
SUPPLEMENTARY MATERIALS 

Section S.1. Details of the Computational Methods as Applied Here 

S.1.1. Validating Models 

Because environmental data is highly autocorrelated, it was important to select holdout data for 
validation that would better represent unseen data than simple random sampling. For this study, holdout 
data was selected using k-fold validation with 10 folds as illustrated in Figure S1. Using this method, the 
full dataset was sorted by date and time and then divided into ten sequential blocks, or folds, of data. For 
all folds, each model was trained on the nine other folds of data and tested on the fold of interest. If model 
parameters were optimized for a given model, a subset of the training data was used for validation during 
that optimization process. The k-fold validation process produced ten estimates for each concentration and 
source at each timestep—one produced by each model trained on a subset of the data. This provided some 
indication of the sensitivity of the models to the set of data on which it was trained and, therefore, provides 
an indication of how well the model could generalize to new data relative to the other models. 

 
Figure S1. Graphic illustration of the 10-fold cross-validation method used here illustrating the use of the 
first fold for testing. Each fold contained 10% of the data, selected as consecutive blocks of time from start 
to end. Data used for validation when tuning hyperparameters were a subset of the training data (models 
were never exposed to the test data during training). For each cross-validation fold, classification models 
were tested on data that was also in the “test data” set during regression model training. 

S.1.2. Estimating Concentrations with Regression Models 

The first step in the analysis process involved regressing several “key” compounds that were selected 
as especially important for both detecting and differentiating the emissions from different classes of 
sources. Several regression techniques that have been applied in the literature were explored here and 
assessed first on their ability to accurately model the concentrations of several different gases. These 
regression techniques included multiple linear regression (MLR), ridge regression (RR), random forests 
(RF), gaussian process regression (GPR), and neural networks (NN). Separate models were trained for each 
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compound to avoid “learning” the artificial correlations that were present in this study but would not fully 
represent the diversity of mixtures that could be expected in a field deployment. 

Some models include terms referred to here as “hyperparameters”. Hyperparameters govern how the 
model operates or is trained and are set before beginning to train the model. For example, the number of 
layers and nodes in a neural network would be considered a hyperparameter. Another example is the 
regularization strength (k) in ridge regression, which modifies the loss function used while training the 
model. Tuning hyperparameters is one way to improve the performance of models and can be used to 
determine appropriate values for model parameters that might normally be selected arbitrarily or based 
on previous experience. Wherever possible, these hyperparameters were optimized to maximize the 
estimated model performance on future data. This was done by holding out a subset of the training data 
and optimizing the hyperparameters based on the model performance when validated on that subset of 
the training data. This data selection is illustrated in Figure S1. Once the hyperparameters were set, the 
regression models were also assessed based on how well the classification models in the next step were 
able to use the estimated concentrations to make a prediction of the “source” that was being simulated. 

Multiple linear regression is one of the most popular forms of regression used to convert sensor signal 
values into calibrated concentration estimates and have been used in a range of applications with many 
low-cost sensor technologies [3,30,36,52–54]. Because of popularity and the relatively low computational 
costs, several forms of multiple linear regression were investigated. The first form, referred to here as 
“FullLM” was a multiple linear regression model that simply used every sensor input from the array. This 
was considered as a baseline model as it included almost no previous knowledge except for the design of 
the array itself. Next was a model, referred to as “SelectLM”, included only data from sensors that were 
known to react to the current target gas, as determined by a combination of field experience and 
manufacturer recommendations. For each sensor included in a model, an interaction term between the 
sensor response and the measured temperature was included. Humidity was also included in each model, 
but no interaction term was added. 

