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Abstract: The automated identification system of vessel movements receives a huge amount
of multivariate, heterogeneous sensor data, which should be analyzed to make a proper and timely
decision on vessel movements. The large number of vessels makes it difficult and time-consuming
to detect abnormalities, thus rapid response algorithms should be developed for a decision support
system to identify abnormal movements of vessels in areas of heavy traffic. This paper extends the
previous study on a self-organizing map application for processing of sensor stream data received
by the maritime automated identification system. The more data about the vessel’s movement
is registered and submitted to the algorithm, the higher the accuracy of the algorithm should be.
However, the task cannot be guaranteed without using an effective retraining strategy with respect to
precision and data processing time. In addition, retraining ensures the integration of the latest vessel
movement data, which reflects the actual conditions and context. With a view to maintaining the
quality of the results of the algorithm, data batching strategies for the neural network retraining to
detect anomalies in streaming maritime traffic data were investigated. The effectiveness of strategies
in terms of modeling precision and the data processing time were estimated on real sensor data.
The obtained results show that the neural network retraining time can be shortened by half while the
sensitivity and precision only change slightly.

Keywords: streaming sensors data; neural network retrain time; model sensitivity and precision;
marine traffic anomaly detection; SOM data batching

1. Introduction

The maritime industry is an important part of the global trade system with a growing volume,
intensity, and needs. In 2018, 1.9 billion tons of goods were transported as part of EU short sea
shipping [1]. This is 3.2% more in comparison with 2016. Totally, more than 90% of cargo is carried by
sea transport [2].

Such growth presents some challenges in the industry. Increasing intensity of maritime traffic
raises the need for incident prevention-oriented traffic control. The maritime anomaly or abnormal
movement detection is one of the control techniques. It is based on vessel trajectory analysis and
search of irregular, illegal, and other anomalous appearances in trajectory data [3]. A maritime
trajectory can include vessel identification data, traffic parameters (e.g. speed and rotation), auxiliary
data (e.g., meteorological data) for a vessel, and such dataset presents a large-scale, complex data
structure. Automated data gathering systems (e.g., Automatic Identification System) return larger and
larger trajectory datasets, which are challenging for human-based analysis and anomaly detection [4].
Nowadays, machine learning-based data analysis and mining techniques is a natural choice for this
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type of task: the obtained structure of data, the extracted information, detected data regularities
could help to estimate vessel movement and make some safety decision, to enable the automatic
anomaly detection even. For real-world applications, a challenge of real-time operation, data
generalization arises. Movement anomalies are detected as history-based deviations of vessel’s
trajectory data, which can be problematic considering massive trajectory data streams. In this case,
constant estimation of historical and context data means permanent need for system retraining.
Full retraining is a time- and power-consuming process; therefore, some techniques of additional or
adaptive training would be preferred: rapid self-learning algorithms have to be developed to detect
the abnormal movement in stream data.

The paper is organized as follows. Section 2 presents the problem of abnormal movement
detection in maritime traffic data and gives the state-of-the-art problem solutions. In Section 3,
the motivation of this paper is presented: two retraining strategies are introduced for neural
network-based real-time maritime anomaly detection. The results of experimental research of these
strategies are given in Section 4. The investigation results are concluded in Section 5.

2. Review

In this section, we present maritime anomaly detection task and review some recent research
results in this area.

The abnormal vessel movement can be defined as an unreasoned movement deviation from
the sea lanes, trajectory, speed or other traffic parameters [5]. As most vessels have the Automated
Identification System (AIS) installed, giving the static and dynamic information about the vessel
movement, the detection of traffic anomaly comes as the task of data analysis and outlier detection.
In addition, different sensor systems can be connected to the AIS. Traffic data are analyzed in
point-based or trajectory-based manner [6].

In the first case, every single data point (message from the vessel to the AIS) or a group of them
is treated as an independent point. For this purpose, the analyzed geographical area is subdivided
into independent cells with related AIS messages. These data points in the grid are analyzed using
so-called signature-based or rule-based techniques. The idea of these techniques is the employment of
various association rules to detect specific movement changes [7]. Zhu applied database management,
data warehouse, and data mining technologies to analyze AIS data [8]. Deng [9] extended the features
and inserted time stamps. These extensions enable employing Markov model for supplementation
of rules. While declaring the point-based analysis, Pallotta et al. [10] proposed to use a sliding time
window to estimate the relationship between successive AIS data points. The obtained waypoints
are clustered using Density-Based Spatial Clustering of Applications with Noise methodology and
employed for anomaly detection and movement prediction. Despite the claims about point-based
analysis, the authors implemented the idea of updating the traffic knowledge from the input of AIS
messages and the use of historical knowledge. The same clustering methodology was explored in [11].
Here, the historical spatiotemporal data are analyzed to detect waypoints of routes.

