strategy to define human resources available
for external allocation. Since different countries have different labor laws, the rules that can make
available for allocation the hospital staff on rest time can vary. Finally, if the algorithm identifies that
the demand for care of all hospital rooms is very low and that the deallocation of attendants of some
room does not harm the whole, ElHealth must identify which attendants were allocated outside of
their regular working hours and deallocate them to lower the hospital’s financial costs. In the same
way as reallocation, both allocation and deallocation are also protected by the cooldown-period. Also,
if a given human resource is deallocated, it can no longer be allocated in the same work shift.

3.3.2. Proactive Elasticity

In proactive elasticity, ElHealth model uses a multi-level approach, slightly different of reactive
elasticity, where (i) in the room-level, our model must identify the future use of a given room, and
check if the number of attendants is sufficient to meet patients’ demand, and in (ii) the hospital-level,
where ElHealth should verify if there are sufficient attendants to meet patients’ demand from all rooms
in the hospital environment, with attendants moving between rooms. An example of these two levels
is presented in Figure 7.

Could reallocateCould reallocate

Triage room
Can	release	1

Human	Resource

Exams room
Needs	2	more

Human	Resources

Reception room
Can	release	1

Human	Resource

Hospital environment

(i)  Room-level 
      proactive 
      elasticity

(ii) Hospital-level 
      proactive 
      elasticity

Legend

Doctor room
Don't	need	
changes

Figure 7. Multi-level Proactive Elasticity of Human Resources example with (i) room-level proactive
elasticity, and (ii) hospital-level proactive elasticity.
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ElHealth model adapts the proactive elasticity strategy using upper and lower thresholds for
the context of people, based on the waiting time for care in each of waiting queues of a hospital
environment. Figure 8 illustrates the use of thresholds, where ElHealth forecasts that the upper
threshold will be reached and soon after ElHealth forecasts that the lower threshold will be reached.

01											05											09											13											17											20											23
Hospital	environment	attendance	time	(in	hours)

Measured	waiting	time

Request	for	add	human	resource

Human	resource	allocation	(delivery)

Request	for	remove	human	resource

Human	resource	de-allocation	(release)

Upper
Threshold

Lower
Threshold

30

25

20

15

10

05

W
ai
tin
g	
tim

e	
(in
	m
in
ut
es
)

Next	hours	predicted	waiting	time

Figure 8. Proactive elasticity based on predicted waiting time for care adopted by ElHealth, where the
delivery and release of human resources occur before the thresholds are reached.

At the room-level, in each monitoring cycle, ElHealth needs to predict patients arrival rate at any
room based on current and previous arrivals on that room. The prediction is made using the ARIMA
model based on the average care time with the current attendants’ allocation, and the estimated waiting
time for the care queue. When ElHealth identifies that the waiting time will become higher or lower
than the threshold values set by hospital manager, ElHealth should compute the number of health
resources required to meet patients’ demand through the Proactive Human Resources Elastic Speedup.
Proactive Elastic Speedup uses a predictive approach to determine the future demand of patients
and dynamically define the adequate number of attendants, identifying the gain of future medical
care time in a hospital environment. ElHealth proposes some mathematical formalism to estimate
the Proactive Human Resources Elastic Speedup, which will be described in the sequence. Table 3
presents a summary of such mathematical notation.

Table 3. Mathematical notation of ElHealth.

Nomenclature Description

r Hospital room
ti Initial time instant
fi Future initial time instant
a Allocated attendants

size(x) Size of a x vector
ACT(r, ti , t f ) Average Care Time
ANA(r, ti , t f ) Average Number of Attendants

NIP(r, tn) Number of Incoming Patients
ECT(r, ti , t f ) Estimated Care Time

HRES(r, ti , t f ) Human Resources Elastic Speedup
tn Specific n time instant
t f Final time instant
f f Future final time instant

CV(r, ti , t f ) Care Vector
CDT(x[i]) Care Duration Time
NA(r, tn) Number of Attendants

NWP(r, ti) Number of Waiting Patients
ENP(r, ti , t f ) Estimated Number of Patients

PHRES(r, a, fi , f f )
Proactive Human Resources Elastic

Speedup
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Let CV(r, ti, t f ) denote the care vector of room r for the time interval between ti and t f . The size of
any such vector is defined by size(x). Using these two functions, the average care time in the hospital’s
room r between ti and t f times can be formulated as in Equation (1), where CDT(x[i]) refers to a care
duration time x[i] that has already occurred in that room and x[] = CV(r, ti, t f ) is a care vector that
occurred in that room.