Stepwise linear regression (“StepLM”) is an interesting but slow-to-train method of determining 
important predictors for use in a linear regression model. In this methodology, a base model (typically a 
simple intercept term or a full interaction model) is fit to the data. In the case of this study, the initial model 
was a simple intercept because a full interaction model was prohibitively large and slow. After fitting the 
original model, new models are trained with the addition or removal of one of each possible term. If the 
addition of a new term improves upon the previous model above some threshold, or if the removal does 
not reduce performance by a similar threshold, the term is added or removed. This new model is used as 
the new “base” model and the process is iterated until no terms can be added to or removed from the model 
within those constraints. In this study, the metric for improvement was the R2 value, and the threshold was 
a value of 0.075, which was chosen by experimenting with different performance metrics and exploring the 
performance of the generated models. 

Ridge regression (“RidgeLM”) is a form of multiple linear regression, but in this study, the two are 
differentiated by how the terms of the multiple linear regression were determined. During the generation 
of ridge regression models, all sensor values were included, and additionally, the interaction between each 
sensor and both temperature and humidity were included. This created a high-dimensionality dataset, on 
which ridge regression was applied; a method that includes a term, “k”, to penalize overfitting. Increasing 
the value of k affects the loss function, so that the final model assigns low weights to sensor signals that are 
not generally useful. This value of k was determined during initial investigations and then was kept 
constant across different compounds and cross-validation sets. 

Outside of these linear regression models, several nonlinear models were trained. These were random 
forest regression (“RandFor”), gaussian process regression (“GuassProc”), and neural networks 
(“NeurNet”). For random forest regression, a large ensemble of decision trees are trained to output discrete 
values. These trees are each trained on different bootstrap aggregated (“bagged”) subsets of the original 



data that are selected randomly with replacement. When making predictions, the outputs of each of these 
trees are averaged in order to produce an output that can approximate a smooth function. Because the 
individual trees only learn to produce values that they have seen before, the extension of random forests 
outside of their training space may be limited, although Zimmerman and colleagues showed that they were 
able to produce reasonable results within some parameter space [65]. The hyperparameters that were 
optimized for random forests were the minimum number of points at each leaf node, the maximum number 
of splits for each tree, and the number of variables to select from at each edge. These were optimized using 
the loss function out-of-bag error, which is the error on data that were not selected during the “bagging” 
of data during initial training. 

Gaussian process regression, which is sometimes referred to as kriging, is a probabilistic method that 
uses training data and some assumptions about the distribution of the variable to make predictions on new 
data. Because this method is nonparametric, the ability to extrapolate to new data is somewhat limited; 
however, it is popular in the environmental modeling community and De Vito recently showed good 
success applying them to real atmospheric data [53]. A squared exponential kernel was used after some 
initial investigation showed little dependence of the results on this selection. The hyperparameters that 
were programmatically optimized for this model were the kernel parameters and were optimized by 
minimizing the objective function: log(1 + cross-validation loss). 

Finally, the last regression model explored here was a neural network, a technique that has been used 
with low-cost sensors for some time but is seeing a resurgence as improved training methods and 
computational power have improved their applicability [52,53,66]. These models produce results by 
combining a set of “neurons” into a larger network. Each neuron applies a set of weights to each input and 
uses a transfer function to translate the sum of those inputs into an output for the neuron. The first layer of 
neurons uses the raw sensor values as inputs, and subsequent layers use the outputs of the first layer as 
inputs. These two layers are often referred to as hidden layers, the last of which provides the input to the 
output layer that translates these outputs into a single predicted value. The hidden layers and number of 
nodes in each hidden layer of a neural network model are tunable hyperparameters and were optimized 
for the best mean squared error (MSE) on a subset of the training data that was held out for testing. The 
number of nodes in each hidden layer was varied between 1–40 for the first layer and from 0–40 for the 
second layer. When the number of nodes in the second layer was specified as “0”, the second hidden layer 
was simply omitted. 