The main weakness of point-based techniques is the analysis of movement short-term history
or disregard of history even. The planned and purposing vessel movement should generate
highly-correlated AIS data, and this can be used for movement anomaly detection. On the other hand,
a limited number of analyzed data points means real-time calculation and decision making. This quality
makes point-based anomaly detection techniques attractive for real-time tasks. Nevertheless,
at the moment, the prevalence of these techniques is quite limited.

Trajectory-based techniques treat the entire traffic data sequence as a whole. Several research
directions are analyzed in the literature related to the analysis of vessel trajectories: maritime traffic
pattern mining, ship collision risk assessment [12], maritime anomaly detection [13–15], identification
of the types of ships [16], and combating abalone poaching [17].

In the case of trajectory-based detection, models of normal movement are created (using the
entire trajectory data, not part of it) and the anomalies are detected as movement data inadequacy to
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the model. Thus, these techniques are characterized by having a huge amount of AIS data to analyze.
This property requires some data pre-processing such as compression or clustering.

In [18], a piece-wise linear segmentation is applied to compress the data of vessel trajectories, and
then the similarity of trajectories (for detection of anomalies) is performed using alignment kernels
(dynamic time warping and edit distances, namely). The model by Lei [13] defines spatial, sequential,
and behavioral features of the vessel movement. The movement anomaly is detected as the outlying
features of the trajectory model, and the degree of suspiciousness is evaluated. The geometrical
properties of the trajectory are employed in [19]. Here, the vessel trajectory is compared with the graph
search-based path and the difference is estimated by a final score. The threshold value of the score
is employed as the decision and labeling value. Another trajectory-based analysis techniques can be
found in [20–22].

Analysis of the entire trajectory gives the advantage of the historical movement data, which can
be essential for anomaly detection. However, full data analysis requires much more complicated
algorithms such as neural networks. This complicates the application of trajectory-based analysis for
real-time tasks. In addition, such algorithms are sensitive to missing data (e.g., lost AIS messages).

A comprehensive and categorizing review on maritime anomaly detection can be found
in [5,15,23].

Analysis of full trajectory data and anomaly detection would require data-driven approaches
such as artificial neural network-based or statistical methods. These approaches can perform in an
unsupervised or semi-supervised manner (i.e., they do not need labeled data) and can cope with large
amounts of data. The issue of real-time calculations should be solved using the idea of incremental
modeling (retraining, re-estimating, etc.): the model of vessel movement should be updated concerning
recent data to avoid of complete remodeling or model retraining.

3. Motivation

The vessel movement (normal or abnormal) can be treated differently regarding the sea region
where the movement is observed. For example, if the ship is quite distant from the seaport, then even
high decline from its course cannot be indicated as an anomaly: weather condition, stormy sea, etc.
may have a great influence on vessel trajectory. On the other hand, if vessel movement is observed at
the seaport surroundings, even a small deviation from the course may be thought as abnormal vessel
activity. To this purpose, the method used for traffic anomaly detection has to have a feature that
allows different region scaling at different maritime traffic observation areas. The self-organizing map
(SOM) method has such a scaling property. SOM is a neural network-based method that is trained in
an unsupervised way using a competitive learning [24–27]. The neural network can be used for both
visualization and clustering of multidimensional data [28].

In the previous research [29], the modified SOM algorithm for maritime vessel movement
data classification into normal and abnormal classes is presented. The modification is achieved
by incorporating virtual pheromone intensity calculations at the last epoch of model training.
During the model validation stage, the pheromone intensity threshold is established by applying
a gradient descent method. The dependence of the network neighboring function on the classification
results was investigated; the best classification accuracy qA achieved using the Mexican hat
neighboring function. The influence of different SOM grid dimensions on the classification results
of the proposed algorithm has been investigated. It was proved experimentally that the algorithm
achieved the best precision using grid dimension 25 × 25. This knowledge was used as a starting point
for the network data batching and training strategies investigation presented in this paper.

