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Abstract: The interior space of large-scale buildings, such as hospitals, with a variety of 
departments, is so complicated that people may easily lose their way while visiting. Difficulties in 
wayfinding can cause stress, anxiety, frustration and safety issues to patients and families. An 
indoor navigation system including route planning and localization is utilized to guide people from 
one place to another. The localization of moving subjects is a critical-function component in an 
indoor navigation system. Pedestrian dead reckoning (PDR) is a technology that is widely employed 
for localization due to the advantage of being independent of infrastructure. To improve the 
accuracy of the localization system, combining different technologies is one of the solutions. In this 
study, a multi-sensor fusion approach is proposed to improve the accuracy of the PDR system by 
utilizing a light sensor, Bluetooth and map information. These simple mechanisms are applied to 
deal with the issue of accumulative error by identifying edge and sub-edge information from both 
Bluetooth and the light sensor. Overall, the accumulative error of the proposed multi-sensor fusion 
approach is below 65 cm in different cases of light arrangement. Compared to inertial sensor-based 
PDR system, the proposed multi-sensor fusion approach can improve 90% of the localization 
accuracy in an environment with an appropriate density of ceiling-mounted lamps. The results 
demonstrate that the proposed approach can improve the localization accuracy by utilizing multi-
sensor data and fulfill the feasibility requirements of localization in an indoor navigation system. 
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1. Introduction 

The interior space of large-scale buildings, such as hospitals, with a variety of departments, is so 
complicated that people may easily lose their way while visiting. Wayfinding is an important issue 
in a huge hospital, especially for patients who have multiple destinations in the course of a single 
visit [1,2]. Poor wayfinding may lead to several problems which often results in bad experiences and 
consequences, to not only patients but also employees [1,3]. Spending a lot of time wayfinding and 
arriving late for appointments can make patients feel frustrated and stressed. Unfamiliarity with the 
environment brings about the risk of entering restricted areas and can be hazardous to visitors. 
Difficulties in wayfinding cause stress, anxiety, unsafety and frustration to patients and families. 
Moreover, there are additional costs for hospitals as a result of poor wayfinding, as staff may be 
interrupted from their work in order to help people find their way. 

A common strategy for solving the poor wayfinding problem is setting up instruction signs. 
People who visit an unfamiliar place can find a direction to their destination by reading the 
information on the instruction signs. However, the names of units can be similar and can, therefore, 
create confusion for people trying to navigate to their intended location. [4-6]. Therefore, guiding 
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people to the destination is an important issue of clinical practice, since instruction signs can be 
unreliable. An indoor navigation system can be utilized to guide people from one place to another. 
An indoor navigation system includes route planning and the localization of moving subjects within 
interior building [7]. The localization of moving subjects is a critical-function component in indoor 
navigation. If the given position is inaccurate, the suggested direction and path in the route planning 
may be confusing for people looking to find their destination. 

Since wayfinding becomes a common issue, several localization systems have been proposed in 
recent years, including infrared (IR), ultrasound, radio frequency identification (RFID), Bluetooth, 
Wi-Fi and pedestrian dead reckoning (PDR) [8-13]. IR-based localization systems calculate position 
based on time of arrival (TOA), e.g., the active badge system. An active badge worn on a subject 
transmits an infrared signal to receivers to provide information for localization [14,15]. The infrared 
radiation can be confined to the inside of the room because the radiation does not penetrate through 
walls. However, the accuracy is affected by the multipath errors and costs of the system hardware 
are expensive [12]. Ultrasound systems utilize time of arrival (TOA) and time difference of arrival 
(TDOA) to estimate position by measuring the distance between the station and mobile devices [16-
18]. Although ultrasound-based localization systems can achieve a better accuracy compared to IR-
based localization system, the ultrasound wave can be interfered with by the reflection of ultrasound 
signal when it collides with metals [19]. The radio frequency-based localization system such as RFID, 
Bluetooth and Wi-Fi can estimate position by measuring distance between transmitters and receivers 
based on triangulation, proximity and fingerprinting methods [20-28]. However, signal propagation 
in an indoor environment may be interfered with by various obstacles and electronic devices [12]. 
PDR systems utilize inertial sensors such as accelerometers and gyroscopes to calculate the position 
based on a previously determined position, estimated step information and heading direction [29-
31]. The main advantages of PDR systems are that there is no additional infrastructure required and 
avoiding radio frequency interference [32]. Considering the indoor environment of hospitals that may 
have many electronic devices, PDR systems are more suitable than other systems for developing 
indoor localization. Nevertheless, there are two issues in PDR systems. Firstly, the determination of 
the initial position is important for PDR systems [9]. The estimated position cannot reach high 
accuracy with an improper initial position. To overcome the limitation, the literature focuses on 
providing the initial position for the PDR system using near field communication (NFC) [33] and 
augmented reality [34-36]. Secondly, the localization error may accumulate within the walking path 
[29]. The PDR systems can provide high localization accuracy in a short-range. However, drift error 
and incorrect estimation of step length can lead to an accumulative of errors, since the current 
position is estimated based on previous position. Jo Agila et al. [37] proposed an indoor navigation 
system called Footpath to deal with drift error of heading estimation. By matching the heading 
direction with the orientation on the known route, Footpath can reduce inaccuracy at corners. 
Although the drift error of heading estimation is solved, the incorrect step length may cause an 
accumulative error on a straight path. 