S.2.3. Predicting the Presence of Sources with Classification Models 

After generating estimates of “key” compounds using each of the above regression approaches, 
classification algorithms were trained to identify the class of “source” that was being simulated, using the 
estimated concentrations at each timestep as features. The data was divided into the same sets of calibration 
and validation sets to ensure that the final validation results were left out of model training for both 
regression and classification. The classification techniques applied here have been seen in the literature, 
although typically with the goal of identifying individual compounds within simple mixtures [10,55–57]. 
Those algorithms selected here are logistic regression, support vector machines (SVM) with both a linear 
and Gaussian kernel, random forest classifiers, and neural networks. The models vary significantly in their 
ability to separate different classes and were selected because of that diversity. For all of the methods 
presented here, the classification model outputs were values ranging from 0 to 1, where 0 indicates high 
confidence in the absence of a source, and 1 indicates high confidence in the presence of a source. When 
comparing the results to the actual simulated source, a value greater than or equal to 0.5 indicated a 
prediction that the source was present and a value less than 0.5 that it was absent. 

The first type of classifier, the logistic regression, is the simplest and most linear of the classifiers. In 
the results below, this model was referred to as “Logistic_class” and is a generalized linear model with 



binomial distribution. An independent classifier was created for each of the simulated sources, and each 
model was trained to indicate the presence or absence of that source. Much like the StepLM function 
described earlier, the terms for this model were selected by stepwise regression, with the difference being 
that the terms here were gas concentrations rather than sensor signal values. Because the logit link function 
is used to map the output of a linear function to a value from 0 to 1, the output of a logistic regression is 
often interpreted as the probability or confidence that the value is in the positive or negative class. In this 
case, that would be the likelihood that a certain source is or is not affecting the measured air quality. One 
benefit of logistic regression is that it is interpretable and computationally inexpensive relative to other, 
more complex and nonlinear methods. 

The second classification model investigated was support vector machines (SVMs), which were 
trained to indicate the presence of a source. The general goal of SVMs is to create a line or plane that has 
the largest margin between separated classes, with some allowance for outliers and noise. In two-
dimensional space, this can be visualized as creating a line that separates two classes and has the widest 
empty space on either side. The points closest to the line are referred to as support vectors and give the 
classifier its name. Because the goal of an SVM is to create a line that separates two classes, it may be 
considered as a linear classifier, although kernel functions are often used to map this linear function to a 
nonlinear space. The new features created by kernel methods are generally understood as measures of 
similarity between each instance. Two kernels were studied here, the first being a linear kernel that does 
not transform the input variables, and the second being the gaussian kernel. These are referred to in the 
results as “SVMlin_class” and “SVMgaus_class” respectively, simply because of the name of the functions 
written to implement them. Both kernels were implemented to predict the presence or absence of each 
source independently, just as described for logistic regression above. For the SVM with a gaussian kernel, 
the hyperparameters controlling the kernel scale and box constraint were optimized automatically to 
reduce cross-validated misclassification errors. These two factors affect how “smoothed” the kernel is and 
how heavily the loss function is penalized for errors, respectively. 

Next, a random forest classification model was trained to identify the presence of each source, referred 
to in the results as “RandFor_class”. Although random forests can quite easily be applied to multiclass 
regression problems, models were trained to predict the binary presence of each source separately, so that 
in sum, the models could predict the presence of multiple sources at the same time without creating many 
classes representing all possible combinations of sources. The hyperparameters that were optimized for 
this model were the same as for the random forest regression models: minimum leaf size and maximum 
number of splits. These random forests represent a collection of 500 decision trees that are each trained on 
different subsets of the training data. In this case, those subsets were selected via bootstrap aggregation 
(bagging), wherein data is randomly sampled with replacement from the original training dataset. Each of 
these trees produce a prediction of the presence or lack thereof for the source that they were trained on. 
The “score” that was output to indicate the confidence that a source was present represents the fraction of 
trees within each forest that predicted that a source was present. 

The last classification approach that was explored was a pattern recognition neural network, referred 
to in the results as “NeurNet_class”. This neural network had one output node for each source and was, 
therefore, able to predict the presence of multiple sources independently and simultaneously. The 
hyperparameters that were optimized for this model were the number of layers (1 or 2), the number of 
nodes in each layer, and the transfer function that translates the input to outputs. In this case, a neural net 
with two layers of five nodes using the “softmax” transfer function was selected. 
  



