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Abstract: This paper presents a novel motor imagery (MI) classification algorithm using filter-bank
common spatial pattern (FBCSP) features based on MI-relevant channel selection. In contrast to
existing channel selection methods based on global CSP features, the proposed algorithm utilizes
the Fisher ratio of time domain parameters (TDPs) and correlation coefficients: the channel with the
highest Fisher ratio of TDPs, named principle channel, is selected and a supporting channel set for
the principle channel that consists of highly correlated channels to the principle channel is generated.
The proposed algorithm using the FBCSP features generated from the supporting channel set for
the principle channel significantly improved the classification performance. The performance of
the proposed method was evaluated using BCI Competition III Dataset IVa (18 channels) and BCI
Competition IV Dataset I (59 channels).

Keywords: brain-computer interfaces (BCIs); motor-imagery (MI); common spatial pattern (CSP);
time domain parameters; correlation coefficient

1. Introduction

Brain–computer interfaces (BCIs) enable the translation of neural signals related to a user’s
intention into control signals in the absence of muscle movements, and have drawn considerable
attention in various research fields, including rehabilitation and engineering [1–3]. Due to the
technological developments in practicality and portability in recent years, BCIs have also been applied
to entertainment and educational filed. [4,5].

Most current BCI systems use electroencephalogram (EEG) extensively due to its high temporal
resolution and non-invasiveness [6]. The EEG-based BCI studies show that, when imagining movement
of the body, the EEG signals from the regions associated of the cerebral cortex show decreased and
increased power in sensorimotor and beta rhythm, called event-related desynchronization (ERD) and
event-related synchronization (ERS), respectively [7,8]. Thus, motor imagery (MI)-based BCIs are
widely studied by identifying ERD/ERS patterns.

However, EEG signals suffer from low signal-to-noise ratios (SNR) and are highly correlated
due to the volume conduction effect [9]. Consequently, they are susceptible to strong artifacts [10,11].
The common spatial pattern (CSP) approach is perhaps the most popular method for extracting
ERD/ERS-related features, resolving these difficulties and thus improving the performance of
MI-based BCI [12–15]. The CSP approach designs spatial filters that maximize the variance for one
MI-task while simultaneously minimizing the variance for the other task, and extracts discriminative
ERD/ERS-related features based on the spatially filtered EEG signals.

Various studies have examined ways to improve CSP algorithms in three categories: frequency
optimization, regularization, and channel selection. Frequency range optimization for CSP has been
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proposed using filter-banks. The filter-bank CSP (FBCSP) approach, described in [16,17], performs the
CSP for each frequency band and selects the distinct frequency bands by comparing mutual information
of each frequency band CSP features. The FBCSP approach overcomes the frequency range problem of
CSP and shows improved performance for MI-classification.

The regularized CSP (R-CSP) [18] approach considers regularization of CSP to overcome the
sensitivity thereof to noise and overfitting. However, the performance of R-CSP is highly dependent on
optimization of the regularization parameters, which requires exhaustive cross-validation. A frequency
range-optimized version of R-CSP, filter-bank regularized CSP (FBRCSP), has also been proposed [19].

Since the CSP approach uses all available channels, including noisy and
task-irrelevant channels, the selection of MI-related channels is important for improving
the performance of CSP-based algorithms. The sparse CSP (SCSP) approach, described in [20],
removes MI-irrelevant channels via sparse CSP filters based on the `1/`2-norm constraint, and applies
the CSP to the remaining channels. The CSP-rank for multiple frequency band (CSP-R-MF) approach,
described in [21], generates CSP outputs for each frequency band based on the channels with
significant conventional CSP filter coefficients, and selects features from the multi-band CSP outputs
using the least absolute shrinkage and selection operator (LASSO) algorithm [22]. The experimental
results presented in this paper show that these channel selection approaches yield better performance
than frequency optimization and regularization.

Although the channel selection CSP approaches improve performance markedly, they have a
fundamental limitation that SCSP and CSP-R-MF select MI-relevant channels based on the global CSP,
which might already be corrupted by the MI-irrelevant channels. Hence, a CSP-independent method
for determining MI-relevant channels is desired.

