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Abstract: Electromagnetic Vibration Energy Harvesting (EM-VEH) is an attractive alternative to
batteries as a power source for wireless sensor nodes that enable intelligence at the edge of the
Internet of Things (IoT). Industrial environments in particular offer an abundance of available kinetic
energy, in the form of machinery vibrations that can be converted into electrical power through
energy harvesting techniques. These ambient vibrations are generally broadband, and multi-modal
harvesting configurations can be exploited to improve the mechanical-to-electrical energy conversion.
However, the additional challenge of energy conditioning (AC-to-DC conversion) to make the
harvested energy useful brings into question what specific type of performance is to be expected
in a real industrial application. This paper reports the operation of two practical IoT sensor nodes,
continuously powered by the vibrations of a standard industrial compressor, using a multi-modal
EM-VEH device, integrated with customised power management. The results show that the device
and the power management circuit provide sufficient energy to receive and transmit data at intervals
of less than one minute with an overall efficiency of about 30%. Descriptions of the system, test-bench,
and the measured outcomes are presented.

Keywords: electromagnetic vibration-based energy harvesting; power management; internet of
things; preventive maintenance

1. Introduction

The Internet of Things (IoT) proposes an environment where individual nodes such as industrial
machinery, home appliances, and wearable technology are all interconnected for data collection and
exchange, in particular using Wireless Sensor Networks (WSNs) (Figure 1). The current worldwide
investment in IoT of around USD 130 billion [1], with up to 7 billion nodes currently connected,
has created a thriving market that is forecast to grow to USD 1567 billion by 2025, with 21.5 billion
of connected nodes [2]. The IoT market consists of an increasing number of start-up companies,
which are defining different stages in the technology development, such as: Sensors, Connection
(sensor networks), Storage (solid state), Processing (big-data management), Telecommunications,
and Learning (Artificial Intelligence—AI). It has been suggested that the purpose of this evolution is to
bring computer systems to a state of Awareness. As such, health care, finances, and manufacturing are
expected to be re-shaped to include features for Augmented Reality (AR), of which IoT is a foundation.

IoT applications differ according to the place where the data analysis is performed. Thus, there is
a differentiation between computation at the edge or in the cloud. Intelligence at the edge of the IoT is
often required to increase speed of decisions, add security for data (since it is kept local), and reduce
power required for transmission. IoT solutions provided by the integrated-circuit (IC) industry merge
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different functions (sensing, wireless communications, etc.) in single chips, and are becoming pervasive
across the entire ecosystem. These solutions are designed to have low power consumption, and to be
highly reliable and “always-on”. Some examples are within IoT products by Texas Instruments (TI)
(Dallas, TX, USA) [3], Microchip Technology (MCHP) (Chandler, AZ, USA) [4], and the SmartMesh IP
solution range by Analog Devices (ADI) (Norwood, MA, USA) [5].

•  Data sensing - Embedded Devices

•  Device Connection - Sensor Networks

•  Data Collection - Big Data

•  Data Transport - Current Networking

•  Data Analytics - Artificial Intelligence

•  Human Value - Augmented Reality

Figure 1. The Internet of Things (IoT).

An underlying need for the resilient interconnection of Sensor Nodes (SNs) at the edge of the IoT is
a reliable power supply, and the current standard is the use of batteries. However, expected industrial
applications of the IoT such as preventive maintenance require pervasive sensing, with challenges such
as a large number of SNs to power, and in places that might be difficult to reach. In such cases, the cost
of battery replacement represents a significant barrier to the widespread use of WSNs [6]. Viable
alternatives to batteries are renewable power sources, in particular Energy Harvesting (EH) [7]—the
collection of small amounts of power (less than 1 W) taken from environmental sources, to feed low
power-consumption loads.