Table S1. Table of sensors that were used for testing and the corresponding variable name(s) associated 
with those sensors. 

Sensor Details Variable Name(s) 
Bosch BME 180 Barometric Pressure Sensor bme_P 

Sensirion Temperature and Humidity Sensor temperature, humidity 
ELT S300 NDIR CO2 Sensor co2_NDIR 

Alphasense NO-B4 Sensor, Working and Auxiliary Electrode NO_B4_aux, NO_B4_main 
Alphasense NO2-B1 Sensor, Working and Auxiliary Electrode NO2_B1_aux, NO2_B1_main 
Alphasense CO-B4 Sensor, Working and Auxiliary Electrode CO_B4_aux, CO_B4_main 

Alphasense H2S-BH Sensor, Working and Auxiliary Electrode H2S_BH_aux, H2S_BH_main 
Alphasense O3-B4 Sensor, Working and Auxiliary Electrode O3_B4_aux, O3_B4_main 

Figaro 2600 Installed on the Pod Board in the 210 and 280 mW 
Heater Circuits, Sensing Voltage 

fig2600_210ob_s, fig2600_280ob_s 

Figaro 2602 Installed on the Pod Board in the 280 mW Heater 
Circuit, Sensing Voltage 

fig2602_280ob_s 

Baseline Mocon PID Sensor bl_mocon 
MICS-5121wp Installed on the Pod Board, Sensing Voltage MICS5121wp_ob_s 

MICS-2611 Installed on the Pod Board, Sensing Voltage e2v2611_ob_s 
MICS-2611 Installed on the External Board, Sensing Voltage mics2611_s 
MICS-2710 Installed on the External Board, Sensing Voltage mics2710_s 
MICS-5525 Installed on the External Board, Sensing Voltage mics5525_s 

MICS-5121wp Installed on the External Board, Sensing Voltage mics5121wp_s 
Figaro 4161 Installed on the External Board, Sensing Voltage fig4161_sens 
Figaro 2600 Installed on the External Board, Sensing Voltage fig2600_sens 
Figaro 2611 Installed on the External Board, Sensing Voltage fig2611_sens 
Figaro 2602 Installed on the External Board, Sensing Voltage fig2602_sens 

  



Table S2. Full list of test points with the mean values of temperature, humidity, and concentration that were 
recorded during that test point. The “Total” column indicates the total concentration of gases in the chamber, 
not including dilution gas. Some testing was limited by gas availability, which is why the quantity of test 
points for each source and concentration are not consistent. 
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No Source 23 47 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 26 48 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 27 40 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 27 38 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 28 49 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 29 47 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 29 46 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 30 49 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 30 39 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 30 49 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 30 54 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 30 14 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 31 49 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 31 40 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 31 40 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 31 39 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 31 52 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 31 68 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 32 57 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 33 40 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 33 40 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 33 40 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 33 72 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 34 45 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 35 58 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 35 55 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 38 40 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 40 41 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 42 51 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 43 53 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 
No Source 43 62 0.00 0.00 0.00 0 0.0 0.00 0.00 0.00 

