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Abstract: Full-body motion capture typically requires sensors/markers to be placed on each rigid
body segment, which results in long setup times and is obtrusive. The number of sensors/markers
can be reduced using deep learning or offline methods. However, this requires large training datasets
and/or sufficient computational resources. Therefore, we investigate the following research question:
“What is the performance of a shallow approach, compared to a deep learning one, for estimating time
coherent full-body poses using only five inertial sensors?”. We propose to incorporate past/future
inertial sensor information into a stacked input vector, which is fed to a shallow neural network for
estimating full-body poses. Shallow and deep learning approaches are compared using the same
input vector configurations. Additionally, the inclusion of acceleration input is evaluated. The results
show that a shallow learning approach can estimate full-body poses with a similar accuracy (∼6 cm)
to that of a deep learning approach (∼7 cm). However, the jerk errors are smaller using the deep
learning approach, which can be the effect of explicit recurrent modelling. Furthermore, it is shown
that the delay using a shallow learning approach (72 ms) is smaller than that of a deep learning
approach (117 ms).

Keywords: inertial motion capture; machine learning; neural networks; deep learning; LSTM; time
coherence; human movement; reduced sensor set; pose estimation

1. Introduction

Capturing full-body human motion can be valuable for various applications, such as
biomechanical analysis, virtual/augmented reality, and gaming. For example, the increased use of
wearable motion caption systems is helping coaches/athletes to improve their training programs [1] .
Patients can benefit from biomechanical analyses to monitor treatment effectiveness [2]. Motion capture
also has the potential to estimate kinetic quantities for various activities [3–5]. Virtual/augmented
reality can produce realistic training environments for patients by providing interaction with the virtual
elements using motion capture (e.g., knee osteoarthritis [6] or phantom limb pain [7]). The success of
Microsoft Kinect shows that motion capture can also be applied to (serious) gaming (e.g., for traumatic
brain injury patients [8] and neurological rehabilitation [9]). Full-body motion capture is currently
done by using either body-worn sensors (e.g., inertial measurement units (IMUs) [10]) or external
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measurement equipment (e.g., cameras [11,12]). These systems typically require users to wear
sensors/markers on each (rigid) body segment, e.g., 17 sensors for Xsens MVN [13] and 37 markers for
the Plug-In Gait protocol of Vicon [11,14]. The (large) number of body-worn sensors/markers results
in long setup times and can be obtrusive to the subjects.

Various studies have shown that using data-driven methods, a reduction in the number of
sensors/markers for full-body motion capture is feasible by taking advantage of the inherent
redundancy of human motion [15–17]. Chai and Hodgins have shown the potential of estimating
full-body motion using only six retro-reflective markers, with a nearest neighbour search approach to
map the low-dimensional marker input to full-body poses [18]. Note that poses are defined as the finite
possible configurations of the body, i.e., a pose is a discrete sample of a motion sequence. However,
their method, as most of the camera-based methods, is limited by the recording volume of the camera
setup. To that end, Slyper and Hodgins used five body-worn accelerometers to estimate full-body
motions in any environment, using a nearest neighbour approach as well [19]. The accelerometers
were placed only on upper-body segments, which resulted in sub-optimal estimation performance of
lower-body poses. This was further improved by Tautges et al. using a similar approach with four
accelerometers placed on lower legs/arms [20]. These three methods include a cost function that
weighs estimated poses in the past and present, which resulted in time coherent (plausible) output
poses, since physically impossible large segment accelerations were smoothed.

All these approaches share the same “lazy learning” philosopy [21], since they don’t learn a
universal model to estimate full-body poses, but rather rely on a database of pre-recorded motion to
look up at runtime. This approach is computationally demanding and often results in a delay between
the performed motion and the estimated full-body pose. The significance of that delay depends on
the application, e.g., virtual reality requires minimal delays as it can lead to motion sickness [22,23],
while providing feedback on gait analysis can be safely done with larger delays [6]. Opposed to
lazy learning approaches, computation times can be reduced by using an eager learning approach
(where a model is learnt and used at runtime), resulting in typically smaller delays. To that end,
a shallow neural network was shown to estimate full-body poses from only five IMUs with comparable
accuracy to lazy learning approaches [24]. However, estimated poses were not consistent over time,
since time relations were not explicitly taken into account. A short-term movement prediction can
accurately be made given characteristics of the dynamic system at hand [25]. This has been shown by
Von Marcard et al. with their optimization framework that uses data of six IMUs to estimate accurate
time coherent full-body motion [26]. However, this approach cannot be applied in real-time, since a
long data sequence is required for optimal performance.