Indeed, it is estimated that the operational cost over the product life-time of a harvester-assisted
application is reduced to one third of that of a battery-powered one [8]. One of the most popular
options is Electromagnetic-Vibration Energy Harvesting (EM-VEH). This technology exploits the
relative motion between a coil and a magnet produced by mechanical vibrations that induces AC
voltage in the coil. Traditionally these systems have a narrow frequency bandwidth and must be tuned
to the dominant frequency of the ambient vibrations—generally in the sub 100 Hz range [9].

To overcome the problem of narrow bandwidth, a two-degree-of-freedom (2DoF) EM-VEH device
that exploits multiple masses and a patented velocity-amplification principle has been developed
by the authors’ group [10–13]. In this harvester, harmonic and random excitations can be used as
vibration sources for producing higher voltage and power than in prior art.

However, to make this particular technology usable, optimised power conversion (AC-to-DC)
and management is needed. Energy conversion schemes for the traditional EM-VEH system assume
different conditions than what is true for the harvester in this study. Namely, the equivalent AC voltage
level and series impedance of the harvesting source are much larger. This makes the requirements
of the power management strategy more stringent, while it is less orthodox and therefore more
challenging to be directly solved by an off-the-shelf solution “as it is”. In addition, it is more relevant
for the industry of IoT applications to understand the capabilities of the overall EH system when used
with real ambient vibration sources, especially those found in industry, to power real WSN loads.
These topics have not yet been explored for the particular harvester under discussion.
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This paper addresses these needs by introducing a power management technique specific for the
multi-modal EM-VEH device reported in [12]. The harvester and its test system are introduced first.
Then, the characterisation of the EH system is explored using both ideal input vibrations and vibrations
commonly found in industry. The IoT sensor nodes of two different communication technologies, to be
continuously powered by the EH solution, are also described. The power management strategy is then
developed. Experiments and results are presented before concluding the paper.

2. System of Interest

Common vibrational energy harvesters are based on linear mass-spring systems with a narrow
frequency response, which requires that they need to be tuned to the main frequency of the external
excitation. This usually limits the energy transfer in realistic applications, since ambient vibrations
generally have a broad spectrum with several peaks [9]. An alternative to overcome the problem of
narrow bandwidth is the two-degree-of-freedom (2DoF) velocity-amplified EM-VEH device introduced
in [12–14].

The harvester is currently going through a commercialisation path, and it has been branded by
Stokes Power [15], with the commercial name of VEH-1. Figure 2a shows its overall size with reference
to a D-battery: diameter 40 mm, height 74 mm.

(a)

Internal Springs

External Springs

Primary

mass

Secondary

mass

Coil

windings

H 

70-57 mm

40 mm

(b)
Figure 2. Stokes Power’s VEH-1: (a) illustration of the scale of the harvester with reference to a
D-battery; (b) Schematic of the harvester.

The device is based on a concept developed by the authors in [12] and its schematic is shown in
Figure 2b: it comprises two masses oscillating vertically, one inside the other, between four sets of
springs. The distance (H) between the external springs (Figure 2b) can be varied and this affects the
frequency response of the harvester as shown in Section 3.1. Impacts between the masses can occur,
allowing momentum transfer from the heavier mass (the outer mass) to the lighter (the inner mass),
leading to velocity-amplification. Electromagnetic transduction is chosen as the conversion mechanism
since it is easily implemented in a device that exploits velocity-amplification: the outer mass acts as
a housing for the coil and the inner mass is a magnet. According to Faraday’s law, the induced voltage
is given by Vem f = Blv, where B is the magnetic field experienced by the coil of total length l and
v is the relative velocity between the coil and the magnet: enhancing the velocity of the inner mass
increases the output voltage and the output power (Pe ∼ v2).

As shown in Figure 3, the harvester was fixed to a Brüel & Kjaer LDS V406 electrodynamic shaker
(Naerum, Denemark) and a PCB Piezotronic accelerometer (Depew, NY, USA), mounted on the head
of the shaker below the harvester, was used to provide feedback control to set the acceleration to the
desired amplitude level. The output voltage was measured across a variable resistor whose value was
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fixed to match the optimal load RL. Labview (version 2011, National Instrument, Austin, TX, USA)
was used to drive the shaker and to acquire signals from both the accelerometer and the harvester.