To improve the accuracy of indoor localization, combining multi-sensor data is one of the 
solutions. Pedestrian dead reckoning is a technology that is widely employed for multi-sensor fusion, 
due to the advantage of being infrastructure-free. However, the accuracy of the PDR system is 
influenced by accumulative error. To overcome the accumulative error of the PDR system, several 
researchers combine different technologies to compensate for the disadvantage of each technology. 
There are three main localization systems commonly combined with the PDR system, including Wi-
Fi, Bluetooth and light sensors. Since Wi-Fi routers are widely deployed in public environments, Wi-
Fi is one of the preferred technologies for combined systems. Zhenghua Chen et al. [38] utilized a 
Kalman filter and landmarks to estimate the position by using the Wi-Fi fingerprinting approach and 
the PDR system. Frederic Evennou et al. [39] combined information from inertial sensors and Wi-Fi 
by using a particle filter to improve the positioning accuracy. Huaiyu Li et al. [40] utilized a trusted 
point determination algorithm to integrate the position from the inertial sensors and the Wi-Fi 
fingerprinting approach. Lyu-Han Chen et al. [41] employed a maximum likelihood-based fusion 
algorithm to fuse a PDR system with a fingerprint scheme using Wi-Fi. Taking into account the power 
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consumption, several researchers utilize the Bluetooth capabilities of modern smartphones to 
develop the fusion localization. Xin Li et al. [42] proposed a fusion positioning approach based on an 
extended Kalman filter. The extended Kalman filter estimated the position by integrating information 
from the PDR system and the fitting curve of Bluetooth. Jinglong Li et al. [43] developed a support 
vector machine (SVM) classification algorithm based crowdsourcing method to generate Bluetooth 
landmarks and applied a particle filter to combine the position from the landmarks detection and the 
PDR system. Zhenghua Chen et al. [44] utilized a weighted pass loss model to determine the initial 
position from Bluetooth and Wi-Fi. Then, an extended Kalman filter was applied to estimate the 
position from the information of inertial sensors and Bluetooth attached on the walls. To reduce the 
cost of infrastructure, the light sensor is a promising technology for localization in recent years [45]. 
The light sensor embedded into a smartphone can detect received light intensity while pedestrians 
pass through a luminary in the indoor environment. With the information of received light intensity, 
many algorithms can be utilized for localization, including triangulation and fingerprinting 
techniques. Owing to characteristics of low cost and a long lifetime, some literature focuses on 
developing light sensor-based fusion approaches. Qiang Xu et al. [46] proposed an indoor localization 
system which utilized a particle filter to combine information from inertial sensors and a light sensor 
on a smartphone. A luminary-assisted stride length estimation method was developed to obtain the 
instantaneous stride length. Antonio Jimenez et al. [47] improved pedestrian dead reckoning systems 
with the information provided by light matching. The light matching approach estimated the 
localization and heading direction by a particle filter. While pedestrians passed below the luminaries, 
the number of detected lights and the walking distance of pedestrians were utilized to update the 
particles. Muhammad Yasir et al. [48] developed an indoor positioning system using a light sensor 
and accelerometer. The received light intensity from the light sensor and orientation angles from the 
accelerometer were applied to estimate the distance between the light sensor and the light-emitting 
diode (LED) transmitter, and thus calculate the localization of pedestrians. 

This study aims to improve the performance of the indoor pedestrian localization system using 
combined information from inertial sensors, a light sensor and the Bluetooth embedded in a 
smartphone. A multi-sensor fusion approach is proposed to deal with the issue of accumulative error 
and provide accurate position information. Firstly, the information from inertial sensors can estimate 
the position by using step and heading information. Secondly, the light sensor signal combines with 
step detection to detect the occurrence of light events, which can be detected as the pedestrian passes 
under a ceiling-mounted lamp. Finally, to tackle the accumulative error, the pedestrian position, step 
length and heading direction are modified by the location information of the corresponding ceiling-
mounted lamp light information, obtained from a pre-surveyed lamp map. This proposed multi-
sensor fusion approach uses the map information to alleviate the issues of conflicting evidence [49,50] 
or divergence measure [51,52] in multi-sensor fusion. The localization is calculated by PDR or FirstFit 
approach if there is no light event detected. When a light event is detected, the localization is modified 
to the absolute position derived by the lamp position. Therefore, the localization is estimated by either 
PDR/FirstFit or lamp position. The multi-sensor fusion utilizes absolute localization information from 
light rather than a weighted combination to estimate localization. The contributions of this paper are 
as follows: 
• The multi-sensor fusion approach, utilizing inertial sensors, a light sensor and Bluetooth 

embedded in a smartphone, requires less infrastructure in the environment and prevents the 
interference of radio signals involved in the indoor environment. 