Gasoline Vapor 31 40 0.04 0.00 0.00 0 0.0 0.00 0.00 0.04 
Gasoline Vapor 31 40 0.04 0.00 0.00 0 0.0 0.00 0.00 0.04 
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Gasoline Vapor 36 40 0.04 0.00 0.00 0 0.0 0.00 0.00 0.04 
Gasoline Vapor 39 41 0.04 0.00 0.00 0 0.0 0.00 0.00 0.04 
Gasoline Vapor 40 40 0.04 0.00 0.00 0 0.0 0.00 0.00 0.04 
Gasoline Vapor 40 42 0.04 0.00 0.00 0 0.0 0.00 0.00 0.04 
Gasoline Vapor 31 40 0.11 0.00 0.00 0 0.0 0.00 0.00 0.11 
Gasoline Vapor 32 40 0.11 0.00 0.00 0 0.0 0.00 0.00 0.11 
Gasoline Vapor 38 40 0.11 0.00 0.00 0 0.0 0.00 0.00 0.11 
Gasoline Vapor 39 41 0.11 0.00 0.00 0 0.0 0.00 0.00 0.11 
Gasoline Vapor 40 41 0.11 0.00 0.00 0 0.0 0.00 0.00 0.11 
Gasoline Vapor 40 40 0.11 0.00 0.00 0 0.0 0.00 0.00 0.11 
Gasoline Vapor 31 40 0.24 0.00 0.00 0 0.0 0.00 0.00 0.24 
Gasoline Vapor 32 40 0.24 0.00 0.00 0 0.0 0.00 0.00 0.23 
Gasoline Vapor 40 40 0.23 0.00 0.00 0 0.0 0.00 0.00 0.23 
Gasoline Vapor 40 41 0.24 0.00 0.00 0 0.0 0.00 0.00 0.24 
Gasoline Vapor 40 40 0.24 0.00 0.00 0 0.0 0.00 0.00 0.24 
Gasoline Vapor 40 41 0.24 0.00 0.00 0 0.0 0.00 0.00 0.23 
Gasoline Vapor 26 49 0.35 0.00 0.00 0 0.0 0.00 0.00 0.35 
Gasoline Vapor 27 50 0.30 0.00 0.00 0 0.0 0.00 0.00 0.30 
Gasoline Vapor 29 46 0.31 0.00 0.01 0 0.0 0.00 0.00 0.30 
Gasoline Vapor 29 49 0.35 0.00 0.00 0 0.0 0.00 0.00 0.35 
Gasoline Vapor 31 50 0.30 0.00 0.00 0 0.0 0.00 0.00 0.29 
Gasoline Vapor 31 40 0.31 0.00 0.00 0 0.0 0.00 0.00 0.10 
Gasoline Vapor 29 47 0.35 0.00 0.01 0 0.0 0.00 0.00 0.35 
Gasoline Vapor 31 40 0.44 0.00 0.00 0 0.0 0.00 0.00 0.44 
Gasoline Vapor 38 65 0.44 0.00 0.00 0 0.0 0.00 0.00 0.44 
Gasoline Vapor 32 40 0.48 0.00 0.00 0 0.0 0.00 0.00 0.48 
Gasoline Vapor 40 41 0.48 0.00 0.00 0 0.0 0.00 0.00 0.48 
Gasoline Vapor 40 40 0.48 0.00 0.00 0 0.0 0.00 0.00 0.48 
Gasoline Vapor 42 53 0.79 0.00 0.00 1 0.0 0.00 0.00 0.10 
Heavy Exhaust 37 73 57.87 0.69 0.56 57 0.0 0.00 0.00 0.00 
Heavy Exhaust 31 40 60.07 0.69 0.57 59 0.0 0.00 0.00 0.00 
Heavy Exhaust 41 67 145.92 1.40 0.27 144 0.0 0.00 0.00 0.00 
Heavy Exhaust 43 62 145.94 0.33 1.14 144 0.0 0.00 0.00 0.00 
Heavy Exhaust 32 40 145.99 0.33 1.15 145 0.0 0.00 0.00 0.00 
Heavy Exhaust 42 61 146.08 1.40 0.56 144 0.0 0.00 0.00 0.00 
Heavy Exhaust 43 62 146.19 0.69 1.14 144 0.0 0.00 0.00 0.00 
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Heavy Exhaust 32 40 146.37 0.69 1.15 145 0.0 0.00 0.00 0.00 
Heavy Exhaust 31 40 146.87 1.40 0.57 145 0.0 0.00 0.00 0.00 
Heavy Exhaust 40 69 146.91 1.40 1.14 144 0.0 0.00 0.00 0.00 
Heavy Exhaust 31 40 147.18 1.40 0.28 146 0.0 0.00 0.00 0.00 
Heavy Exhaust 31 40 148.38 1.40 1.15 146 0.0 0.00 0.00 0.00 
Heavy Exhaust 38 55 195.05 0.69 0.57 194 0.0 0.00 0.00 0.00 
Heavy Exhaust 31 40 195.53 0.69 0.57 194 0.0 0.00 0.00 0.00 
Heavy Exhaust 39 40 195.51 0.69 0.57 194 0.0 0.00 0.00 0.00 
Heavy Exhaust 33 61 281.17 0.33 1.15 280 0.0 0.00 0.00 0.00 
Heavy Exhaust 39 48 282.55 1.40 0.28 281 0.0 0.00 0.00 0.00 
Heavy Exhaust 31 40 282.86 1.40 0.28 281 0.0 0.00 0.00 0.00 
Heavy Exhaust 39 46 282.91 1.40 0.57 281 0.0 0.00 0.00 0.00 
Heavy Exhaust 39 44 282.90 0.33 1.15 281 0.0 0.00 0.00 0.00 
Heavy Exhaust 39 45 283.02 0.69 1.15 281 0.0 0.00 0.00 0.00 
Heavy Exhaust 31 40 283.13 0.69 1.15 281 0.0 0.00 0.00 0.00 
Heavy Exhaust 31 40 283.17 1.40 0.57 281 0.0 0.00 0.00 0.00 
Heavy Exhaust 39 51 283.28 1.40 1.15 281 0.0 0.00 0.00 0.00 
Heavy Exhaust 39 40 283.46 1.40 0.28 282 0.0 0.00 0.00 0.00 
Heavy Exhaust 38 40 283.56 0.33 1.15 282 0.0 0.00 0.00 0.00 
Heavy Exhaust 31 40 283.86 1.40 1.15 281 0.0 0.00 0.00 0.00 
Heavy Exhaust 39 40 283.92 0.69 1.15 282 0.0 0.00 0.00 0.00 
Heavy Exhaust 39 40 283.94 1.40 0.57 282 0.0 0.00 0.00 0.00 
Heavy Exhaust 39 40 284.37 1.40 1.15 282 0.0 0.00 0.00 0.00 