Figure 3. Schematic of the experimental setup.

3. Harvester Characterisation

The VEH-1 presented in Section 2 was tested using the experimental setup shown in Figure 3
under sinusoidal excitation over a range of frequencies for different H values and under the excitation
of an industrial air compressor. For each test, the voltage was acquired across the optimal load
resistance RL. The root mean square (RMS) output voltage and output power as function of frequency
is reported in Section 3.1, while the results obtained under the excitation of the air compressor are
reported in Section 3.2.

3.1. Harmonic Excitation

The VEH-1 was tested with harmonic excitation at arms = 0.4g (g = 9.81 m/s2) for different H
values that will be referred to as follows:

• Design 1: H = 70 mm;
• Design 2: H = 60 mm;
• Design 3: H = 59 mm;
• Design 4: H = 58 mm; and
• Design 5: H = 57 mm.

Data for H values between 70 and 60 mm were not considered since the frequency response of
the harvester was not affected in this range. The amplitude of the excitation was chosen because it
was comparable with the amplitude of many ambient vibrations [16]. Figure 4 shows the trends of the
output voltage and of the output power as function of the five designs for arms = 0.4g.
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Figure 4. (a) RMS voltage and (b) power as function of frequency for different H values at arms = 0.4g.
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Two peaks are visible in all the testing configurations, corresponding to the resonant peak of the
inner mass (the peak at the lower frequency) and to the resonant peak of the outer mass (the peak at
the higher frequency). The peak at the lower frequency is not affected by a change in H, as expected,
since the size of the cavity inside the outer mass was not varied. The peak at the higher frequency,
instead, shifts to the right when the distance between the external springs is changed: reducing H
had the same effect as increasing the stiffness of the springs. The harvester can hence be tuned to
the dominant frequencies of ambient vibrations by varying a geometrical parameter: for example,
the second resonant peak shifted from 19 Hz in Design 2 to 29 Hz in Design 5, as shown in Figure 4.

In the next subsection, the vibrations of an industrial compressor are reproduced using the
electrodynamic shaker to show that the device could generate enough energy to power wireless
sensor nodes.

3.2. Industrial Air-Compressor Vibrations

Typical sources of mechanical vibrations in industry are devices linked to motors. While industries
like mining and concrete-block manufacturing have machinery with stronger vibrations, the most
commonly found equipment are pumps, fans and compressors. The acceleration pattern of the
vibrations on a medium-range-power air compressor was measured in situ, in a real industrial
environment; and it is shown in Figure 5a. The RMS of the acceleration is arms = 0.73g and the
dominant frequency is 13 Hz as visible from the Power Spectral Density (PSD) shown in Figure 5b.
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Figure 5. Vibrations measured on an industrial air compressor: (a) Time series; (b) Power
spectral density.

The measured acceleration pattern was then used to emulate these mechanical vibrations in the
laboratory, using the experimental setup shown in Figure 3. Design 1 was used to test the VEH-1
because the resonant frequency in this configuration was close to the main peak of the ambient
vibrations. The open circuit voltage generated by the harvester, shown in Figure 6a, has RMS/peak
voltage levels of 8.4 V/17 V. Figure 6b additionally reports the voltage measured across a load resistance
RL = 12,050 Ω which has approximate RMS/peak voltage levels of 3.45 V/8.6 V. The harvested power,
calculated using P = V2

rms/RL, is 0.98 mW. In this study, this level refers to the absolute maximum
power that the harvester is able to deliver potentially, before any power conditioning.
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Figure 6. Output voltage delivered by the harvester: (a) Open circuit configuration; (b) Measured
across RL = 12,050 Ω.