ACT(r, ti, t f ) =
1

size(x)

size(x)−1

∑
i=0

CDT(x[i]) (1)

Equation (1) results in a numerical value of time. An example would be any room r, between 1
and 5 times, where the result could be defined as: ACT(r, 1, 5) = 15 minutes. Using this equation, it is
possible to estimate the average time of a care in a particular hospital room. Due to the elasticity of
human resources, at different time instants, there is a different number of attendants allocated to care
in each of the hospital rooms. The average number of attendants in the hospital’s room r between times
ti and t f is defined as in Equation (2), where NA(r, tn) refers to the number of attendants allocated to
care in the room r at the instant of time n.

ANA(r, ti, t f ) =
1

t f − ti

t f−1

∑
tn=ti

NA(r, tn) (2)

The same idea of the previous function is useful for patients’ reality because in different moments
of time there are different amounts of patients awaiting care in each of the hospital rooms. Thus,
the estimated number of patients waiting for care in the hospital’s room r between ti and t f times
is defined by Equation (3), where NWP(r, ti) refers to the number of waiting patients for care in a
room r at ti time instant, and NIP(r, tn) refers to the number of incoming patients in a room r at tn

time instant.

ENP(r, ti, t f ) = NWP(r, ti) +

t f−1

∑
tn=ti+1

NIP(r, tn) (3)

Using the equations previously proposed, our model calculates the estimated care time of all
patients waiting, and estimates the time that a new incoming patient needs to wait to be attended. The
ECT(r, ti, t f ) is defined by Equation (4), where ACT(r, ti, t f ) refers to the average care time for room r
between ti and t f times, and ENP(r, ti, t f ) refers to the estimated number of patients who are waiting
for care in a room r between ti and t f instants. An example would be the room r1, between two times
ti and t f that would result in an average number of 4 patients and an average care time of 10 min as
shown in Figure 9.

ECT(r, ti, t f ) = ACT(r, ti, t f ) · ENP(r, ti, t f ) (4)
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Figure 9. Calculating ECT in a hospital room r1 with 4 patients waiting, and average care time of 10 min.
In this hypothetical situation, at 0 min instant the first patient was called to the care. In 10 min instant,
the first patient ends their care and goes away, so the second patient is designated to care, and so on,
until instant 40 min, when the last patient is released. Thereby, all patients are attended within 40 min.
Applying Equation (4), we obtain ECT(r1, ti, t f ) = ACT(r1, ti, t f ) · ENP(r1, ti, t f ) = 10× 4 = 40 min.

Knowing ECT(r, ti, t f ), we can analyze the average time for care of all patients waiting in the room
r between ti and t f times. However, this value refers to a hospital room with a single attendant allocated
for care, but in most cases will be more than one health professional working in that room, making it
necessary to identify the average time with different numbers of attendants. In this context, ElHealth
model uses a parallel allocation of human resources, such as the parallel allocation of virtual machines
used in elastic systems [13] or the use of parallel processors in high-performance computing [47]. Thus,
based on the Elastic Speedup proposed by [47], ElHealth introduces Equation (5) for Human Resources
Elastic Speedup. Considering again the previous example (Figure 9), with room r1 between two times
ti and t f with an average number of 4 patients, an average care time of 10 min and with two health
professionals allocated, as shown in Figure 10.

HRES(r, ti, t f ) =
ECT(r, ti, t f )

ANA(r, ti, t f )
(5)

LEGEND

Patient 

Human resource

Care place

Movement

0 min

Waiting 
Patients

Time

Medical 
Care

10 min 20 min

Figure 10. Calculating the ECT in a hospital room using parallel allocation of attendants, with
4 patients waiting, average care time of 10 min, and 2 attendants. In this hypothetical situation,
at 0 min time instant, there were 4 patients waiting and none in attendance by doctors, so the
first two patients were called to care. In 10 min instant, the first two patients are released, and
the last two patients are designated to care. Thus, at 20 min instant, the last two patients are
released. Thereby, all patients are attended in only 20 min. Using Equation (5), we obtain:

HRES(r1, ti, t f ) =
ECT(r1,ti ,t f )

ANA(r1,ti ,t f )
=

ACT(r1,ti ,t f )·ENP(r1,ti ,t f )

ANA(r1,ti ,t f )
= 10×4

2 = 20 min.

HRES(r, ti, t f ) returns the estimated care time of a room r between the ti and t f times, considering
a parallel allocation of attendants in that period of time, through the use of ANA(r, ti, t f ) function.
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Thus, with the increase in the average number of attendants allocated, the estimated care time decreases,
inversely proportional.