Time coherency and real-time are both requirements for various applications that use
full-body motions. Deep learning has the potential to provide time coherent real-time full-body
pose estimates as shown by the increasing use in estimating human motions from video. For example,
Fragkiadaki et al. used long short-term memory (LSTM) units in their recurrent neural network (RNN)
architecture to estimate full-body kinematics from colour videos [27]. Additionally, three-dimensional
convolutional networks have been shown to be an effective network architecture for human activity
recognition from videos [28]. Furthermore, optical motion capture can be complemented by inertial
sensors and an LSTM architecture to improve visual tracking in the case of occlusions [29]. However,
only bidirectional LSTM (bi-LSTM) units (to exploit information from both past and future) have been
shown to accurately estimate full-body motion using the data of 6 IMUs. In this manner, time coherent
(semi-)real-time output poses were achieved using an on-body measurement system. This approach
was shown to result in the best performance by providing sequences that include past, current,
and future frames as input; hence, output was delayed depending on the number of future frames
required. However, such a deep learning architecture requires sufficient computational resources and
a large dataset for training/evaluating.
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In summary, estimating (real-time) full-body human motions from a minimal sensor setup can be
achieved with good accuracy using offline methods (when a large motion sequence is available) or
using deep learning at the expense of large datasets and computational resources. Our hypothesis is
that similar results can be achieved by using a shallow learning approach. This resulted in the following
research question: “What is the performance of a shallow approach, compared to a deep learning one,
for estimating time coherent full-body poses using only five inertial sensors?” For the shallow learning
approach, we propose a stacked input neural network (SINN) approach that requires smaller datasets
and less computing power, which can result in suitability for real-time applications. This approach
was based on earlier work of the authors [24], which showed good performance, but estimation of
full-body pose at any given time only considered inputs at that instance, but not in the past. It therefore
did not consider the inherent dynamics of the body that relate poses over time. In the current work, we
developed a novel way of considering time dependencies in a shallow artificial neural network (ANN),
namely, by moving complexity out of the (deep) network into a stacked input vector, which contains
past and future information. The SINN approach was compared to a deep learning approach (with
recurrent units) based on [30] (the current state-of-the-art for estimating full-body poses from a minimal
set of inertial sensors ), which is referred to as a recurrent neural network (RNN) for simplicity. It was
chosen to use inertial sensors as input, since this allows for a wearable motion capture solution that
does not require external infrastructure. Furthermore, it has been shown that differences in joint angles
between optical and inertial motion capture are small [31–33]. To understand the performance of both
the SINN and RNN approaches, three aspects are analysed in more detail, namely: configuration of
the stacked input (e.g., number of past/future poses and time intervals), the inclusion of acceleration
input information, and the computational cost (for training and evaluating).

2. Methods

2.1. Movement Dataset

The dataset contains a wide variety of movements performed by six subjects, as described in
Table 1. Approximately 25 minutes of motion capture data was collected for each subject. Xsens
MVN (Xsens Technologies B.V., Enschede, the Netherlands) was used for recording the subject’s
movements with 17 IMUs placed on (rigid) body segments at 240 Hz. Subjects performed a calibration
pose to determine the sensor orientation with respect to the body, such that the biomechanical model
of MVN Studio 4.2.1 (Xsens Technologies B.V., Enschede, the Netherlands) provides orientation of
23 body segments. The sampling frequency of 240 Hz resulted in nearly identical adjacent (in time)
poses, and for most body parts, significant motion information lies well below 240 Hz. Therefore,
the data were down-sampled by a factor of four (to 60 Hz), resulting in a dataset of approximately half
million poses.
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Table 1. A description of trials in the experimental protocol (each trial was performed three times by
all six subjects). ADL = Activity of daily living, L = left and R = right [24].