4. Output Low-Power Loads

Interconnection of sensor nodes at the edge of the IoT is implemented using different wireless
communications protocols. These wireless networks, based on their range, are classified as short-range
or long-range. While long-range technologies like LoRA and Sigfox have demanding requirements (as
they are preferred for critical applications), short-range solutions like BLE and WiFi have additional
challenges like harsh industrial environments in private or non-proprietary bands [17]. Both paradigms
are represented in the IC industry, with a broad and flexible range of products for wireless connectivity.
Some examples are the LTC5800-IPM SmartMesh IP System-On-Chip (SoC) by ADI [18] (to build on
the 802.15.4e standard), and the sub-1 GHz transceiver (Sigfox enabler) by ST Microelectronics (ST)
(Geneva, Switzerland) [19]. Two other representative communication technologies have been chosen
as the low-power loads in this study, and are presented next.

4.1. LoRaWAN End-Device Node

The first load is a LoRaWAN end-device developed by Pervasive Nation, an Irish IoT testbed
operated by the CONNECT Research Centre, for use in its long-range national network through
a custom gateway. This small form-factor interface board reports data from a selection of on-board
general purpose sensors (accelerometer, Hall sensor, temperature and humidity) over LoRaWAN [20].

The LoRa board feeds off a 3.3 V (nominal) DC voltage, in the range 2.5 to 3.6 V, which is originally
provided by a coin-type battery. The operation mode within the protocol was modified so that the
board implemented minimum power consumption with a single sensor (magnetometer). The practical
current consumption profile of the board, for one round of data Reception/Transmission (Rx/Tx),
was measured, and it is depicted in Figure 7.

25.4mA

10.2mA 10.2mA22ms

68ms
30ms 30ms

1s 1s <1µA

Figure 7. LoRa board current consumption profile in one Rx/Tx cycle.

Table 1. Average LoRa board power consumption.

Sleep Time 10 s 40 s 2 min 5 min 15 min

Power (µW) 714.5 205.9 71.0 28.7 9.6
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The device goes through this cycle and reverts to its sleep mode, where current consumption
decreases to a few micro-Amps (negligible). Table 1 identifies the average power consumed by the
board for different sleep times (at a nominal input voltage of 3.3 VDC). Usual Rx/Tx rates in LoRaWAN
applications admit sleep times of up to 15 min [21].

4.2. Bluetooth Sensor Node

The second load is TI’s CC2650 SensorTag. This is a more standard IoT device that supports 10
low-power sensors, embeds expansions for customised IoT applications, and it typically feeds off
a coin-type battery with a 3 V (nominal) DC voltage, in the range 2 to 3.4 VDC. The board is able to
connect with a mobile app via Bluetooth, in a short-range network where the transmission rate and
number of sensors enabled in the session can be modified [22].

Using the board features, an application with three simultaneous enabled sensors (ambient light,
and local and ambient temperatures) was configured. The current consumption profile, for one round
of data Rx/Tx is presented in Figure 8 (for a nominal 3 VDC input voltage), and the power consumption
for different sleep times is presented in Table 2.

393µA

280ms
50µA

Figure 8. Bluetooth board current consumption profile in one Rx/Tx cycle.

Table 2. Average bluetooth board power consumption.

Sleep Time (s) 0.5 1 1.5 2 2.5

Power (µW) 693.4 419.6 328.3 282.7 255.3

5. Power Management for EM-VEH

The SNs targeted by the proposed EM-VEH technique have embedded electronics designed to be
powered from a coin-type battery of ∼ 3.3 VDC. Since the output voltage of the VEH-1 is of AC nature,
the power management (PM) strategy must first implement AC-to-DC electrical energy conversion,
and then further DC voltage regulation to deliver a reliable DC supply near 3 VDC, while maximising
the energy transfer.