• The multi-sensor fusion approach can improve the accuracy of indoor pedestrian localization. 
The issue of the accumulative error can be overcome by the information from the light sensor 
and Bluetooth. Since pedestrians may follow the planning route of the navigation system to the 
destination, the walking route is restricted to a known planning route. The actual position and 
orientation of pedestrians can be obtained from examining the ceiling-mounted lamps passed 
by pedestrians. 

• The actual position information from the light sensor and Bluetooth can provide individual 
information for modifying the step length and heading information. The individual step length 
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can be modified by the distance between two ceiling-mounted lamps and the heading direction 
can be reset by the known planning route from the map. 
The rest of this work is organized as follows: In Section 2, we introduce the proposed multi-

sensor fusion approach, including data acquisition, the motion model, the light model and the 
decision making. The experiment protocols are described in Section 3. In Section 4, the experimental 
results are presented and the performance of the proposed multi-sensor fusion approach is 
demonstrated. The effect and potentiality of the proposed approach are discussed in Section 5. 
Finally, the conclusion of the proposed multi-sensor approach is presented in Section 6. 

2. Multi-Sensor Fusion Approach 

Developing an accurate and robust indoor localization system is still a challenging problem. To 
improve the accuracy of the localization system, combining different technologies is one of the 
solutions. Therefore, we propose a multi-sensor fusion approach to improve the accuracy of the PDR 
system by utilizing a light sensor, Bluetooth and map information. Since the walking route of the 
pedestrian can be known by the planning route from the navigation system, the localization can be 
inferred by detecting lamps and pre-installed Bluetooth beacons that the pedestrian passes and 
comparing the detected information to pre-surveyed map information which includes lamps and 
beacons localization in the environment. As an example shown in Figure 1, the known walking route 
can be divided into three parts by corners called edges. Then, each edge can be segmented into several 
sub-edges by lamps. In the fusion approach, we can modify the localization of PDR system by edge 
information from Bluetooth and sub-edge information from the light sensor. 

 

Figure 1. An example of Bluetooth and lamps deployment in a known route. An edge indicates the 
straight path of the route and a sub-edge represents the segment between two lamps. 

The system architecture of the proposed multi-sensor fusion approach is shown in Figure 2. The 
approach is divided into four functional components, including data acquisition, motion model, light 
model and decision making. In the data acquisition, an accelerometer, a gyroscope, a light sensor and 
Bluetooth embedded in a smartphone are employed to develop the proposed multi-sensor fusion 
approach. The motion model utilizes the accelerometer and gyroscope to obtain movement 
information, such as step and orientation. The light model detects the occurrence of light events by 
the light sensor and step information. In the decision making, the information from the motion model, 
light model and Bluetooth are combined to compensate for the accumulative error and improve the 
accuracy of the PDR system. 
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Figure 2. The system architecture of the proposed multi-sensor fusion approach. 

2.1. Data Acquisition and Preprocessing 

There are four sensors utilized in this approach, including the accelerometer, gyroscope, 
Bluetooth and light sensor. All of these sensors are embedded in a hand-held smartphone which is 
facing up during walking to collect the pedestrian’s movement information. The accelerometer and 
gyroscope are utilized to estimate the pedestrian position by a traditional PDR approach. Bluetooth 
and the light sensor recognize the light event while pedestrians pass under ceiling-mounted lamps. 
In data preprocessing, the collected data of these sensors is resampled with 30.3 Hz at first. Then, we 
exploit a low-pass filter with a cutoff frequency of 8.95 Hz to the resampled data for noise reduction. 
The filtered data is transferred to the motion model and the light model for further position 
estimation. 

2.2. Motion Model 

The filtered data of the accelerometer and gyroscope are utilized to track pedestrian movement. 
There are three function components in the motion model: step detection, heading estimation and 
position estimation. 