With the growth of maritime traffic, especially near seaports, the complete retraining of the
SOM algorithm becomes costly in terms of training time. The need for algorithm retrain quite
straightforward: the more vessel movement data that are observed and fed into the algorithm, the better
the precision of the algorithm should be. All neural networks are strongly dependent on the input
sequence in the training data. It was observed that, if only the input sequence of the data changes,
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even though the system architecture stays the same, classification accuracy results may be significantly
impaired [30]. Other authors proposed neural networks retraining strategies to build compact neural
network models with less memory usage and faster inference speed [31]. Recently, the SOM neural
network is being used to build datasets used in deep neural network model retraining [30,32] or
is used as a part of deep neural network model [33]. Different areas of applications of the SOM
algorithm depicts the necessity to investigate more thoroughly algorithm effectiveness with respect to
algorithm sensitivity, precision and data processing time by introducing different retraining strategies.
SOM retraining ensures the inclusion of the most recent movement data that reflects actual conditions
and context. To maintain high algorithm precision and sensitivity, approaches to data streaming,
batching and model retrain strategies has to be explored [34]. In this article, the authors introduce
two neural network retrain strategies and compare the results with the standard procedure of neural
network model experimental investigation (so-called Strategy I).

• Strategy I presents data batching and algorithm training whenever the new batch becomes
available as if no model history data were available. It is a common approach for neural network
training/validation/testing. In this paper, it is used as a reference with the view to compare
retrain Strategies II and III introduced by the authors.

• Strategy II presents algorithm performance while using pre-trained model parameters on
previously trained data with the newly arriving data batches.

• Strategy III presents different data batch shuffling techniques and the use of previously pre-trained
model parameters.

All three strategies investigate the learning rate parameter influence on the model performance
and training time as well. Data passed from a vessel can be viewed as a stream that contains facts
regarding vessel movement trajectories. Those may depend on seasonal data, the shipping routes,
schedules, and so on. Thus, the abnormality detection model has to be developed by analyzing vessel
movement trajectories (as well as historical data) in an incremental manned based on the up-to-date
data it receives.

4. Experiments

In this section, we present a detailed description of the SOM network retraining strategies and
results of the experiments using real datasets.

4.1. Data Preparation

The detailed description of the previous study of SOM size and modification by introducing the
SOM evaporation functions are presented in [29]. Data from the region of medium maritime traffic
at the Klaipeda seaport were selected for the analysis of the proposed retraining strategies of the
SOM network. During the experiments, two datasets were used: Cargo vessels and Passenger vessels.
Each item (point) of a vessel’s streamed data is described by longitude, latitude, heading, vessel
speed, wind direction, wind speed, wave direction, and wave height values. The Cargo dataset is
represented by 180,300 and the Passenger dataset is described by 43,879 vessel movement observation
items that were registered in a streamed manner. All experiments in this section were carried out with
the Cargo dataset; afterwards, the data batching strategies were tested on the Passenger dataset.

First, 20% of the Cargo vessel dataset was randomly selected for the general model
error evaluation. Then, the resulting 80% of the dataset items were used for the data batching
strategy investigation. These 80% of data items were split into 20% for strategy testing, and 80% for T1,
T2, and T3 data batch splitting (see Figure 1) to perform the SOM network training and validation.
Batches were used in the experiments to imitate the continuous data arrival with the view to investigate
different SOM network retraining strategies and learning rate parameter selection. The scheme of data
split is shown in Figure 1.
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Figure 1. Data split scheme.

All data items were sorted in ascending order with respect to data sending time. The SOM
network of size 25 × 25 was taken according to the SOM size investigation published in [29].

4.2. Training Strategies of the SOM Network

Strategy I. For the SOM network training and validation, we used T1, T2 and T3 data batches.
The learning rate parameter was set to 0.5. Then, after the network was trained and validated with the
T1 data batch, the new data were fed to the network as follows: the T1 and T2 batch data were merged
together and the algorithm was trained from the initial random state using all items from T1 and T2.
The same scheme was applied to the T3 data batch.