Trial Short Description

Gait
1 Walk 10 m, walk 10 m, jog 10 m and sprint 10 m.
2 Walk with a glass of water (dominant hand, non-dominant hand and in both hands)
3 Walk 10 m, walk slowly 10 m, walk backwards 10 m, side-step six steps (L/R).

Sport

4 Lunges L/R (4×), squats (4×), jumping jacks (4×).
5 Two-legged jumps (4×), hops L/R (4×), run and jump L/R (2×), jump up (4×).
6 Sit-ups (5×) and side side-ups L/R (3×).
7 Kick a ball against the wall L/R (3×).
8 Throwing a ball against the wall L/R (3×).
9 Crawling six steps.

ADL

10 Take a magazine, put it on the table, get seated, read a magazine, stand up and put it away.
11 Take a tray with cups, walk with the tray, put it on the floor, stand up, pick it up.
12 Take a glass, fill it with water and drink it in a chair.
13 Put on a coat and take it off.
14 Comb hair, scratch back, touch toes, rotate arms around shoulder back- and forward.
15 Kneel down and tie shoelaces (L/R).
16 Ascend and descend stairs.

2.2. Input Features

The recorded movement database contains orientations of 23 segments. Based on previous work
in estimating full-body poses from a minimal body-worn sensor set [4,20,24,26,30], it was chosen to use
the orientation of one segment for each limb as input features. Consistent with these works, the lower
legs/arms and pelvis were selected as input segments (as highlighted in Figure 1), because they were
positioned towards the ends of extremities. Orientation of these segments as provided by Xsens MVN
was used as input, while the remaining segment orientations were used for the corresponding output.
The main reason for reducing the dimensionality is to take advantage of the fact that human body poses
are extremely redundant if global body orientation is considered [15–17]. However, if orientations
are expressed with respect to the body (e.g., pelvis), this dimensionality is further decreased. In this
manner, the input/output space is reduced by relating all input/output orientations to the pelvis
orientation (marked by the blue circle in Figure 1). The choice of the pelvis as a reference segment is
motivated by its central location with respect to the different limbs.

Figure 1. A sequence of inputs (lower arm (orange circle) /leg (green circle) orientations relative to the
pelvis (blue circle) is used to estimate a single output pose (at time i). Size of the input sequence can
vary by the number of past (P) and future (F) poses that are taken into account and the distance in time
(∆t) between the different inputs. Here, jp and j f are used as counters for the past/future poses in time,
which have a maximum value of P and F (in this example, P = 2 and F = 2) , respectively. In other
words, jp = {1, ..., P} and j f = {1, ..., F}, and ∆t is defined as I/ fs with I as the sample interval and fs

as the sampling frequency.
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It was chosen to train independent SINN and RNN to estimate upper- and lower-body poses
using orientations (and accelerations) of two body segments. This was based on the limited dataset
and difficulties with learning such complex relations for a shallow network, which was successfully
applied in a previous work of the authors [24]. In other words, the lower arm orientations (relative
to the pelvis, marked by the orange circles in Figure 1) are provided to a trained network to estimate
the upper-body segment orientations (12 segments), and the lower leg orientations (relative to the
pelvis, marked by the green circles in Figure 1) are input to a second trained network to estimate the
lower-body segment orientations (6 segments).

Quaternions were used to represent orientations in the dataset (directly obtained from Xsens
MVN), since this representation was shown to be fitting for training an ANN to map a reduced set
of sensors to a full-body pose, after normalizing the output to obtain proper unit quaternions [24,34].
Furthermore, in this manner, the input dimensions are smaller compared to rotation matrices, and they
do not suffer from gimbal lock issues.