Firstly, step information is identified by step detection using the tri-axial accelerometer. Jiggling 
of a smartphone caused by body fluctuation during walking influences the z-axis acceleration. The 
jiggling pattern of z-axis acceleration can be utilized to detect step information. A sliding window 
technique and threshold-based identification are applied to obtain the number of walking steps [37]. 
The sliding window technique with a window size of five sampling points (165 ms) and 80% 
overlapping is utilized to segment the filtered data from data acquisition process, as Figure 3. The 
segmented data is identified by threshold-based identification to detect steps. In the threshold-based 
identification, a step event is detected if a range from the minimum to maximum of z-axis acceleration 
exceeds a certain threshold p. When a step is detected, a timeout T is set in the identification to prevent 
false step detection within a short time after the detected step. Because this study focuses on the 
influence of the multi-sensor fusion approach, the threshold and timeout of individual subjects for 
step detection are adjusted to ensure no false step detection. 
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Figure 3. The illustration of step detection by threshold p and timeout T with a window size of five 
sampling points. 

Secondly, heading estimation obtains the heading orientation of each detected step by a single 
tri-axial gyroscope. With the z-axis angular velocity, the heading orientation can be calculated by 
cumulating the rotation angles from the measured angular velocities. Therefore, the heading 
direction 𝜃  at nth step is computed based on integration of z-axis angular velocities 𝜔 ,  at 
sampling time k over time interval of walking steps [𝑡 , 𝑡  and the previous heading direction 𝜃  at (n-1)th step, which is estimated in the same manner from the heading direction 𝜃 . Since 
the collected data is resampled to 30.3 Hz, the duration of sampling time k is 33 ms. The formula of 
heading estimation is shown in Equation (1). 𝜃 𝜃 𝜔 , 𝑑𝑘. (1)

Finally, position estimation integrates the information from step detection and heading 
estimation to calculate the pedestrian’s localization. There are two approaches applied in the position 
determination, including the traditional PDR and Footpath approaches. In the traditional PDR 
system, current position 𝑥 , 𝑦  at nth step can be calculated by previous position 𝑥 , 𝑦  at 
(n-1)th step, individual step length ∆𝑙 and estimated heading orientation 𝜃  at nth step, which is 
defined by Equation (2). The initial position and orientation are assumed to be known. Moreover, the 
step length is the average step length of individual subjects measured in the experiments. 𝑥𝑦 𝑥 ∆𝑙 𝑐𝑜𝑠𝜃𝑦 ∆𝑙 𝑠𝑖𝑛𝜃  (2) 

The Footpath approach utilizes a FirstFit algorithm to compare heading direction of each step with 
orientation of an expected route that pedestrians follow to reach the destinations [37]. In the FirstFit 
algorithm, if the difference between the estimated heading direction and expected orientation is less 
than a certain threshold d, a directly matching event is triggered and position is detected by steps 
along the same direction. In contrast, while the difference exceeds the threshold d and lasts over five 
consecutive steps, a lookahead matching mode is activated to find a matching direction in the next 
edge. With the matching algorithm, Footpath has the ability to reset the location. Both localizations 
obtained from the traditional PDR and Footpath approaches are further processed in the decision-
making function. 

2.3. Light Model 

In the light model, a light sensor embedded in a smartphone is exploited to provide information 
about the passing lamps while a pedestrian walks through a known route. The information from the 
light model can be utilized to modify the localization of the motion model. There are three functions 
implemented in the light model, including step-based segmentation, light intensity detection and 
light event identification. In step-based segmentation, the light signal is segmented into fragments 
based on the step information from motion model, as shown in Figure 4. To detect the maximal 
received light intensity of each step, a sliding window technique with window size of five sampling 
points (165 ms) and 80% overlapping is applied in the step-based light segments, as illustration of 
Figure 5. 
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Figure 4. The illustration of step-based segmentation. 

 

Figure 5. The illustration of light intensity detection with a window size of five sampling points. 

With the maximal light intensity of each step from step-based segmentation and light intensity 
detection, the occurrence of the light event represents the pedestrian walking under a ceiling-
mounted lamp and can be recognized in the light event identification. Figure 6 illustrates details 
about the light event identification. The detected maximal light intensity of each step is performed 
by a sliding window technique. For a fluorescent lamp with a length of 1 m, the range of receiving 
lamplight is approximately 3 m. Therefore, pedestrians need to take five steps to walk through the 
range of the lamplight (the average step length is 63 cm in this study). Since pedestrians need about 
five steps to pass through the range of the lamplight, the window size of the sliding window 
technique is set to five steps and the overlap is set to four steps. If the third step of a window received 
the maxima light intensity than other values in the window, a light event is identified and its 
occurrence time point is recorded. The detected light events and the occurrence time points are 
applied to the decision-making functional component to reduce the accumulative error caused by 
incorrect step length estimation and heading estimation in the PDR and Footpath approaches. 
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Figure 6. The illustration of light event identification with a window size of five steps. 

2.4. Decision Making 

Decision making functional component fuses the information from the motion model, light 
model and Bluetooth to determine the final position. If there is no light event detected, the estimated 
position of the motion model from the PDR or FirstFit is regarded as the output position. On the 
contrary, while a light event is detected, the output position is modified to the position derived from 
the light, Bluetooth and map information. 