In this paper, we propose a novel MI-relevant channel selection method for FBCSP. We utilize
time domain parameters [23] (TDPs) and correlation coefficients of EEG channel pairs to determine
MI-relevant channels. TDPs are extracted from wide frequency band EEG time domain signals and
originally used as features to classify MI in [24]. In [24], three types of TDPs are introduced, namely the
variance of the signal, the variance of the first derivative, and the variance of the second derivative,
which represent activity, mobility, and complexity of the signal, respectively. We consider the channel
with the highest Fisher ratio ([25]) of TDPs as the most discriminative channel for MI-tasks and refer
to it as the principle channel. We form a supporting channel set for the principle channel with the
channels that have high correlation coefficients with the principle channel. Finally, we extract the
FBCSP features from the supporting channel set and use them as the input to the support vector
machine (SVM) classifier [26]. The performance of the proposed method was evaluated using BCI
Competition III Dataset IVa and BCI Competition IV Dataset I. Comparison of the performance with
existing CSP-based methods demonstrates significant improvement in classification performance.
The rest of this paper is structured as follows. Section 2 presents the proposed method. Section 3
provides the experiment results and discussion. Finally, the conclusion is drawn in Section 4.

2. Methods

In this paper, we consider the binary MI-classification. First, let us consider K channel EEG signals.
We denote the kth channel EEG signal at time point n as x(k)(n), where k = 1, 2, . . . , K, n = 1, 2, . . . , N
and N is the number of time samples per channel. Assume that I trials of the MI-EEG signal are
available, indexed as x(k)i = [x(k)i (1), x(k)i (2), . . . , x(k)i (N)]T , where i = 1, 2, . . . , I. We denote I1 and I2

as the index set of each MI class (I1 ∪ I2 = {1, 2, . . . , N}).
The block diagram in Figure 1 depicts the proposed algorithm. We first introduce the TDPs, and

Fisher ratio of TDPs to measure the MI-relevance of each channel. The channel with the highest Fisher
ratio of TDPs is referred to as the principle channel. A supporting channel set for the principle channel
is constituted from channels that have correlation coefficients with the principle channel exceeding a
certain threshold. The FBCSP features are extracted from the supporting channel set to improve the
MI-classification performance.
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Figure 1. Block diagram of the proposed method.

2.1. Principle Channel Selection

The type p (p = 0, 1, 2) time domain parameter (TDP) for the ith trial of the kth channel EEG signal,
denoted by T(k)

(i,p), is defined by the following [23]:

T(k)
(i,p) = log

(
var

(
dpx(k)i (n)

dnp

))
, p = 0, 1, 2. (1)

The first type (p = 0) represents signal power, the second type (p = 1) represents the EEG pattern
for mean frequency, and the third type (p = 2) represents the EEG pattern for frequency change [23].

The Fisher ratio is widely used to measure the class-discriminative property of a parameter by
projecting high-dimensional parameters into one-dimensional space [27]. The Fisher ratio of the three
types of TDP for channel k, defined by F(k), is given by,

F(k) =

2

∑
p=0

(
1
|I1| ∑

i∈I1

T(k)
(i,p) −

1
|I2| ∑

i∈I2

T(k)
(i,p)

)2

2

∑
p=0

2

∑
c=1

1
|Ic| ∑

i∈Ic

(
T(k)
(i,p) − ∑

i∈I1

T(k)
(i,p)

)2 , (2)

where |Ic| denotes the size of the index set Ic. Postulating that the channel with the highest Fisher
ratio has the most significant discrimination between MI tasks, we select the channel with the highest
Fisher ratio, denoted by kp, and refer to it as the principle channel.

kp = arg max
k∈{1,··· ,K}

{F(k)}. (3)

2.2. Supporting Channel Set for the Principle Channel

To extract features based on FBCSP, we need sufficient number of channels. For this, we use
channels that are highly correlated with the principle channel. The (sample) correlation coefficient
between the principle channel kp and a channel q for the ith trial EEG signals is given by:

ρ
(kp ,q)
i =

C(x
(kp)
i , x(q)i )√

P(x
(kp)
i )

√
P(x(q)i )

, q = 1, 2, . . . , K, and q 6= kp (4)
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where

C(x
(kp)
i , x(q)i ) =

N

∑
n=1

(
x
(kp)
i (n)− 1

N

N

∑
n=1

x
(kp)
i (n)

)(
x(q)(n)− 1

N

N

∑
n=1

x(q)i (n)

)
(5)

P(x(q)i ) =
N

∑
n=1

(
x(q)i (n)− 1

N

N

∑
n=1

x(q)i (n)

)2

(6)

and the mean correlation coefficient for class c, denoted as ρ̄
(kp ,q)
c , is given by:

ρ̄
(kp ,q)
c =

1
|Ic| ∑

i∈Ic

ρ
(kp ,q)
i , c = 1, 2. (7)

After calculating the mean correlation coefficients between the principle channel and
other channels, we define the supporting channel set for the principle channel, denoted as S, as those
channels with mean correlation coefficient exceeding a given threshold, ρthr, as follows:

S =
{

q ∈ {1, 2, · · · , K}
∣∣∣ρ̄(kp ,q)

1 ≥ ρthr and ρ̄
(kp ,q)
2 ≥ ρthr

}
(8)

2.3. FBCSP Applied to the Supporting Channel Set

The FBCSP approach is then applied to the supporting channel set to extract the MI-relevant
features. Let us consider the output of the mth filter-bank of the supporting channel set S at the ith trial
as X(S)

i,m , where m = 1, 2, . . . , M and M is the number of filter-banks. The normalized sample covariance

matrix E(S)
i,m is given by:

E(S)
i,m =

X(S)
i,m X(S)

i,m

T

trace
(

X(S)
i,m X(S)

i,m

T
) , i = 1, 2, . . . , I, (9)

where E(S)
i,m ∈ R|S|×|S|. Subsequently, the normalized mean sample covariance matrix for the class c,

denote as Ē(S)
c,m, is given by:

Ē(S)
c,m =

1
|Ic| ∑

i∈Ic

E(S)
i,m , c = 1, 2. (10)

Let p(m) be a spatial filter applied to X(S)
i,m . The averaged variance of the spatially filtered EEG

signals in S, in frequency band m for class c (∈ {1, 2}), can be written as p(m)T
Ē(S)
(c,m)

p(m). Let J(p(m))

denote the averaged variance ratio between two classes using a spatial filter p(m),

J(p(m)) =
p(m)T

Ē(S)
(1,m)

p(m)

p(m)T Ē(S)
(2,m)

p(m)
(11)

The common spatial pattern (CSP) algorithm [12–14] finds the spatial filters that maximize or
minimize the averaged variance ratio J as denoted by the following equation:

p(m)
max = arg max

p(m)
J(p(m)), p(m)

min = arg min
p(m)

J(p(m)). (12)
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The CSP feature vector, for the ith trial data for supporting channel set S in the mth frequency band,
is defined as:

v(m)
i =

[
v(m)

i,max v(m)
i,min

]T
, (13)

where

v(m)
i,max = log

(
var(p(m)

max
T

X(S)
i,m )

)
,

v(m)
i,min = log

(
var(p(m)

min

T
X(S)

i,m )

)
.

(14)

For each trial i, the FBCSP approach selects feature vectors in discriminative frequency bands
among the M filter-banks by using the mutual information based individual feature (MIBIF)
algorithm [17]. The MIBIF algorithm computes the mutual information between feature vectors
and its class label to select the discriminative filter-banks. By selecting the best two frequency bands,
e.g., m1 and m2, we obtain the FBCSP feature vector for the ith trial data:

vi =
[
v(m1)

i,max v(m1)
i,min v(m2)

i,max v(m2)
i,min

]T
. (15)

In the training phase, {vi} and their corresponding known class label vector are fed to the
SVM classifier.