To solve this problem, the IC industry offers a wide range of Power Management Integrated
Circuits (PMICs) specifically for EH. These devices integrate ultra-low power conversion schemes
with control techniques that are customised for EH applications. This is because an SN can operate
continuously only if the energy production is equal to or superior to the consumption, which is
challenging for any EH supply and hence low-power-management strategies are required. On the load
side, this is achieved by implementing customised scheduling with data Tx/Rx implemented only
every several seconds/minutes (Section 4) [23]. On the supply side, Maximum Power Point Tracking
(MPPT) techniques, usually implemented by the PMIC, assist with the power delivery.

The majority of EH PMICs available in the market are specifically designed for solar photovoltaic
(PV), thermoelectric (TE), and piezoelectric vibrational energy harvesting (PE-VEH), with very few
options specifically for EM-VEH. The input electrical conditions for which such commercial PMICs are
designed are quite different from the ones for the harvester in this study. PV and TE harvesters have
very low DC input voltages with relatively higher input currents, while PE-VEH features high AC
voltages with lower input impedances. In contrast, the VEH-1 features a much higher AC input voltage
(Figure 6) and input impedance. The latter is due to the high number of turns in the coil of the VEH-1
design, which makes the coil resistance (Rs) and inductance (Ls) in the typical dynamic electrical
model of an EM-VEH harvester (shown in Figure 9) high. In this study, they were measured to be
3840 Ω/282 mH. This is larger than the usual few ohms/milli-henries in typical EM-VEH designs [24].
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This fact makes the implementation of an MPPT strategy vital and particularly difficult, since the high
input impedance yields a more unstable input DC voltage.

Another challenge is that even the few PMICs in the market that are suited for EM-VEH do not
implement an adequate MPPT strategy. Theoretically, MPPT involves matching the impedance of
the load observed by the harvester to that of the harvester. Commercially, this is typically achieved
by well-known algorithms such as perturb-and-observe, which adjusts the input voltage until the
measured input power is maximised. MPPT was originally proposed for PV energy transfer [25],
and has not been deeply explored for EM-VEH in general.

To overcome these challenges, the PM in this study has been implemented by adapting
commercially available solutions to the special conditions of the VEH-1 harvester. A commercial
survey revealed the most suitable commercial PMICs for this EM-VEH application to be the BQ25570
by TI [26], the LT3331 by ADI [27], and the SPV1050 by ST [28]. A schematic of the PM strategy
that was finally used in this work is introduced in Figure 9, and the basic features of the system are
detailed next.

Figure 9. Schematic of the power conversion and management strategy.

The first stage in the PM is front-end AC-to-DC energy conversion. Several PM methods have
been proposed in the literature on EM-VEH; from which the synchronous active rectifier is one of the
most efficient strategies, while also providing further regulation [29]. However, this technology has
not matured enough yet to be found in commercial PMICs. Another form of active rectification is the
Negative Voltage Converter (NVC)—a bridge rectifier implemented with MOSFETs (and an active
diode) that reduces the device voltage drop, when compared against using a diode rectifier [30].

These solutions are based on the idea that EM-VEH produces AC voltages of peak values less
than 1 V [9], which is true for traditional harvesters of this type. However, the VEH-1 is able to
deliver higher voltages (open circuit peak voltage Vpeak = 17 V, Figure 6a) in this particular application.
Experimental work confirmed that the use of an NVC presented no particular advantage when
compared to a (Schottky) Diode Bridge Rectifier (DBR), which was finally chosen as seen in Figure 9.
The rectified version of the harvester voltage vh in Figure 6a, measured across a filter capacitor, is
vin and it has an average value of 15 VDC. This average open-circuit value is less than Vpeak = 17 V
(Figure 6a) because the input signal is not perfectly sinusoidal. In addition, the value of vin is further
reduced due to the forward voltage drop caused by the rectifiers (of <240 mV per diode due to the
very low input current).