There are two procedures for obtaining the position information. Firstly, Bluetooth is utilized to 
recognize the current edge information in the route. As an example shown in Figure 1, we define an 
edge as a straight path in a route and a sub-edge as the segment between two lamps. Bluetooth 
beacons are attached to the ceiling-mounted lamps close to corners for providing both the ending and 
beginning of the edge information in the map. The smartphone measures the received signal strength 
indication (RSSI) from the attached beacons. As the distance between a smartphone and a beacon 
decreases, the corresponding RSSI should increase. Therefore, a peak detection algorithm is utilized 
to detect whether a pedestrian is passing through the lamp attached with a Bluetooth beacon. If a 
peak is detected, the current edge information can be recognized by matching the universally unique 
identifier (UUID) of the Bluetooth beacon. Secondly, after verifying the current edge that the 
pedestrian is walking on, the identified light event while the pedestrian passing through a ceiling-
mounted lamp can provide actual position information by matching the light arrangement of the 
edge in the map. 

After attaining the position information, the reckoning position can be revised by step length 
modification, sub-edge heading reset and pedestrian position revision. In the beginning, the step 
length is modified based on step counts and distance between two lamps [46]. Figure 7 shows the 
illustration of step length modification. Let 𝑡 , |𝑗 1,2, … , 𝐽  denote the occurring time of light 
events and 𝑡 |𝑛 1,2, … , 𝑁  represent the detected time of step. While the pedestrian walks 
through the (j-1)th lamp within (n1-1)th to n1th steps, we can define the time of the light event at (j-
1)th lamp as 𝑡 ,  and the time of detected step as 𝑡  and 𝑡 . After a while, the pedestrian goes 
through the next lamp at time 𝑡 ,  within (n2-1)th to n2th steps, detected at time 𝑡  and 𝑡 , 
respectively. The step counts between (j-1)th lamp and jth lamp can be estimated by Equation (3). 
The individual step length ∆𝑙  can be modified by step counts 𝑐 and distance between two lamps 𝑑 , as Equation (4). Next, the drift error of gyroscope can be eliminated by sub-edge heading reset. 
According to the identified light event in the sub-edge, the heading estimation can be reset to the 
orientation of the sub-edge. With the modified step length, heading direction and the actual position, 
the current position can be revised. Because the light event is detected when the third step of the 
sliding window receives the maxima light intensity, there may be two steps delayed at the light event 
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identification. Therefore, the pedestrian position after two steps of light event 𝑥 , 𝑦  is 
revised by the actual position of the jth lamp 𝑥 , , 𝑦 , , the modified step length ∆𝑙′ and heading 
direction 𝜃 ,  at jth lamp. 𝑐 𝑡 𝑡 ,𝑡 𝑡 𝑡 𝑡 1 𝑡 𝑡 ,𝑡 𝑡  (3) 

∆𝑙′ 𝑑𝑐  (4) 

 

 

Figure 7. The illustration of step length modification. 

3. Data Collection and Experiment Protocols 

A smartphone ASUS Z00Ld embedded with tri-axial accelerometer, tri-axial gyroscope and light 
sensor is utilized to collect the motion and light information during walking. Bluetooth beacons, 
AprilBeacon, published by Beijing April Brother Technology Co., Ltd., are attached to the ceiling-
mounted lamps to provide information for recognizing the edge of the detected light in the map. 
Nine subjects are recruited in this study (5 males and 4 females, 25.2 ± 1.9 years, height = 166.7 ± 6.6 
cm, weight = 68.2 ± 12.0 kg). Each subject is requested to hold the smartphone in the left hand and 
walk on the prescribed route three times, as shown in Figure 8. Powder on the ground is applied to 
obtain the ground truth during walking periods. 

   
(a) (b) (c) 

Figure 8. The illustration of experimental protocols. (a) The orientation of smartphone. (b) The 
holding manner of the smartphone. (c) The ceiling-mounted lamps in the experimental environment. 

The walking route is illustrated in Figure 9. The total distance of the prescribed route is 140.7 m. 
The initial position and heading direction are assumed to be known. The route from origin to 
destination is composed of three parts, including edge 1 (origin position to the first corner), edge 2 
(the first corner to the second corner) and edge 3 (the second corner to destination). In consideration 
of different environments, we designed four different light arrangements to evaluate the influence of 
different luminary density on the system performance, as demonstrated in Figure 10. Case 1 is an 
environment with enough light density and the sub-edge distance between ceiling-mounted lamps 
in case 1 is smaller than that in case 2. In addition, the luminary arrangement may not be symmetrical 
in the environment. Case 3 and case 4 simulate an asymmetric light arrangement of edge 1 and edge 
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3. To recognize the edge information, four beacons are attached on the lamps between corners. The 
sequence of L1 to L19 denotes the indices of passing lamps in the experiments. 