The IMUs measure 3D acceleration and angular velocity, of which the acceleration can be used
as additional input to the network, since it provides information about the linear movement and
segment inclination, which could therefore result in better time coherency between output poses.
This hypothesis was tested by training additional SINN and RNN (including acceleration features)
and evaluating differences in performance compared to using no acceleration features. Accelerations
are measured in the sensor frame, i.e., to compare different sensor accelerations, a transformation is
required, as shown in Figure 2. The first step is rotating individual sensor accelerations to a common
global frame, which is achieved using the orientation of those sensors (which are expressed in an
identical global reference frame). The pelvis acceleration is then subtracted from the lower legs/arms
such that a relative acceleration is obtained, which also removes the gravitational acceleration from
the resulting relative measure. Rotating that outcome to the pelvis orientation results in acceleration
features that are relative to the reference segment and are not affected by the orientation of the body
w.r.t. the world.

Figure 2. Processing of the measured sensor accelerations to be suitable input to the recurrent neural
network (RNN) and stacked input neural network (SINN).

2.3. Stacked Inputs

The SINN was trained to map a sequence of inputs to one single full-body pose (i.e., input
x =

[
ti − P · ∆t ti − jP · ∆t ti ti + j f · ∆t ti + F · ∆t

]
), as depicted in Figure 1. ∆t is the time

between different poses, which is defined as ∆t = I/ fs, where I defines sample interval and fs the
sample frequency (60 Hz). jP is a counter for the past poses (P), while jF is a counter for the future (F)
poses that are taken into account. Additionally, acceleration features can be appended to this input
matrix if required.

By doing this, we want to prove that the proposed SINN is able to “learn” time coherency even
when past and future sensor data are stacked into the same input vector. This approach allows for
various options for the number of poses over time that are considered (SIL = P + 1 + F, stacked input
length) and the sample interval (I) between those adjacent poses. The optimal configuration depends
on the requirements of the application, e.g., real-time applications, required accuracy and movement
types. Figure 1 shows an example of a gait sequence using P = 2, F = 2 and I = 8 (with ∆t = 1/60 s);
therefore the length of the shown sequence is 5 samples that span approximately 0.55 seconds.



Sensors 2019, 19, 3716 6 of 17

2.4. Network Architecture

Figure 3 depicts the network architectures for the deep (RNN) and shallow (SINN)
learning approaches. The implemented RNN was inspired by the work of Huang et al. using bi-LSTM
layers [30,35,36]. The network architecture of the RNN allows for recurrency and hence no input
stacking is required. However, due to the bidirectional units in the networks, better qualitative and
quantitative results can be obtained by processing a sequence of inputs (which is implemented as a
sliding window) [30]. Therefore, both the RNN and SINN will be trained/evaluated using identical
input sequences (in both length and configuration) obtained from our collected dataset. The difference
is that the RNN gets a matrix of size (8,SIL) as input, while this is stacked to (8·SIL,1) for the SINN.

Figure 3. The implemented network architectures for the deep (RNN) and shallow (SINN) learning
approaches. Different networks were trained for estimating upper/lower-body poses, which resulted in
8 inputs (2 segment orientations, represented by quaternions, relative to the pelvis) times SIL (stacked
input length) poses for both SINN and RNN. Furthermore, a different number of outputs was obtained
from the separate networks, namely, 24 for the lower body and 48 for the upper body . Input to the
SINN is stacked with adjacent poses from past (P), current (ti) and future (F) time samples, resulting in
a total of L samples that are taken into account. The same sequence can be provided as an input matrix
to the RNN, which produces a sequence as output (and the relevant pose can be used). The different
types of hidden layers are shown by the various colours with the corresponding number of neurons
shown in brackets.

MATLAB R2018b (MathWorks, Inc., Natick, MA, USA) was used to implement both the SINN
and RNN approaches. The following training parameters for the bi-LSTM network were the same as
in [30], namely, using an Adam optimizer [37], identical learning rates and dropout [30]. The number
of neurons per layer and number of hidden layers was chosen based on a previous work of the authors
and was validated by comparing various network sizes. The number of hidden layers for the RNN
approach was based on the work of Huang et al. [30] . Separate RNNs were trained for the upper- and
lower-body movements due to the limited dataset and to provide a fair comparison with the proposed
shallow approach (SINN).