The second stage in the PM implements DC-to-DC voltage regulation. Again, due to the very low
voltage outputs of traditional EM-VEH devices, the most common topology for DC-to-DC conversion
in several commercial PMICs is a boost converter [31], usually rated for 5 V, which is not adequate
for the voltage range of the VEH-1 (∼17 V in Section 3.2). Instead, the PM technique in Figure 9
implements DC-to-DC buck-boost conversion (allowing input voltages up to 20 VDC). This conversion
circuit has to be controlled with an adequate MPPT strategy.
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The proposed PM technique in Figure 9 realises an MPPT from the harvesting source that stores the
energy in a super-capacitor Cstorage, and delivers regulated 3.7 VDC to the low-power load. This output
voltage was chosen following the maximum level admissible in the range of the loads (Section 4).
As soon as the harvester source is connected, the system goes through several intervals that will be
presented next to complement the understanding of the PM strategy.

5.1. Cold-Start Interval

The (rectified) input from the harvester vin is directly connected to the storage device Cstore so that
vin = vbus during the cold-start interval ∆tcs, which runs for: Vin,min < vbus < VEOC. Vin,min and VEOC
are, respectively, the minimum input rectified voltage, and an end-of-charge voltage level which is
defined by the PMIC in use. In this study: Vin,min = 150 mV and VEOC = 2.6 V. Figure 10 shows the bus
voltage on the storage super-capacitor during cold-start. It took around 22 min for Cstorage to charge to
VEOC under the excitation detailed in Figure 5.

0 5 10 15 20 25t (min)
0

1

2

3

V (V
)

Figure 10. Bus voltage during cold-start.

5.2. Switching Interval

During the switching interval ∆tsw after the bus voltage has reached VEOC, the internal buck-boost
DC-to-DC converter of the PMIC operates according to the MPPT algorithm: the converter will
stop switchinxg for a period Tsample every certain time Ttracking. In this study Tsample = 400 ms
and Ttracking = 16 s.

During Tsample, vin is allowed to reach its open-circuit voltage Voc = 15 V (maximum harvester
voltage), in order to record this level. Once this interval is elapsed, the converter operates again, setting
its own impedance such that vin stays as close as possible to the (previously) programmed maximum
power point voltage VMPP, which is a percentage (MPPratio) of Voc, such that:

VMPP = MPPratio × Voc. (1)

The ideal MPPratio for EH using PV panels and Thermoelectric Generators (TEGs) is well identified
in the literature to be around 50% and 80% of Voc, respectively [23]. For EM-VEH, however, there is no
general agreement.

A particular analytical description of the ideal MPPratio for the VEH-1 can be developed by
recognising that, in the dynamical electrical model of the harvester (as in any other electrical system),
the inductive impedance of the coil Ls is negligible if it is at least 10 times smaller than its resistive
impedance Rs i.e., Rs > 10 × ωoLs, for a single-mode excitation of frequency fo = ωo/2π. In the
VEH-1, Ls is negligible for excitation frequencies smaller than 611.15 Hz, which is between the expected
range for the experiments in this paper (in Figure 5), and so the equivalent series impedance of the
harvester block in Figure 9 is simply Rs.

If a resistive load RL is connected across the harvester, maximum power occurs when the
impedance of the load matches that of the input source (Rs = RL), so the conditions for maximum
power transfer when this harvester is single-frequency excited are:
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RL = Rs, (2)

Vh(peak) = Vs(peak)/2, (3)

where Vh(peak) is the peak voltage across the load observed by the harvester. This load is determined
by the MPPT operation of the PMIC in the circuit of Figure 9 by which effectively vin is kept at
a constant value VMPP, and the shape of vh(t) (the voltage reflected into the AC-side of the DBR) is as
in Figure 11a.

0 0.05 0.1 0.15 0.2

Time(s)

 v
h
(t

)

 V
MPP

 -V
MPP

(a)

0 0.05 0.1 0.15 0.2

Time(s)

 v
h
(t

)

 V
MPP

 -V
MPP

(b)
Figure 11. Reflection of the PMIC input voltage into the harvester AC terminals: (a) Single-frequency
excitation; (b) Multiple-frequency excitation.