 
Figure 9. The illustration of the prescribed walking route. (Unit: cm). 

(a) 

 

(c) 

 
    

(b)  (d) 

  
Figure 10. Light arrangements within the walking route. (a) Case 1, (b) Case 2, (c) Case 3 and (d) Case 
4 of light arrangements are applied to evaluate the performance of multi-sensor fusion approach. (L1 
to L19 represents lamp indices). 

4. Results 

To evaluate the proposed fusion approach, performance comparisons are made between the 
traditional PDR, FirstFit and proposed approaches in this study. The PDR approach utilizes the 
accelerometer and gyroscope of a smartphone to estimate step and heading information for 
localization. The FirstFit approach combines a traditional PDR with map information to reduce the 
drift error caused by the gyroscope. Localization results of a subject are demonstrated in Figures 11–
20. In Figure 11, the error distance of the PDR approach increases with the step number due to the 
drift error and incorrect heading direction. The results of the proposed fusion approach based on 
PDR are shown in Figures 12–15. As with the case 1 light arrangement shown in the Figure 12, the 
drift error and incorrect step length can be modified by fusing multi-sensor data. Whether the step 
length is overestimated (brown arrow) or underestimated (red arrow), the accumulative error can be 
eliminated with the position revision and the individual step length modification while the subject 
passes through a ceiling-mounted lamp. Moreover, the drift error (yellow arrow) can be corrected by 
the sub-edge heading reset. While the subject turns at the corner, the drift error may affect estimation 
of heading direction and lead to false position estimation. With Bluetooth beacons attached on the 
corner, the proposed approach can update the edge information while the subject walks to the next 
edge. By the light information among the edge, the localization can be revised and the heading 
orientation can be reset to the direction of the edge. Figure 13 shows the localization results in case 2. 
The drift error within a sub-edge is larger in case 2 because of the increasing sub-edge distance. 
Localization results in the asymmetrical light arrangement are shown in Figures 14 and 15. The 
accumulative error can be eliminated at the first corner because of the timely modification after 
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turning. However, the drift error of case 3 is larger than that of case 4 at the second corner owing to 
the larger distance between the second corner and the first ceiling-mounted lamp after turning. 

 

Figure 11. An example of localization results by the pedestrian dead reckoning (PDR) approach. 

 

Figure 12. An example of localization results by proposed approach based on PDR in case 1 light 
arrangement. (yellow arrow: drift error; red arrow: underestimated step length; brown arrow: 
overestimated step length). 

 

Figure 13. An example of localization results by proposed approach based on PDR in case 2 light 
arrangement. (yellow arrow: drift error; red arrow: underestimated step length; brown arrow: 
overestimated step length). 
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Figure 14. An example of localization results by proposed approach based on PDR in case 3 light 
arrangement. (yellow arrow: drift error; red arrow: underestimated step length; brown arrow: 
overestimated step length). 

 
Figure 15. An example of localization results by proposed approach based on PDR in case 4 light 
arrangement. (yellow arrow: drift error; red arrow: underestimated step length; brown arrow: 
overestimated step length). 

The FirstFit approach matches the estimated heading direction with the orientation of the 
prescribed route. The drift error can be eliminated by providing the edge direction from the map. 
However, the incorrect step length estimation causes the accumulative error within the edge, as 
shown in Figure 16. If the estimated position reaches the end position of an edge, the estimated 
position will stop at the end of the edge until a turning situation is detected. The proposed fusion 
approach can correct the error of incorrect step length at the ending of each sub-edge to reduce the 
accumulative error of incorrect step length estimation. The results using the proposed system based 
on FirstFit is demonstrated in Figures 17–20. With an appropriate light density in Figure 17, the 
estimated step length of each sub-edge is updated continually to reduce the overestimated (brown 
arrow) and underestimated (red arrow) step length situation. Even though there is a lower light 
density in Figure 18, the localization accuracy can be improved by modifying the position and step 
length. Figures 19 and 20 demonstrate the localization results in asymmetrical light arrangement 
environments. The step length error of case 4 is larger than that of case 3 in edge 1. However, the 
localization accuracy is both good in case 3 and case 4 at the first corner because of the correct step 
length modification. At the second corner, the drift error of the gyroscope leads to a misidentified 
turning event. Despite the step length modification and pedestrian position revision, the error cannot 
be eliminated because of the different step length while turning. The error at the second corner should 
be tackled while the subject passes through the lamp after the second corner. The distance between 
the second corner and the next lamp may influence the error in the sub-edge. 
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Figure 16. An example of localization results by FirstFit approach. 

 
Figure 17. An example of localization results by proposed approach based on FirstFit in case 1 light 
arrangement. (red arrow: underestimated step length; brown arrow: overestimated step length). 