Both the RNN and SINN were trained using a subject-wise six-fold cross-evaluation (5 subjects for
training and 1 for evaluating). This evaluation approach provides information about the generalization
performance of the trained networks over the subjects, as different subjects are in the training/test set
for each evaluation [38,39].
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2.5. Performance Evaluation

As commonly done in similar works, the accuracy of full-body poses is evaluated using either
Euclidean joint distance [24,27] or joint angle errors [18,26]. The application largely determines the
evaluation metric of interest. For conciseness, joint position errors are reported in the current paper,
as these were shown to be related to how pose similarity is perceived by humans [40]. This was
evaluated by calculating the Euclidean norm between the full-body joint positions obtained from
Xsens MVN and the estimated joint positions from the SINN/RNN approaches. These 23 joint position
errors were then averaged to obtain a mean error value for each pose.

Furthermore, a previous work of the authors has shown that jitter was present in the outcome pose
sequences. It was chosen to quantify jitter by calculating jerk (the third derivative of the joint positions),
since this provides insight in the smoothness error [41]. This was evaluated by calculating the Euclidean
norm between the ground truth (Xsens MVN) and estimated jerk (SINN/RNN approaches).

Real-time applications require a delay that is not larger than the threshold that results in motion
sickness [22,23]. However, this threshold is individual: a delay of 100 ms might be acceptable for
some people, while others might not cope well with delays larger than 20 ms in virtual reality
applications [42]. Therefore, the processing time of both the SINN and RNN approaches was evaluated
on a notebook (Lenovo ThinkPad W540, Beijing, China) (CPU i7-4710MQ @ 2.50 GHz, 8 GB RAM,
NVIDIA Quadro K1100M, Santa Clara, CA, USA), which is representative of equipment that can
be used for a real-time application. As the number of future poses impact the additional delay
between the measured movements and the estimated full-body poses, this parameter will be regarded.
Furthermore, the difference in training time between both approaches was evaluated on a high-end
machine (equipped with one NVIDIA GTX Titan X (Pascal 12 GB)), since training requires more
computational resources.

3. Results

In this section, we explore the impact of different time window configurations on the SINN/RNN
performance (Section 3.1). Furthermore, the addition of accelerometer data in the input is investigated
(Section 3.2) and the computational cost of both approaches is compared (Section 3.3). Additionally,
videos of the obtained output have been included as supplementary material.

3.1. Time Window Configurations

The considered dataset consists of three activity types, namely, gait, sports and ADL. The dynamics
of different activities can vary substantially, which could result in variation of the optimal time windows
(length, configuration and spacing). To that end, mean (over six subjects) joint position and jerk errors
are presented for a representative trial within each of those activity classes.

Figure 4A shows the mean joint position errors for a gait trial, namely, for trial 1 as described
in Table 1. With increasing distance (I) between included samples, the mean joint position error
shows an increase for all different SIL with the RNN approach. This trend can also be seen for the
SINN approach; however, the absolute error increase is smaller. Furthermore, the standard deviation of
all mean joint position errors (for both approaches) is of similar small size (∼0.01 m), indicating good
generalization over different subjects. The impact of using information from past or future (stacked
input configuration) is shown to be minimal, while the SIL (number of samples) has a larger effect.

Figure 4B shows the mean (and standard deviation) joint jerk errors for the different time window
configurations of trial 1, as described in Table 1. The RNN shows smaller jerk errors than the SINN
approach, which was to be expected since the RNN explicitly takes into account time coherency of the
different poses in the input sequence. Furthermore, for increasing intervals (I), smaller joint jerk errors
can be seen in the SINN approach, while this effect is only shown for the larger SIL (of 5/9 samples) of
the RNN approach. Compared to using only a single pose as input to the SINN, a decrease in joint jerk
error is observed when the SIL is larger (i.e., more time information is taken into account). Furthermore,
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the stacked input configuration has a smaller effect on performance than the SIL, similar to what was
observed for the joint position errors.
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Figure 4. Bar plots of the full-body mean (of 6 subjects) joint position (A) and jerk (B) error for the
shallow (SINN, left bars for each configuration) and deep (RNN, right bars for each configuration)
learning approaches during a gait trial (1 in Table 1), standard deviation over the various subjects is
displayed by whiskers. The different time windows are presented on the x-axis, where the number
of past (P) and future (F) poses are shown. The interval (I) between input poses are marked by
the different colours, where the number of samples between input poses is shown. For comparison,
the mean joint position error (A) for using only the current pose as input (SINN approach) is 0.07
(±0.01) m. For comparison, the baseline using only the current pose as input) mean joint position (A)
and jerk (B) errors are shown as the dark blue bars on the left.