A problem of reactive elasticity is that the elasticity actions are taken after the upper threshold are
reached, causing a state of overload in the hospital throughout the professionals’ movement period.
Thus, an alternative to this problem is the use of proactive elasticity [48]. Thus, anticipating the moment
when the upper threshold will be reached, people’s movement can occur in advance, minimizing or
avoiding patients’ overloads in the hospital. In this context, we propose Equation (6) for Proactive
Human Resources Elastic Speedup as follows:

PHRES(r, a, fi, f f ) =
ECT(r, fi, f f )

′

a
, (6)

where a is the number of attendants allocated between the future times fi and f f , and ECT(r, fi, f f )
′ is

a prediction of the future care time for this room using ARIMA. We can compute ECT′ as:

ECT(r, fi, f f )
′ = ACT(r, fi, f f )

′ · ENP(r, fi, f f )
′,

where ACT(r, fi, f f )
′ and ENP(r, fi, f f )

′ are predictions of the average care time and future patients at
room r, respectively. Thus, for each room r being calculated, we generate a time series of ACT(r, ti, t f )

that occurred in the past, and we use it to predict ACT(r, fi, f f )
′. In addition, for each room we also

generate a time series for NIP(r, ti, t f ), and can predict future patient input and find ENP(r, fi, f f )
′.

Using the aforementioned equations, ElHealth can predict the waiting time of any hospital room.
Varying a attribute in PHRES equation, with the increase and decrease of the number of health
professionals in attendance, ElHealth can identify how many attendants would be needed to adjust the
waiting time of any room to the proposed thresholds, as defined by the hospital manager. Algorithm 2
presents our method to verify the need to allocate or deallocate human resources in any room r in a
smart hospital.

Algorithm 2: Room-Level Predictive Elasticity.
Data: Room r, a attendants, future initial time fi , future final time f f
Result: Quantity of attendants to allocate or deallocate

1 begin
2 upper ← Upper Threshold of waiting time in r;
3 lower ← Lower Threshold of waiting time in r;
4 n← 0;
5 a′ ← a;
6 if PHRES(r, a, fi , f f ) > upper then
7 while a′ < limit(r) e PHRES(r, a′, fi , f f ) > upper do
8 n← n + 1;
9 a′ ← a + n;

10 end
11 else if PHRES(r, a, fi , f f ) < lower then
12 while a′ > 0 e PHRES(r, a′, fi , f f ) < lower do
13 n← n− 1;
14 a′ ← a + n;
15 end
16 end
17 return n;
18 end

At the hospital-level, ElHealth needs to test different allocations for the attendants to ensure
that all rooms identified in the previous step (local-level) have enough attendants, and to minimize
overcrowding. Our algorithm considers the possibility of moving health professionals between
different hospital environments in order to optimize medical care time. As in the reactive strategy,
between allocation or reallocation, ElHealth prioritizes the possibility of reallocating human resources
already allocated to hospital care, to minimize hospital’s costs. To redistribute such health attendants
between different hospital rooms, our model uses some strategies known from other contexts of
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scientific computing and adapts them to the proactive elasticity of human resources needs. Algorithm 3
presents the pseudo-code for hospital-level proactive elasticity. As in the reactive strategy, each room
has a required specialty, and the process of reallocating or allocating human resources is only performed
between professionals who have the required destination room specialty. A point to be observed is that
those rooms where they need a specialty that no other hospital’s professional has, only the allocation
of new human resources is performed.

Algorithm 3: Hospital-Level Predictive Elasticity.
Data: Hospital room list h, vector v with all attendants of hospital, future initial time fi , future final time f f
Result: Updated hospital room list h

1 begin
2 l ← a new vector of rooms and quantity of attendants to allocate or deallocate;
3 forall Room r on hospital room list h do
4 a← number of attendants allocated in r;
5 q← run Algorithm 2 for Room-level Predictive Elasticity using r, a, fi and f f as Data;
6 l.add(r, q);
7 end
8 sort l, quantity of available attendants;
9 l ← executeHuman Resources Deallocation Algorithm using l and allocated attendants of v as Data;

10 sort l, quantity of available attendants;
11 forall Room r on list l do
12 lr ← sort l, quantity of available attendants with room r specialty;
13 availabler ← list of all human resources available for allocation with room r specialty;
14 execute Human Resources List Scheduling Algorithm using r and lr as Data;
15 if r need more attendants then
16 Execute Human Resources Allocation Algorithm using r, lr and availabler as Data;
17 end
18 end
19 h← rooms of l vector;
20 return h;
21 end

In order to achieve a balanced reallocation of human resources, we developed a variation of the
dynamic List Scheduling algorithm [49], which was originally used for process scheduling. Here, all
hospital rooms are in a list ordered by the number of attendants available for reallocation. In that way,
whenever a room r needs more attendants, the elasticity manager checks for available attendants, with
room r specialty, in the first room of the list. If attendants are available, then they are reallocated to the
room lacking them, and the list is sorted again. If more attendants are needed, the algorithm checks
the first room in the list again, and so forth, until the room obtains all the required attendants.