 
Figure 18. An example of localization results by proposed approach based on FirstFit in case 2 light 
arrangement. (red arrow: underestimated step length; brown arrow: overestimated step length). 
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Figure 19. An example of localization results by proposed approach based on FirstFit in case 3 light 
arrangement. (red arrow: underestimated step length; brown arrow: overestimated step length). 

 
Figure 20. An example of localization results by proposed approach based on FirstFit in case 4 light 
arrangement. (red arrow: underestimated step length; brown arrow: overestimated step length). 

Comparison of error distance in PDR approach and proposed fusion approach in different light 
arrangements are shown in Figures 21 and 22. The error distance of the PDR accumulated with steps 
can be observed. In Figure 21, both case 1 and case 2 can reduce the accumulative error at each sub-
edge. However, case 2 which has a smaller light density reveals a larger location error from turning 
at L12 to L14. This localization error can be modified by the light event detection at L14. Figure 22 
compares the location error of each step in case 3 and case 4. Before L8, the light density of case 3 is 
larger than that of case 4. The location error reveals smaller at case 3 but there is little difference 
between case 3 and case 4. Nevertheless, after turning at L12, the fewer light in case 3 causes 
accumulated error at L12 to L14 because of the larger sub-edge distance. 
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Figure 21. Comparison of error distance of each steps using PDR and proposed fusion approach in 
case 1 and case 2 light arrangement. 

 

Figure 22. Comparison of error distance of each steps using PDR and proposed fusion approach in 
case 3 and case 4 light arrangement. 

Figures 23 and 24 show the location error of each step using FirstFit and proposed fusion 
approach in different light environments. The error distance can be modified at each edge by FirstFit. 
However, within the edge, the error accumulated with steps. By fusing the light information, the 
location error of case 1 and case 2 as Figure 23 can be corrected within each sub-edge. The drift error 
after the second corner at L12 in case 2 is still large. In Figure 24, because of the higher light density 
before L8 in case 3, the location error of case 3 is a little smaller than that of case 4. However, the drift 
error that happened at the second corner may not be corrected in time due to the lower light density 
after L12 in case 3. 
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Figure 23. Comparison of the error distance of each steps using the First Fit approach and proposed 
fusion approach in case 1 and case 2 light arrangement. 

 

Figure 24. Comparison of the error distance of each steps using the First Fit approach and proposed 
fusion approach in case 3 and case 4 light arrangement. 

The average accumulative error of subjects by different approaches and light arrangement is 
illustrated in Table 1. The PDR approach reveals the worst localization accuracy with 430.2 cm 
average error distance. The accumulative error of the FirstFit approach is 160 cm owing to the 
improper step length estimation. The proposed fusion approach based on PDR can reduce the 
location error to 40.36 cm in case 1, 62.76 cm in case 2, 55.88 cm in case 3 and 49.23 cm in case 4. 
Moreover, the proposed system utilizing FirstFit can improve the error distance to 37.41 cm in case 
1, 45.5 cm in case 2, 42.16 cm in case 3 and 40.75 cm in case 4. The results show that the multi-sensor 
fusion approach is feasible to improve the localization accuracy and the light density in the 
environment may influence the location accuracy. 

Table 1. The average accumulative error of subjects with different approaches and light 
arrangement. 

 PDR PDR-Proposed FirstFit FirstFit-Proposed 
Case 1 

430.20 ± 138.90 
40.36 ± 7.64 

160.00 ± 38.30 
37.41 ± 6.62 

Case 2 62.76 ± 12.52 45.50 ± 9.17 
Case 3 55.88 ± 13.13 42.16 ± 8.19 



Sensors 2019, 19, 3786 17 of 21 

 

Case 4 49.23 ± 7.91 40.75 ± 7.97 
Unit: cm. 

5. Discussion 

The main purpose of this study is developing a multi-sensor fusion approach by inertial sensors, 
light sensor and Bluetooth to improve the performance of a map-based indoor pedestrian localization 
system. The inertial sensor-based PDR system has advantages including no additional infrastructure 
needed and no radio frequency interference but has disadvantages including the error generated by 
drift error and inaccurate step length estimation that may be accumulated during walking. Previous 
studies utilize the Kalman filter and particle filter to improve the PDR system fusing with other 
technologies such as Wi-Fi, Bluetooth and light sensors. We present a simple approach by applying 
Bluetooth, light sensor and map information to deal with the issue of accumulative error in the PDR 
system. The proposed multi-sensor fusion approach is developed based on the information of the 
known route in an environment. Pedestrians may follow the planning route from an indoor 
navigation system to find their destination. On the basis of the planning route, the heading and light 
information along the planning route can be obtained. The light sensor and Bluetooth of a 
smartphone can detect the lamp and pre-installed beacons while a pedestrian passes under ceiling-
mounted lamps and provide edge and sub-edge information. Then, the pedestrian position 
information can be inferred by comparing edge and sub-edge information on maps. With the position 
information, we can modify the individual step length, reset the sub-edge heading and revise the 
current position. 