Low T Combustion 29 49 0.44 0.00 0.44 0 0.0 0.00 0.00 0.00 
Low T Combustion 30 49 0.45 0.00 0.45 0 0.0 0.00 0.00 0.00 
Low T Combustion 30 50 0.36 0.00 0.36 0 0.0 0.00 0.00 0.00 
Low T Combustion 31 40 0.45 0.00 0.45 0 0.0 0.00 0.00 0.00 
Low T Combustion 40 60 0.45 0.00 0.45 0 0.0 0.00 0.00 0.00 
Low T Combustion 31 40 103.54 0.00 0.00 104 0.0 0.00 0.00 0.00 
Low T Combustion 36 60 103.78 0.00 0.00 104 0.0 0.00 0.00 0.00 
Low T Combustion 38 40 103.93 0.00 0.00 104 0.0 0.00 0.00 0.00 
Low T Combustion 39 40 104.02 0.00 0.00 104 0.0 0.00 0.00 0.00 
Low T Combustion 30 49 564.64 0.00 0.00 565 0.0 0.00 0.00 0.00 
Low T Combustion 41 56 567.67 0.00 0.01 568 0.0 0.00 0.00 0.00 
Low T Combustion 31 40 570.85 0.00 0.01 571 0.0 0.00 0.00 0.00 