Figure 11 illustrates the reallocation process, where Room 1 needs three more attendants and
Rooms 2 and 4 have some free attendants. Following the logic of the adapted List Scheduling algorithm,
in the first round, Room 2 is the first in the list, with three available attendants, and gives an attendant
for Room 1. In the second round, even though all rooms in the list have the same number of free
attendants, Room 2 remains at the top of the list, so another attendant is reallocated. Finally, in the
third round, Room 4 becomes the first on the list, since it has two free human resources (as opposed to
Room 2, which has only one), and an attendant of Room 4 is reallocated to Room 1.
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Figure 11. Reallocation through the adapted List Scheduling algorithm, with a sorted list of 4 rooms,
and 12 attendants, where Room 1 needs to allocate more 3 attendants.

As in the reactive strategy, in proactive elasticity, we employ a cooldown-based strategy to prevent
hysteresis of human resources. If the reallocation process is not enough to improve the attendance
level of the hospital, ElHealth proposes the allocation of new human resources to hospital care. Lastly,
if ElHealth identifies that the future demand for care of all hospital rooms is very low and that the
deallocation of attendants of some room does not harm the whole, ElHealth proposes the deallocation
of attendants allocated outside of their regular working hours.

4. Evaluation Methodology

We assess the performance of ElHealth through simulations in a virtual hospital environment.
Considering the unavailability of data, the hospital environment was defined based on synthetic
workloads. These data and its parameters are detailed in Section 4.2. According to [50], synthetic
workloads can be considered a representative form to evaluate elasticity in computational clouds.
ElHealth was implemented mainly in Java, except for the ARIMA method, which was implemented in
Python. For hospital queues simulation, we used a clock with discrete increments of ten seconds. At
each advance in the simulation clock, our simulator verifies the patients who are in care and those who
should leave the care. At each monitoring cycle, the arrival of patients should be checked. The data
probability distributions were generated using triangular distributions (more details in Section 4.2), as
implemented by StdRandom [51].

4.1. Considered Scenarios

Given the hospital simulation procedure, we consider three different scenarios for analysis. In all
scenarios, we used the same input parameters. The differences in the scenarios are related to the use of
the proposed model in the hospital environment and will be described as follows:

S1: Hospital without ElHealth: in order to have data for comparison, the first test scenario is based
on the simulation of a non-elastic hospital

S2: Smart hospital with ElHealth’s reactive elasticity: the second scenario focuses on the simulation
of the hospital environment with the use of the allocation, reallocation, and deallocation of human
resources proposed in the ElHealth model, using reactive elasticity approach.

S3: Smart hospital with ElHealth’s proactive elasticity: the third scenario is similar to the second,
based on the simulation of the hospital environment with ElHealth’s elasticity model, but unlike
the previous scenario, using proactive elasticity approach.



Sensors 2019, 19, 3800 19 of 29

4.2. Performance Evaluation Parameters

To perform the simulation of the hospital environment, we use the data collected in the study of
Capocci et al. [25] performed in a hospital environment located in Guarulhos City, in the state of São
Paulo in Brazil. According to Capocci et al. [25], all patients upon entering the unit first go through
reception, where a Personal Health Record (PHR) [52] is prepared. After this preparation, patients
are referred to waiting for triage. In the triage procedure, the patients are examined by the nursing
team and classified into priorities according to the urgency of the health problem and are referred to
waiting for medical attention. In polyclinic analyzed by Capocci et al. [25], after first medical attention,
24% of patients are referred for x-ray exam, 37% for laboratory examinations (blood test, for example),
8% for electrocardiograms (ECG) exam, and 31% do not need more than physician examination. Also
after doctor treatment room, only 1% of patients do not take medication and are released with only
one prescription, but 50% of patients require intravenous medication, 30% intramuscular injection and
19% inhalation medication. After the exams, 60% of patients need to return to the doctor, and 40%
are released. After a return care, 78% of patients are released, 2% need new exams, and 20% require
new medication.

Table 4. Triangular distributions of probability for care times.