This shape is close to a square waveform, which, according to its Fourier analysis, has
a fundamental amplitude of:

Vh,1(peak) ≈ (4/π)VMPP. (4)

Approximately, the peak voltage in Equation (4) is observed by the harvester. Therefore,
for a single-mode excitation, the MPPT conditions in Equation (3) dictate that under MPPT:
(4/π)VMPP = Vh(peak) ≈ Vs(peak)/2, and so:

VMPP ≈ 0.39Vs(peak). (5)

This analysis shows that, if the harvester is single-frequency excited, the ideal MPPratio is
around 39%.

In reality, the VEH-1 cannot be represented by a single-frequency sinusoid, but instead it is
a composition of different h harmonics: vs(t) = ∑h vs,h(t). For this input, it can be proved that the
power in a resistive load RL (again, considering Ls negligible) is PL = (RL/(Rs + RL))∑h V2

s,h(rms).
It follows that the conditions for MPPT in Equations (2) and (3) still apply. However, in multi-modal
excitation, the shape of vh(t) cannot be expected to be perfectly square anymore. An example of the
shape of a multi-frequency, rectified waveform observed experimentally is presented in Figure 11b.
For that shape, the peak of the fundamental sinusoid observed at the input of the PMIC is less than
(4/π)VMPP (since the Fourier coefficients are calculated by integral analysis). Consequently, VMPP
will have to be slightly higher than in Equation (5) and it can be said with some level of certainty that,
for the multi-frequency VEH-1 harvester, the ideal MPPratio is expected to be larger than 39%. How
large it will be will depend on how distorted the input voltage vin is with respect to a square signal.

This ratio was ultimately identified experimentally. Figure 12 shows the bus voltage during the
switching interval, for different MPP ratios, in the real experiment. The results show that the optimal
MPPratio is around 60%, so this is the value to be programmed in the PMIC.
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Figure 12. Bus voltage during switching interval for different MPPT ratios.

5.3. Operational Interval

Once vbus across the storage device rises above VEOC (around 3.6 V as defined in Section 4),
an internal output switch of the PMIC closes, making vbus = vo, so the energy in Cstorage is finally
transferred to the load, and thus starting the operational interval ∆top.

During this interval, the DC-to-DC converter is enabled/disabled intermittently such that
vbus = vo remains close to 3.6 VDC based on internally-defined hysteresis levels. Furthermore,
an undervoltage protection opens the output switch when vbus = vo falls below a lower threshold
level of 2 V, hence returning to either cold-start or switching modes, depending on the voltage drop.
The value of Cstorage= 0.1 F was designed considering this behaviour.

The response of this particular interval is unique for each one of the loads described in Section 4,
and the results are reported in the next section.

6. Experimental Results

The power management solution proposed for the VEH-1 in the previous section was
implemented in a 60 mm × 30 mm PCB, enclosed in a 29 mm × 74 mm × 49 mm box with two
I/O BNC connectors, as seen in Figure 13. In the following subsections, the distance between the node
and the receiver was two meters.

Figure 13. Power management PCB.

6.1. LoRaWAN Node

During the operational interval, the LoRa board transmits the data of its magnetometer sensor to
a gateway which makes the data available over the internet through the LoRaWAN protocol. Different
data rates (sleep times) were tested on the board to find the minimum for which the board was kept
energised. The screen shot of the data in Figure 14 shows how, after changing from a sleep time of
20 to 30 s, the embedded “battery charge“ measurement switches from a dropping charge (100% to
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92%) to a stable 100% charge. Hence, 30 s is the minimum duty cycle achievable in this application.
Note that this is far more frequent than the usual 15-min data rate in the protocol.

Figure 14. LoRaWAN broadcasting results.

6.2. Bluetooth Node

The Bluetooth SN transmits the data of three sensors to an iPhone7 with iOS 12.0.1 (Apple,
Cupertino, CA, USA) using its SensorTag app. Screen shots of the results over time are shown in
Figure 15. With a duty cycle of two seconds, and in spite of a high initial peak of current consumption
that sets the voltage lower than the “100% battery charge“ measured by the SN, it finally settles in
about 76% charge, and maintains this level over time.