3. Result and Discussion

We evaluated the proposed method in the task of classifying MI-task on publicly available BCI
Competition III Dataset IVa and BCI Competition IV Dataset I. The classification performance of the
proposed method was compared with TDP [24], FBCSP [17], FBRCSP [19], SCSP [20] and its filter-bank
version denoted as FBSCSP, and CSP-R-MF [21].

3.1. BCI Competition Dataset IVa

The BCI Competition III Dataset IVa [28] was recorded from five healthy subjects, denoted as
“al”, “aa”, “av”, “aw”, and “ay”. The five subjects each performed 140 trials involving right hand and
right foot MI, divided into training and test set. Table 1 shows the number of training and test sets for
the five subjects. Each subject performed the MI over 3.5 s after visual cue, and relaxed for a random
length of time (1.75–2.25 s) thereafter. A total of 118 EEG channels corresponding to the positions of
the extended international 10/20-system were used for recording, with a sampling rate of 100 Hz.
The EEG data were bandpass-filtered between 0.05 and 200 Hz. In this experiment, we selectively used
18 channels (K = 18) chosen based on the homunculus theory [29], as shown in Figure 2. The EEG
signals in the time segment 0.5–2.5 s after presentation of the visual cue were bandpass-filtered using a
fourth-order Butterworth filter operating at 0.5–40 Hz. For FBCSP, eight filter-banks were used for the
frequency range 4–36 Hz, dividing evenly at 4-Hz intervals.

Table 1. BCI Competition III Dataset IVa.

Subject Training Data Test Data

al 224 56
aa 168 112
aw 84 196
av 56 224
ay 28 252
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Figure 2. Locations of the 18 channels (K = 18) in BCI Competition III Dataset IVa.

3.2. BCI Competition IV Dataset I

The BCI Competition IV Dataset I was recorded from four healthy subjects (“a”, “b”, “ f ” and “g”)
and contains two MI EEG signal classes [30]. Fifty-nine EEG channels (K = 59) were used to record
the data, with a sampling rate of 100 Hz; these were bandpass-filtered between 0.05 Hz and 200 Hz.
For each subject, the dataset consisted of 100 trials per class. This experiment used the EEG signals
from 0.5 to 2.5 s after cue are used. For TDP extraction, the EEG signals were bandpass-filtered using a
fourth-order Butterworth filter operating at 0.5–40 Hz. For FBCSP, eight filter-banks in the frequency
range of 4–36 Hz that were divided evenly in 4-Hz intervals were used.

3.3. Experiment Results

The threshold, ρthr, used for configuring supporting channel set S, plays an important role in
classification performance. We determined the optimal threshold value by cross-validation. This can
be set as a constant for all subject, or on individual basis for each subject. Although optimization
of threshold for each individual subject performed better, this paper presents the experiment results
obtained under both settings. Table 2 and 3 lists the classification results for the BCI Competition
III Dataset IVa. Table 2 shows the classification performance of the CSP approach and its variants,
and of the TDP algorithm. Table 3 compares the frequency-optimized CSP variants using filter-banks.
The existing frequency-optimized channel selection approaches, FBSCSP and CSP-R-MF, yielded
better performance (87.76% and 87.11%, respectively) than the FBCSP and FBRCSP approaches. The
proposed method, i.e., frequency-optimized channel selection based on TDP, achieved the best mean
classification accuracy, of 89.13%, among all existing algorithms.
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Table 2. Classification accuracy of the CSP variations and TDP algorithm for 18 channels (K = 18) BCI
Competition III Dataset IVa.

Subject CSP SCSP RCSP TDP

al 94.64 94.6 98.21 100
aa 84.82 88.39 84.82 75
av 61.22 61.22 62.24 65.82
aw 77.68 80.02 81.25 79.46
ay 82.54 82.14 88.49 89.68

mean 80.18 81.28 83.00 82.00

Table 3. Classification accuracy of the FBCSP variations and proposed method for 18 channels (K = 18)
BCI Competition III Dataset IVa.