Attendance Attendance Time

Lower Mode Upper

Reception room

PHR preparation 2 min 3 min 5 min

X-Ray exams room

X-Ray exam 10 min 15 min 23 min

Medication room

Intramuscular injection 3 min 3.5 min 5 min
Intravenous and inhala- 0.5 min 1.5 min 2.5 min
tion preparation
Intravenous medication 40 min 70 min 120 min
Inhalation medication 8 min 10 min 13 min

Triage room

Triage process 5 min 8 min 10 min

Doctor treatment room

First care with doctor 5 min 11 min 16 min
Return care with doctor 4 min 7 min 10 min

Collection exams room

Laboratory exams 6 min 8 min 13 min

Electrocardiogram exams room

ECG exam 30 min 45 min 60 min

Also, according to Capocci et al. [25], the care time in each room of the hospital environment
follows a triangular distribution, with minimum and maximum times and a more frequent average
time. Table 4 shows the distributions for all possible care in this hospital unit, as identified by [25] in
their study. All other parameters used in our simulation can be found in [25].

In Brazil, the working model adopted for hospital environments is the so-called 12 × 36 h.
According to Brazilian Law No. 13,467 [53], under this work regime, an employee can work for twelve
consecutive hours (with a one-hour pause for lunch) and must rest for 36 h before a new work shift
of 12 h starts. Under this regime, four health professions alternating shifts is enough to ensure a
single position for 24 h, seven days a week. Also, according to the understanding of the law, if for
any reason an employee needs to work within their rest period, it should be treated as overtime,
unless the hours are compensated at another time. Thus, while a human resource of the hospital is
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in working time, three other employees who perform the same function are in their paid-rest period.
According to Brazilian Decree-Law No. 5,452 [54], the minimum rest period between two working
days must be eleven consecutive hours. In that way, even if there are overtime hours, an employee
must rest eleven hours to return to the next work shift. Thus, these three resting employees shall not
be arbitrarily available to a new allocation. In particular, any resting employee is only available under
the following rules:

Rule 1: The minimum rest period for a human resource to be available for allocation is eleven hours;
Rule 2: An allocated employee cannot works outside of the regular work shift for a long time period.

The largest possible work period allowed in Brazilian legislation is twelve hours. Thus, an
allocated employee cannot work more than twelve hours;

Rule 3: Allocated employees must be deallocated no later than 11 h before they next normal work
shift; and

Rule 4: Each employee must meet one of the 36 h rest periods within the same week in order to
comply with a law determination that requires all workers to have a 24 h paid-rest period per
week.

As our case study is based on Brazilian hospital data, we have set thresholds appropriate to our
reality. So, based in Brazilian Law Project of 14 June 2018 [55] that proposes a maximum waiting time
for care in hospitals, clinics, and laboratories of 30 min on regular days (from Monday to Sunday),
we define ElHealth’s maximum load (i.e., 100%) in 30 min. Based on several works [12,47,56,57], we
are using 4 combinations of thresholds when evaluating the second scenario, so considering 30% (9
min) and 50% (15 min) for lower threshold, and considering 70% (21 min) and 90% (27 min) for upper
threshold. For proactive elasticity, we set ElHealth’s upper threshold in 30 min, (i.e., maximum load
previously defined), and we set ElHealth’s lower threshold in 9 min (30% of maximum waiting time).
For elasticity actions, we set 10 min for reallocation process (human resources movement between
rooms), and 60 min for allocation process (to simulate the movement of a new human resource to
the hospital).

4.3. Workload

We use the human resources allocation found in [25] research, where 11 health professionals were
allocated, 24 h a day, seven days a week, through more than one work shift. To be specific, health
professionals were allocated as follows: 2 attendants in a reception; 1 nurse working in patient triage; 2
doctors acting in doctors treatment rooms; 2 nurses working with collection exams; 2 nurses working
throughout the medication area; 1 nurse acting on the electrocardiogram; and 1 radiology technician
acting with the X-ray exams.

Regarding patients load, we modeled four workloads: constant, ascending, descending, and
wave. The idea of using different load behaviors for the same application is used to observe how the
input load can impact saturation points, bottlenecks, and the addition or removal of resources [56].
These four behaviors of workload are based on those proposed by [56]. Besides these four loads are
representative to evaluate elasticity, wave workload is the most closely to the hospital reality, and
the ascending workload represents the behavior of the model in a situation of increased patient load,
which could be caused, for example, by a viral outbreak or epidemics. We want to emphasize that the
ascending workload demonstrates the worst possible case, with an increasing entry of patients into a
hospital. Figure 12 presents a representation of each workload of the model. The x axis expresses the
time available in one day of care in the hospital unit, while the y axis represents the arrival of patients
at each instant of time.
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Figure 12. Graphical representation of workloads used in ElHealth tests, where x axis expresses time
available in one day of care, while y axis represents the arrival of patients at each time instant.