Overall increase in joint position errors for sports activities compared to gait is observed for both
approaches (SINN: median(gait) = 0.069 m and median(sports) = 0.079 m; RNN: median(gait) =

0.076 m and median(sports) = 0.089 m) in a more dynamic activity, as can be seen for trial 5 in
Figure 5A, which includes sport related tasks (as described in Table 1). For the SINN approach,
the interval (I) shows a smaller effect on the joint position error than for the RNN approach. A decrease
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in the joint position errors for both approaches can be seen when more information is taken into
account (larger SIL).

As was to be expected for a more dynamic trial, the joint jerk error is larger for sports activities
than for a gait trial (SINN: median(gait) = 1609 m/s3 and median(sports) = 2309 m/s3; RNN:
median(gait) = 1056 m/s3 and median(sports) = 1515 m/s3), shown in Figure 5B. Similar to the gait
trial, a decrease in joint jerk error is observed for large I; however, this effect decreases for larger SILs.
Furthermore, both approaches show minimal differences in performance for various stacked input
configurations (P/F) with a fixed SIL.
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Figure 5. Bar plots of the full-body mean (of 6 subjects) joint position (A) and jerk (B) error for the
shallow (SINN, left bars for each configuration ) and deep (RNN, right bars for each configuration )
learning approaches during an ADL trial (5 in Table 1), standard deviation over the various subjects is
displayed by whiskers. The different time windows are presented on the x-axis, where the number
of past (P) and future (F) poses are shown. The interval (I) between input poses are marked by
the different colours, where the number of samples between input poses is shown. For comparison,
the mean joint position error (A) for using only the current pose as input (SINN approach) is 0.08
(±0.01) m. For comparison, the mean joint jerk error (B) for using only the current pose as input (SINN
approach) is 1.8 (±0.5) ×103 m/s3.
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Figure 6A,B shows, respectively, the joint position and jerk errors during an ADL (as described
in Table 1). Similar to the previous two activities, an error decrease is observed for larger SIL, but no
large differences for the various configurations (P/F) are observed in this activity either. A decrease in
performance is shown for larger I but is not consistent between both approaches.
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Figure 6. Bar plots of the full-body mean (of 6 subjects) joint position (A) and jerk (B) error for the
shallow (SINN, left bars for each configuration ) and deep (RNN, right bars for each configuration)
learning approaches during a sports trial (10 in Table 1), standard deviation over the various subjects is
displayed by whiskers. The different time windows are presented on the x-axis, where the number
of past (P) and future (F) poses are shown. The interval (I) between input poses are marked by the
different colours, where the number of samples between input poses is shown. For comparison, the
baseline (LA) for using only the current pose as input mean joint position (A) and jerk (B) errors are
shown as the dark blue bars on the left.
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Even though the dynamics are different between the three activities, it can be seen that small I
results in a joint position error increase (shown in Figures 4A, 5A and 6A), as the similarity between
those poses is too high, and therefore, the individual poses contain minimal additional information,
while large I results in an increase of the joint jerk errors (shown in Figures 4B, 5B and 6B), since
dependency between poses decreases at larger time intervals. In other words, there is an optimal
interval I, which depends on the specific dynamic nature of the activity. This optimum can therefore
be found around I = 2 and I = 4, since this results in smaller joint position and jerk errors on average
over the various subjects and activities.