Natural Gas 30 40 1.49 0.00 0.00 0 1.5 0.00 0.00 0.00 
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Natural Gas 30 39 1.49 0.00 0.00 0 1.5 0.00 0.00 0.00 
Natural Gas 31 40 1.50 0.00 0.00 0 1.5 0.00 0.00 0.00 
Natural Gas 34 40 1.49 0.00 0.00 0 1.5 0.00 0.00 0.00 
Natural Gas 34 45 1.49 0.00 0.00 0 1.5 0.00 0.00 0.00 
Natural Gas 40 58 1.51 0.00 0.00 0 1.5 0.00 0.00 0.00 
Natural Gas 30 39 1.92 0.00 0.00 0 1.5 0.43 0.00 0.00 
Natural Gas 30 40 1.92 0.00 0.00 0 1.5 0.43 0.00 0.00 
Natural Gas 31 40 1.92 0.00 0.00 0 1.5 0.43 0.00 0.00 
Natural Gas 32 56 1.92 0.00 0.00 0 1.5 0.43 0.00 0.00 
Natural Gas 32 52 1.92 0.00 0.00 0 1.5 0.43 0.00 0.00 
Natural Gas 34 40 1.93 0.00 0.00 0 1.5 0.43 0.00 0.00 
Natural Gas 42 55 1.92 0.00 0.00 0 1.5 0.42 0.00 0.00 
Natural Gas 30 40 3.29 0.00 0.00 0 3.3 0.00 0.00 0.00 
Natural Gas 30 39 3.28 0.00 0.00 0 3.3 0.00 0.00 0.00 
Natural Gas 34 40 3.28 0.00 0.00 0 3.3 0.00 0.00 0.00 
Natural Gas 34 46 3.27 0.00 0.00 0 3.3 0.00 0.00 0.00 
Natural Gas 35 47 3.28 0.00 0.00 0 3.3 0.00 0.00 0.00 
Natural Gas 30 40 4.18 0.00 0.00 0 3.3 0.90 0.01 0.00 
Natural Gas 31 39 4.18 0.00 0.00 0 3.3 0.90 0.01 0.00 
Natural Gas 33 52 4.18 0.00 0.00 0 3.3 0.90 0.01 0.00 
Natural Gas 33 50 4.18 0.00 0.00 0 3.3 0.90 0.01 0.00 
Natural Gas 34 40 4.19 0.00 0.00 0 3.3 0.90 0.01 0.00 
Natural Gas 30 40 13.93 0.00 0.00 0 13.9 0.01 0.00 0.00 
Natural Gas 30 39 13.92 0.00 0.00 0 13.9 0.00 0.00 0.00 
Natural Gas 31 40 13.92 0.00 0.00 0 13.9 0.01 0.00 0.00 
Natural Gas 34 40 13.94 0.00 0.00 0 13.9 0.01 0.00 0.00 
Natural Gas 34 47 13.93 0.00 0.00 0 13.9 0.01 0.00 0.00 
Natural Gas 35 48 13.94 0.00 0.00 0 13.9 0.00 0.00 0.00 
Natural Gas 38 62 13.91 0.00 0.00 0 13.9 0.00 0.00 0.00 
Natural Gas 31 40 17.65 0.00 0.00 0 13.9 3.74 0.05 0.00 
Natural Gas 43 52 17.64 0.00 0.00 0 13.9 3.72 0.05 0.00 
Natural Gas 30 40 17.68 0.00 0.00 0 13.9 3.74 0.07 0.00 
Natural Gas 30 39 17.71 0.00 0.00 0 13.9 3.75 0.07 0.00 
Natural Gas 34 48 17.68 0.00 0.00 0 13.9 3.74 0.07 0.00 
Natural Gas 34 40 17.69 0.00 0.00 0 13.9 3.74 0.07 0.00 
Natural Gas 34 49 17.69 0.00 0.00 0 13.9 3.74 0.07 0.00 



 
Figure S2. Estimated versus reference concentrations are plotted on the next page for each combination of 
gas and regression technique. Each column of plots contains estimates for a given gas, and each row contains 
estimates for a given regression technique. The color of each point indicates the cross-validation fold that 
was used for training and testing the model, and the shade (light versus dark) indicate whether the values 
were estimated on training data or testing (validation) data. 

 