Since the workloads generate decimal numbers, we established a strategy to generate integers
for the arrival of the patients in the hospital environment. This occurs because, in a real environment,
it is not possible the arrival of 0.2 patients or 1.7 patients, for example. Thus, we adopted a load
accumulation strategy, where if at any given moment there is something between 0.1 and 0.9 patient,
this value is accumulated with next instant load. An example would be an instant with a load of 0.6
patient. Since there would not be an integer charge, a patient would not be introduced into the system,
and the charge would accumulate for the next instant of time. At the next moment, with a new load of
0.6 patient, the accumulated load would be 1.2 patient, resulting in the entry of 1 patient in the hospital.
Thus, there would be still 0.2 patient, which would be accumulated for the next instant and so on.

4.4. Performance Evaluation Metrics

In order to evaluate the proposed model, the following metrics are considered:

• Maximum waiting time for care;
• Human resources cost;
• Elastic number of human resources used.

To evaluate the waiting time, we used as parameter the variation of the maximum waiting time
between the scenarios and the adequacy of the maximum waiting time to the established limits. To
determine the human resources cost, we had to propose a way to measure the cost of a human resource
in normal working hours and the cost of a human resource outside of its working hours. According
to Brazilian Law No. 13,467 [53] and Brazilian Decree-Law No. 5452 [54], the overtime pay will be
at least 50% (fifty percent) higher than the normal hour. In this way, a health professional allocated
outside of its working shift costs 50% more than an employee during its working shift. Based on this,
we devised Equation (7) for Human resources cost as follows:

Cost(ti, t f ) =
1

t f − ti

t f−1

∑
tn=ti

HR(tn) + (1.5 · AllocatedHR(tn)) (7)

where HR(tn) refers to all human resources in their working shift at tn time instant, and
AllocatedHR(tn) refers to all allocated, or in the process of allocation, human resources outside
their regular working hours at tn time instant. With regard to human resources number, we proposed
a metric for compare elastic and non-elastic health professional allocation, where we expect that our
model uses the existing health professionals in the hospital in an optimized way. Thus, static allocation
of S1, with eleven employees working, can be compared to ElHealth elastic allocation, with the number
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of human resources varying throughout the day. Table 5 presents all the evaluation metrics described
above, relating the results expected for the second and third scenario with the use of ElHealth, when
compared to the current hospital environment, without the ElHealth model.

Table 5. Evaluation metrics and expected results in each scenario.

Scenario Maximum Waiting Time Human Resources Cost Elastic Number of Human Resources Used

S1 Current Current 11 by work shift
S2 (Expected) Less than S1 More than S1 11 or more by work shift
S3 (Expected) Less than S2 More than S2 11 or more by work shift

5. Performance Evaluation and Results Analysis

Based on the evaluation methodology proposed for the ElHealth model, we performed twelve
simulations of the proposed hospital environment in order to collect results for analysis. For each
proposed scenario, between S1, S2, and S3, a simulation was performed for each of the workloads,
constant, ascending, descending, and wave.

For the maximum waiting time metric, we expected a decrease in patients’ waiting for care.
Figure 13 shows the maximum waiting time identified for each workload in the proposed scenarios
over the simulated one-week period. We perceive a significant reduction in the maximum waiting time
between S1 and S2, and a second diminution when comparing S2 and S3, regardless of the workload
used. After a thorough analysis, we can identify that in S3 for reception, triage, doctor treatment, and
collection exams rooms, at no time was measured waiting time longer than 30 min, regardless of the
workload used. As for medication, X-ray, and electrocardiogram rooms, there were a few moments
when this limit was exceeded. Through the collected data, we identify a significant reduction in
waiting time with the use of the reactive and proactive elasticity approaches for human resources
organization when compared to the hospital without the use of the elasticity. Thanks to the reactive
procedures, ElHealth has shown to decrease the waiting time by 96.13%, 95.27%, 96.05% and 93.4%
for constant, ascending, descending, and wave workloads, respectively, as compared to the scenario
where no human resources reorganizations are performed. In proactive procedures, ElHealth has
shown to decrease the waiting time by 96.66%, 96.73%, 97.06% and 96.65% for constant, ascending,
descending and wave workloads, respectively, as compared to the non-elastic hospital.