The results of the experiments demonstrate the feasibility of the proposed multi-sensor fusion 
approach. It reduces the accumulative error and improves the localization accuracy by fusing multi-
sensor data from inertial sensors, the light sensor, Bluetooth and map. The drift error and incorrect 
step length estimation lead to an accumulative error of 430.20 cm in PDR. To reduce the drift error, 
the FirstFit approach diminishes the accumulative error to 160 cm by matching the heading direction 
of each step with the orientation of known route information to check for the turning events. The 
proposed multi-sensor fusion approach utilizes Bluetooth and the light model to identify edge and 
sub-edge information. The accumulative error of the proposed multi-sensor fusion approach in an 
appropriate light density environment can be reduced to 40.36 cm based on the PDR and 37.41 cm 
based on the FirstFit approach. 

We designed four different light arrangements to evaluate the performance of the proposed 
fusion approach in different ceiling-mounted lamp conditions. According to the experimental results, 
there are two findings in this study. Firstly, light density in an environment may affect the localization 
accuracy. Compared to lower light density in case 2, the localization accuracy of higher light density 
in case 1 is better in both proposed fusion approaches based on PDR and FirstFit. Appropriate light 
density in the environment can reduce accumulative error effectively by edge and sub-edge 
information. As the light density decreases, the accumulative error increases. Secondly, a larger 
distance between a corner and the first ceiling-mounted lamp after a corner may cause a larger 
accumulative error. The distance from the first corner to the last ceiling-mounted lamp before corner 
in case 4 is larger than that in case 3. Although the light density of case 4 is lower than that of case 3 
before the first corner, the accumulated error can be corrected by detecting the first ceiling-mounted 
lamp after the first corner. In contrast, the distance from the second corner to the first ceiling-mounted 
lamp after the corner in case 3 is larger than that in case 4. Despite the modification before turning, 
the drift error influences the localization after the second corner. Because of a larger distance between 
the second corner and the first ceiling-mounted lamp after the corner, the accumulative error is larger 
in case 3 than that in case 4. Therefore, in an asymmetrical light density environment, larger distance 
between a corner and the first ceiling-mounted lamp after turning causes larger accumulative error. 

The multi-sensor fusion approach can reduce the accumulated error effectively by providing 
edge and sub-edge information. However, there are still some limitations in this study. Firstly, the 
smartphone is required to face up for the detection of visible light. Nevertheless, while using a 
navigation system for wayfinding in an environment, the pedestrian may hold the smartphone facing 
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up to check the instructions. In addition, inertial sensors are still working despite a lack of light 
information. If the smartphone cannot obtain light information, the localization can be estimated by 
the traditional PDR or Footpath approach. The misidentified light event caused by burnt-out lamps 
or smartphone position can be detected by matching the expected walking distance between two 
lamps. The walking distance of the pedestrian can be estimated by step detection and step length 
estimation. If the walking distance is much longer than the distance between two lamps, we can infer 
that there may be a missed lamp among the route and utilize information of the next lamp for decision 
making. Secondly, the determination of the initial position is not considered in this study. We focus 
on solving the issue of accumulative error rather than initial position. There are many studies 
utilizing different technologies to provide initial location. Buti Al Delail et al. [34] utilize an image 
marker by camera to provide initial location. Chen et al. [44] combine Wi-Fi and Bluetooth to obtain 
the initial location. Fuqiang et al. [53] employ quick response (QR) code as landmarks for location. 
Based on the studies mentioned above, the issue of initial location can be tackled by using QR code, 
NFC or image markers. Moreover, with the planning route of navigation system, the initial heading 
direction can be assumed to the initial instruction of navigation system. 

6. Conclusions 

To improve the accuracy of indoor pedestrian localization, we propose a multi-sensor fusion 
approach using inertial sensors, light sensor, Bluetooth and map information in this study. Compared 
to the traditional PDR system and FirstFit approach, the proposed multi-sensor fusion approach can 
improve 90% and 76% of localization accuracy in an environment with appropriate light density, 
respectively. The accumulative error of proposed multi-sensor fusion approach is below 65 cm in 
different cases of light arrangement. Although the localization accuracy may be influenced by light 
density in the environment, the accumulative error is much lower than the PDR and FirstFit in each 
case. According to the results, the proposed multi-sensor fusion approach is feasible to reduce the 
accumulative error and improve the localization accuracy by combination of inertial sensors, light 
sensor, Bluetooth and map information. The step length modification, sub-edge heading reset and 
pedestrian position revision can reduce the accumulative error effectively. In future work, we plan 
to apply the multi-sensor fusion approach in complex environment that includes routes with multiple 
branches and improve the robustness of proposed multi-sensor fusion approach. 
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