Subject FBCSP FBRCSP FBSCSP CSP-R-MF Proposed Method Proposed Method
(Constant Threshold, ρthr = 0.6) (Individual Threshold)

al 94.64 94.64 100 100 100 100 (ρthr = 0.6)
aa 88.39 91.07 90.18 89.29 90.18 91.96 (ρthr = 0.7)
av 71.42 75 70.91 73.46 72.45 72.45 (ρthr = 0.6)
aw 78.21 76.78 88.39 87.5 88.39 88.39 (ρthr = 0.6)
ay 83.73 93.65 89.31 85.31 92.86 92.86 (ρthr = 0.6)

mean 83.28 86.23 87.76 87.11 88.78 89.13

Table 4 lists the classification performance in terms of the threshold value (ρthr) and the
corresponding size of the supporting channel set (in parenthesis).

Table 4. Threshold and classification performance of the proposed method for 18 channels (K = 18)
BCI Competition III Dataset IVa.

Subject ρthr = 0.6 ρthr = 0.65 ρthr = 0.7 ρthr = 0.75 ρthr = 0.8

al 100 (13) 98.21 (11) 98.21 (10) 98.21 (7) 98.21 (7)
aa 90.18 (15) 90.18 (12) 91.96 (10) 91.96 (10) 87.5 (9)
av 72.45 (17) 72.45 (17) 70.41(14) 63.78 (12) 58.16 (9)
aw 88.39 (12) 80.80 (10) 77.23 (9) 77.23 (9) 76.34 (8)
ay 92.86 (10) 92.86 (10) 92.86 (10) 87.7 (8) 87.7 (6)

mean 88.78 86.9 86.13 83.78 81.58

Table 5 shows the classification performance of the proposed method for BCI Competition IV Dataset
I. In this experiment, we tested the algorithms using a 5× 5 cross-validation. The performance of the
proposed method was compared with the frequency-optimized channel selection approaches: FBSCSP,
the filter-bank version of the sparse CSP (SCSP) [20], and CSP-R-MF [21].

Table 5. The 5 × 5 cross-validation classification accuracy of the proposed methods and
frequency-optimized channel selection methods for BCI Competition IV Dataset I.

Subject FBCSP FBSCSP CSP-R-MF Proposed Method Proposed Method
(Constant Threshold, ρthr = 0.75) (Individual Threshold)

a 75 79.5 81.5 86.5 86.5 (ρthr = 0.75)
b 54 55.5 63 53.5 57.25 (ρthr = 0.7)
f 80.75 82.75 79 89.5 92.5 (ρthr = 0.8)
g 92.5 93 87.5 90.5 90.5 (ρthr = 0.75)

mean 75.56 77.69 77.75 80.00 81.69

As shown in Table 5, the proposed method yielded the highest mean classification accuracy.
Since BCI Competition III Dataset IVa consists of the training and test data specified by BCI Competition
III organizers, the performance evaluation based on the Dataset IVa might be overfitted. However,
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the performance evaluation using BCI Competition IV Dataset I based on cross-validation justified the
high performance of the proposed method for an arbitrary training set.

Table 6 lists the classification performance in terms of the threshold value and the corresponding
size of the supporting channel set (in parenthesis) for BCI Competition IV Dataset I.

Table 6. Threshold and classification performance of proposed method for BCI Competition IV
Dataset I.

Subject ρthr = 0.7 ρthr = 0.75 ρthr = 0.8 ρthr = 0.85 ρthr = 0.9

a 82.75 (27) 86.5 (23) 83.75 (18) 82.5 (12) 82.75 (7)
b 57.25 (49) 53.5 (26) 51.5 (19) 55.5 (12) 55 (8)
f 88.5 (50) 89.5 (43) 92.5 (35) 91.75 (30) 89.5 (17)
g 90.25 (15) 90.5 (15) 83 (10) 82.75 (7) 79.5 (5)

mean 79.69 80.00 77.69 78.13 76.69

4. Conclusions

In this paper, we present a motor imagery (MI) classification algorithm using FBCSP features
based on a MI-relevant channel selection. The proposed algorithm uses the Fisher ratio of TDPs and
correlation coefficients to obtain a set of channels supporting the principle channel. The FBCSP features
generated from the supporting channel set significantly improved the classification performance over
existing method, as evaluated using BCI Competition datasets.
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