For human resources cost metric, we expected an increase in the cost between scenarios. Figure 14
presents the human resources cost for each workload in S2 and S2, the scenarios where the cost can
variate. We can observe that cost ranged from 11 to 17.77 per hour, in the reactive approach, and
ranged from 11 to 18.47 in the proactive approach. Furthermore, as exposed in the aforementioned
Figure 14, whenever ElHealth costs increase, the patients’ waiting time decreases. We can also see
that the proactive approach achieved the most significant reduction in waiting time, with more cost
than the reactive approach. In reactive procedures, the cost increased by 0.64%, 5%, 13.27% and 9.27%
for constant, ascending, descending, and wave workloads, respectively. In proactive procedures, the
cost increased by 7.09%, 7.36%, 22.82% and 3.27% for constant, ascending, descending, and wave
workloads, respectively.
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Figure 13. Maximum waiting time at the hospital for each of the proposed scenarios, S1 (in red), best
result between thresholds for S2 (in green for 70 × 50 and in orange for 70 × 30), and S3 (in purple),
using (a) constant, (b) ascending, (c) descending and (d) wave workloads.
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Figure 14. Human resources cost compared with maximum waiting time at the hospital using (a)
constant, (b) ascending, (c) descending and (d) wave workloads in S2 (best result between thresholds)
and S3.

For the elastic number of human resources used metric, we expected an increase in the number
of professionals in the hospital, as well as a variation of this number over the hospital care period.
Figure 15 presents the elastic number of human resources used for hospital care in S3, the only scenario
where the number of employees can variate. We can observe that the elastic number of human
resources ranged from 11 to 14 per hour. Although there are moments with the allocation of up to
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14 health professionals in care, the average per hour of care professionals turns out to be slightly
lower depending on the time it takes for an employee to be allocated or reallocated in the hospital.
Furthermore, as exposed in the aforementioned Figure 15, whenever ElHealth reallocates or allocates
peoples for care, the patients’ waiting time decreases.
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Figure 15. Elastic number of human resources used compared with maximum waiting time at the
hospital for (a) constant workload in best result between thresholds for S2, (b) constant workload in S3,
(c) ascending workload in best result for S2, (d) ascending workload in S3, (e) descending workload in
best result for S2, (f) descending workload in S3, (g) wave workload in best result for S2 and (h) wave
workload in S3.

Discussion

Based on established metrics, we can note that the ElHealth model was able to improve the
performance of the simulated hospital environment in all workloads used. Table 6 presents all the
results found in each of the proposed evaluation metrics, highlighting the best results in green and the
worst in red. As proposed in our evaluation methodology, we expected that the maximum waiting
time presented a gradual decrease between scenarios S1, S2, and S3, and this in fact occurred, fulfilling
the objective of this metric. For human resources cost, we expected an increase between scenarios
S2 and S3, and our model has met expectations. For the elastic number of human resources used, an
increase in the result was expected between scenarios S2 and S3, and our model once again was able
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to meet the proposed goal. Thus, the expected results in the evaluation methodology were achieved
through the use of the ElHealth model in the proposed hospital environment.

Table 6. Evaluation metrics and results found in each of the proposed scenarios, using constant,
ascending, descending and wave workloads, where the best results for each metric are highlighted in
green and the worst in red.

Workload Scenario Thresholds Maximum Waiting
Time (in Minutes) Human Resources Cost Elastic Number of Human Resources

Upper Lower Average Upper

Constant

S1 - - 282.32 (±147.7) 529 11 11

S2

90 50 21.71 (±15.8) 58 11.04 11.01
70 50 10.93 (± 8.6) 48 11.07 11.02
90 30 19.67 (±14.8) 57 11.01 10.99
70 30 15.22 (±11.1) 64 11.07 10.99

S3 - - 9.42 (± 6.7) 39 11.78 11.33

Ascending

S1 - - 388.81 (±215.8) 868 11 11

S2

90 50 27.28 (±21.5) 86 11.60 11.22
70 50 18.39 (±17.3) 64 11.55 11.19
90 30 28.82 (±19.8) 66 11.70 11.23
70 30 20.14 (±19.1) 88 11.57 11.19

S3 - - 12.70 (±11.7) 48 11.81 11.36

Descending

S1 - - 532.01 (±182.0) 880 11 11

S2

90 50 24.99 (±23.4) 87 11.62 11.23
70 50 21.01 (±18.2) 76 12.46 11.75
90 30 28.23 (±25.0) 97 11.68 11.25
70 30 23.05 (±23.0) 83 11.86 11.34

S3 - - 15.65 (±17.6) 86 13.51 12.42

Wave

S1 - - 384.18 (±171.7) 711 11 11

S2

90 50 33.57 (±24.3) 92 11.87 11.33
70 50 28.99 (±22.6) 95 12.08 11.42
90 30 34.68 (±22.5) 75 11.89 11.33
70 30 25.37 (±19.1) 66 12.02 11.38