To get the best network performance, the learning rate parameter can be adjusted. Initial research
led us to divide the learning rate parameter search into these intervals and step sizes: in the interval
[0.005;0.04], step was set to 0.005; in the interval [0.04;0.1], step size was increased to 0.01; and,
in the interval [0.1;0.5], step size was set to 0.1 (see Table 1). In this way, the training experiment
of Strategy I was repeated while every learning parameter value was tested to achieve the best
algorithm performance. After the model was trained, it was tested with the test dataset, which allowed
evaluating the general model error. The best-obtained model characteristics with model test dataset
are presented in Table 1 (bold line).

The statistics of the best Strategy I model using test data for general model error estimation
and test data for model error estimation is presented in Table 2. The time needed for the algorithm
retraining was 40,769 s. Strategy II. The initial algorithm was trained 10 times with the T1 batch data.
During each training, the weights of the SOM network were generated randomly, and the best
performing network was selected while keeping a fixed learning rate parameter at the value of 0.5.
The performance of the investigated network on repetitive Strategy II (using only T1 dataset) model
evaluation and testing is presented in Table 3. The line marked in bold shows the best network obtained.
Quite small deviations of the precision and the sensitivity rates show the network stability. Then, the
best-obtained network parameters were used as initial weights for the network to be trained with T2
batch data. Finally, imitating the new data portion arrival, the best model obtained with T2 batch
data was retrained with the T3 batch data. The results of the additional experiment show that the best
performance network was obtained with learning rate 0.025.

The statistics (model test error and general model error evaluation) of the best model data are
presented in Table 4. The time needed for model training was 18,229 s.
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Table 1. Selection of learning rate.

Learning Rate TP FP TN FN Precision Sensitivity

0.005 924 519 26,648 757 0.6403 0.5497
0.010 943 505 26,662 738 0.6512 0.5610
0.015 957 498 26,669 724 0.6577 0.5693
0.020 963 487 26,680 718 0.6641 0.5729
0.025 968 478 26,689 713 0.6694 0.5758
0.030 976 471 26,696 705 0.6745 0.5806
0.035 986 468 26,699 695 0.6781 0.5866
0.040 998 461 26,706 683 0.6840 0.5937
0.050 1025 445 26,722 656 0.6973 0.6098
0.060 1066 413 26,754 615 0.7208 0.6341
0.070 1109 394 26,773 572 0.7379 0.6597
0.100 1197 303 26,864 484 0.7980 0.7121
0.200 1431 135 27,032 250 0.9138 0.8513
0.300 1486 81 27,086 195 0.9483 0.8840
0.400 1500 55 27,112 181 0.9646 0.8923
0.500 1510 52 27,115 171 0.9667 0.8983
0.600 1507 54 27,113 174 0.9654 0.8965
0.700 1502 59 27,108 179 0.9622 0.8935

Table 2. Training Strategy I performance at learning rate 0.5.

Stage TP FP TN FN Precision Sensitivity

Testing (model error) 1510 52 27,115 171 0.9667 0.8983
Testing (general error) 1868 69 33,890 233 0.9644 0.8891

Table 3. Strategy II performance on model test data.

No. TP FP TN FN Precision Sensitivity

1 1364 241 26,926 317 0.8498 0.8114
2 1329 280 26,887 352 0.8260 0.7906
3 1359 252 26,915 322 0.8436 0.8084
4 1364 274 26,893 317 0.8327 0.8114
5 1356 253 26,914 325 0.8428 0.8067
6 1335 253 26,914 346 0.8407 0.7942
7 1314 251 26,916 367 0.8396 0.7817
8 1332 258 26,909 349 0.8377 0.7924
9 1367 237 26,930 314 0.8522 0.8132
10 1338 240 26,927 343 0.8497 0.7960

max 0.8522 0.8132
min 0.8260 0.7817
average 0.8413 0.8011
stdev 0.0079 0.0115

Table 4. Retraining Strategy II performance at learning rate 0.025.