Figure 15. Broadcasting results with the CC2650 sensor node.

6.3. Efficiency

The performance of the energy transfer is expressed in terms of the relative efficiency η, defined
as the ratio of output and input powers η = Po/Pin. Pin is the maximum raw power that the harvester
is able to deliver: 0.98 mW (Section 3.2). Po was estimated in each functional stage of the PMIC. During
the cold-start and switching intervals, Po is the power injected in Cstorage, and it was obtained by
measuring the voltage across it and numerically estimating its through-current iC using the basic
model of a super-capacitor (in series with its Equivalent Series Resistance—ESR), by numerically
solving the differential equation:

vbus = ESR × iC + (1/Cstorage)
∫ t

0
iCdt. (6)
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This estimation is necessary due to the challenge of measuring extremely low currents, something
non-viable in this study. Po can then be estimated over the measurement interval of vbus, [to, t f ] as:

Po =
1

t f − to

∫ t f

to
iCvbusdt. (7)

During cold-start, the efficiency was found to be η = 236.17 µW/980 µW = 0.24. During switching,
it was η = 378.36 µW/980 µW = 0.39. For the operational interval, the minimum operational duty
cycle indicates the power that the load is absorbing, and is inferred from the current profiles/tables
in Section 4. For the minimum duty cycles of 30 s/2 s for the LoRa/Bluetooth boards, the efficiency
is estimated as η = 281.6 µW/980 µW = 0.29 and η = 282.1 µW/980 µW = 0.29, respectively. It can be
seen that the overall efficiency of the system fluctuates around 30%. This is in agreement with other
energy conversion techniques for EH [32]. The results in this section serve to validate the operation of
the proposed EH system.

It is to be noted that the relative efficiency estimation performed in this section refers to the
output power that can be obtained compared against the total, raw input power that the harvester is
able to deliver to a resistive load. This gives an idea of the total energy available from the harvester,
in comparison to what is possible to use in practice via the conversion system.

A more absolute assessment of the efficiency, i.e., the actual ratio between the output and input
power would require the measurement of the input current, which is more challenging to obtain by
standard methods. The introduction of any transducer in the input of the system causes a loading
effect that has been experimentally shown to alter the behaviour of the overall system. This is due
to consumption by this impedance of a non-trivial amount of the (already low) energy available;
moreover, it adds unacceptable uncertainty to the variable under measurement. Special methods
are needed to deal with this type of measurement, which were not accessible by the authors during
this study.

Finally, an approximation of the power consumed only by the control circuitry in Figure 9 can
be obtained by multiplying the voltage from which the control logic feeds (vbus), times the current
consumption of the PMIC during its operating mode at open load ([28]). In this application, this is
approximately: 3.7 V × 2.6 µA = 9.62 µW.

7. Conclusions

This paper reported the successful operation of two IoT sensor nodes, which are continuously
powered by real industrial vibrations from a typical air compressor. The system makes use of
a multi-modal EM-VEH device. A customised power conditioning system for this harvester was
introduced. The system is able to power a LoRaWAN sensor node with a duty cycle of 30 s, which is
far more frequent than the 15 min usually expected in the protocol. Likewise, a Bluetooth node was
energised with a minimum duty cycle of 2 s. The efficiency of the overall energy transfer is about 30%,
which is up to the standard in this particular field of energy harvesting. The significance of providing
sufficient energy to receive and transmit data at intervals of less than one minute, with wireless sensors
of different communication protocols powered by this EM-VEH technique, is the demonstration that
standard industrial vibrations can serve as a reliable source of energy to power common wireless
sensor nodes for the IoT, without the need of batteries, and independently of the wireless technology
used. In particular, the proposed combination of the EM-VEH device and power management system
can be used as a design reference that helps to reduce the time to market in industrial applications
using sensors in environments at the edge of the IoT.
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