S3 - - 12.88 (±12.4) 70 11.36 11.59

For maximum waiting time metric, our objective was the time reduction. As already shown,
the ElHealth model was able to reduce the waiting time for the proposed hospital environment
significantly. However, although the average maximum waiting times for the S3 scenario were within
the established limit (9.42 min with constant workload, 12.7 min with ascending workload, 15.65 min
with descending workload and 12.8 with wave workload), when we analyzed the longer waiting
time identified in all the simulation period, the upper limit was exceeded (39, 48, 86 and 70 min with
constant, ascending, descending and wave workloads, respectively). We believe that this occurred due
to the limitations of the hospital environment used as the basis for this simulation. As there were not
many care stations available to be allocated new human resources, our model was not able to reach the
goal in this hospital environment. For human resources cost metric, we expected an increase among
the proposed scenarios, and that is precisely what happened. When we compare with the previous
metric, the increase in human resources cost is inversely proportional to the waiting time decrease.
In the reactive approach, we had a considerable improvement in waiting time reduction, with little
increase in cost. For proactive elasticity, we have a new improvement in waiting time reduction, with
a new increase in the cost. Although the proactive approach has a higher cost, we believe it is still
more efficient than the reactive approach because it can further decrease waiting time for medical care,
anticipating more potential health problems. For the elastic number of human resources used metric,
we expected an increase in the average number of human resources between scenarios C2 and C3, and
this also actually occurred.

6. Conclusions and Future Work

IoT sensors allow smart hospitals capable of tracking people and objects in real-time. With this
data, computer systems can be used to generate knowledge and value for hospital managers. This work
puts efforts in this direction, taking data captured from IoT sensors and generating decision-making
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value on them. Thus, this article presented the ElHealth model. Unlike related work, ElHealth not
only proposes the use of elasticity to anticipate eventual problems in the future but also presents a
model to allocate, migrate and deallocate people in hospitals in such a way to provide benefits at
patients viewpoint. Using IoT-sensors and an ARIMA-based prediction engine, we can instrument a
smart hospital to collect data in time-series, so better arranging professionals and either preventing
or mitigating patient treatment problems, which sometimes are related to life or death issues. In this
way, we extended the concept of elasticity from cloud computing to the context of human resources
management, while proposing new mathematical formalisms, algorithms, and definitions to provide a
dynamic and elastic allocation of professionals in hospital environments.

We expect that the model proposed in this work can help to decrease the waiting time of patients
for healthcare. The idea is to provide such facility in a transparent way for the patients, i.e., they do
not need to follow additional procedures in the hospital, but only wear a wristband which serves as
identification. We also hope to, with the use of ElHealth, we can identify bottlenecks in the patients
care flow and help optimize processes in healthcare environments. Moreover, the provided data
can also be used for decision making in terms of changes in hospital capacity and infrastructure. In
ElHealth’s case study, the waiting time is decreased by 96.4% and 96.73% for reactive and proactive
approaches, respectively. In the reactive approach, we had a considerable improvement in terms of
waiting time reduction, with little cost increasing. On the other hand, with the proactive approach, we
had more waiting time reduction, with an increase in the cost. Even with the higher cost, we believe
that proactive elasticity is more efficient than the reactive approach since with a shorter waiting time,
more potential health problems can be anticipated.

Although presenting encouraging results, we envisage some limitations that must be addressed
on implementing ElHealth model in a real hospital environment: (i) employees and patients must
carry their identification tags throughout their time in the smart hospital; (ii) ElHealth only generates
notifications for human resource, but the effective movement of staff in hospital environments depends
on their individual decision to follow the recommended guidance; (iii) previous installation of RTLS
sensors in corridors and doors of the hospital.

As future work, we envisage the implementation of the IoT system, as well as the development of
a prototype that implements all the modules and algorithms proposed by ElHealth, so enabling the
deploying in a real hospital environment. Another possibility concerns the adaptation of the model to
use other prediction algorithms on the proactive approach, including Artificial Neural Networks and
Random Forest approaches. Also, we visualize a new approach to perform an evaluation based on a
function incorporating constant, ascending, descending and wave workloads with different coefficients,
since in an actual hospital environment a mix of these workloads could appear and modify over time.
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Abbreviations

The following abbreviations are used in this manuscript:

ElHealth Elastic allocation of human resources in Healthcare environments
IoT Internet of Things
ECG Electrocardiogram
C-RAN Cloud Radio Access Network
BBU Baseband Unit
RAN Radio Acess Network
ARMA Autoregressive Moving Average
ARIMA Autoregressive Integrated Moving Average
EPCIS Eletronic Product Code Information Services
SD System Dynamics
GIS Geographic Information Systems
RTLS Real-Time Location System
WMA Weighted Moving Average
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