Stage TP FP TN FN Precision Sensitivity

Testing (model error) 1500 98 27,069 181 0.9387 0.8923
Testing (general error) 1836 122 33,837 265 0.9377 0.8739

Strategy III. The scheme of the model training validation and testing was similar to that described
in Strategy II, except for the following two things. Firstly, from T2 and T3 batches, there were produced
four data batches (Tm2–Tm5), each containing one quarter of both T2 and T3 data (see Table 5).
Secondly, as previously described, after every model training and validation, the parameters of
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the best-obtained model were used for every next Tm2–Tm5 batch training, except the model
training data aggregation. For every retraining. test data for model error estimation of data was
used as described in previous Strategies I and II. Half the items from Tm2–Tm5 data batches were
compounded of items from T2 and T3, as shown in Table 5 (Tm2–Tm5) while another part of the data
was selected proportionally, with respect to those data points attached to the previous best model
SOM winning neurons. This approach guaranteed that the knowledge of frequently passed sea regions
was incorporated into the next model training because it is not frequent for the ships to change their
sea routes. Experiments depicted that the best model was obtained with the learning rate being 0.03.

Table 5. Partitioning of dataset (Strategy III).

Data Batches % of Train and Validation Data New Data Items All Data Items
T1 60% 69,235 69,235

Tm2 10% 11,539 23,078
Tm3 10% 11,539 23,078
Tm4 10% 11,539 23,078
Tm5 10% 11,539 23,078

The statistics of the Strategy III best model were obtained using test data for general model
error estimation, and the results are presented in Table 6.

Table 6. Retraining Strategy III performance at learning rate 0.003.

Stage TP FP TN FN Precision Sensitivity

Testing (model error) 1527 73 27,094 154 0.9544 0.9084
Testing (general error) 1866 91 33,868 235 0.9535 0.8881

The time needed for the algorithm retraining was 27,854 s. The summary of relative time
required for the training Strategies I–III is presented in Table 7.

Table 7. Retraining Strategies I–III performance on Cargo dataset.

Strategy Precision Sensitivity Relative Time

Strategy I 0.9644 0.8891 1
Strategy II 0.9377 0.8739 0.4471
Strategy III 0.9535 0.8881 0.6832

The same data batching Strategies I–III described above were tested on the Passenger dataset as
well. The results are presented in Table 8.

Table 8. Retraining Strategies I–III performance on Passenger dataset.

Strategy Precision Sensitivity Relative Time

Strategy I 0.9795 0.8897 1
Strategy II 0.9802 0.8870 0.4478
Strategy III 0.9817 0.8888 0.6817

From the results shown in Tables 7 and 8, it can be seen that, by applying different SOM model
retraining Strategies, while keeping the same data batch sizes, it is possible to substantially decrease
the time for maritime traffic abnormal movement detection while retraining the model precision and
sensitivity at very high values. The results obtained show that the SOM network could be retrained
in half the time while keeping precision and sensitivity at almost the same high values. The results
presented in Table 8 prove the correctness of the training strategies investigation.



Sensors 2019, 19, 3782 8 of 10

5. Conclusions

This paper extends the previous study on a self-organizing map application, which is trained
in an unsupervised way using competitive learning, for processing of sensors stream data in order
to detect abnormal vessel movement in maritime traffic. Different strategies for the unsupervised
retraining of the SOM network to classify maritime vessel movement data into normal and abnormal
classes were presented and investigated. The data batching strategies ensure high precision of
the algorithm by introducing a huge amount of new data on vessel movements. Two different
unsupervised SOM network retraining strategies for maritime vessel movement data classification into
normal and abnormal classes were proposed and investigated. The experimental research depicted
promising results. The study showed that the SOM network can be retrained in half the time by
only applying different train/validation and test datasets. The initial results depict that the obtained
speed-up in data processing time maintains precision and sensitivity, varying not more than 3% in
unusual maritime traffic detection.

The results of the experiments show that:

• If the model is trained from initial random weights of the SOM network, the best performance is
observed; however, the training time is the longest. Model precision reaches 0.979 and sensitivity
0.889 at learning rate 0.5.

• If the model is trained on top of the pre-trained model weights, the precision and sensitivity
slightly drop, but the training time decreases by half at learning rate 0.025.

• If the model is trained on top of the pre-trained model weights and the newly arrived data batch
is proportionally mixed with those winning neurons, training time can be decreased by one third
while keeping almost the same results as depicted previously at learning rate 0.03.

The independent experiment on unseen dataset confirmed the results correctness and allowed
concluding that, by applying batched data approach for SOM retraining on the pre-trained model,
network training can be shortened to half the time by selecting learning rate parameter from the
interval [0.025;0.03] while maintaining the model sensitivity and precision with only minor changes.
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