Configuration of the input vector (past/future) shows smaller effects on the joint position/jerk
errors than the SIL. This effectively means that a longer sequence of inputs is more beneficial than
changing the configuration of those inputs, e.g., including future information at the expense of
past information. However, a marginal error decrease was observed when future information
was included. Hence, for real-time applications a larger SIL can be sufficient, while for applications
that require higher accuracy, it can be valuable to include future information.

For sake of simplicity, in the remainder of the paper, we will use I = 2, P = 2 and F = 2 as this
configuration resulted in an acceptable trade-off of accuracy and possibilities for real-time applications.

3.2. Including Sensor Acceleration Features

Figure 7 shows the mean joint position/jerk errors for three different activities, namely, gait,
sports and ADL, using orientation features (as shown in Section 3.1) and including accelerations.
The gait and sport trials show a decrease in joint position error for both the SINN and RNN approaches
when acceleration features are included compared to only orientation features. This is not the case
for the ADL trial, which could possibly be the result of decreased dynamics in ADL tasks, hence
acceleration information could provide less additional knowledge. The joint jerk errors are smaller
when acceleration features are included for the SINN approach. This is only observed for the sports
trial in the RNN approach. This indicates that including acceleration features improves full-body pose
estimation, but it can be at the expense of smoothness of the output.

3.3. Delay Assessment

A delay is already introduced by using future sensor information as input to both the SINN and
RNN approaches. The chosen input sequence configuration (2 future poses) results in a delay of 67 ms
using MATLAB R2018b (MathWorks, Inc., Natick, MA, USA). In Table 2, the training and calculation
times are presented. It should be noted that these results are obtained from training/evaluating a
SINN and RNN for both the upper and lower body, which requires double the amount of training
time, but could be performed in parallel. It can be seen that a shallow network, as expected, is faster
to train and evaluate. However, the RNN approach does not require a new training cycle when
experimenting with the input sequence configuration, e.g., when more past/future frames should be
taken into account.

Table 2. Training of both approaches was done using a machine equipped with a single NVIDIA
GTX Titan X (Pascal 12 GB) with MATLAB R2018b. Testing was done on a notebook, namely,
a Lenovo ThinkPad W540 (CPU i7-4710MQ @ 2.50 GHz, 8 GB RAM, NVIDIA Quadro K1100M)
with MATLAB R2018b.

Approach Training Time (Hours) Evaluation (ms/Sample)

RNN ∼6 ∼50
SINN ∼1 ∼5
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Figure 7. Bar plots of the mean (of 6 subjects) joint position and jerk error for the shallow (SINN) and
deep (RNN) learning approaches (left and right, respectively) using orientation features (O in black)
and including accelerations (O + A in white). Three different types of activities are shown namely:
gait (A), sports (B) and ADL (C). Standard deviation over the various subjects is displayed by black
whiskers. These results were obtained using the following parameters: I = 2, H = 2 and F = 2.

4. Discussion

In this work, we have shown that using either a shallow (SINN) or deep (RNN) learning approach
for estimating full-body poses using only five IMUs placed on the lower legs/arms and the pelvis
results in similarly accurate outcomes.

A limitation of this work is that input to both learning approaches was the segment orientation
from Xsens MVN, i.e., the calibrated sensor to segment pose data were based on the full-body
approach [10]. This full-body approach benefits from assumptions based on dynamics of a human
body, which is not the case for a single sensor. However, the orientation accuracy of an IMU is within
0.5 degrees [43]. Furthermore, an application with only five inertial sensors would require a sensor to
segment calibration, such as the static neutral pose proposed by Huang et al [30]. A misalignment of
the sensors with respect to the calibration pose could decrease the accuracy of the estimated full-body
poses; however, it has been shown that sensor noise has a minimal impact on the performance of such
a trained neural network [24]. The SINN/RNN approaches could also be trained to handle inputs
with noise, such as was done for optical pose estimation [44].
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The input and reference data consisted of inertial motion capture data. In this manner, no external
infrastructure is required for data collection. The accuracy of inertial motion capture is comparable
to that of optical systems when looking at joint angles [31–33]. However, the use of optical motion
capture data provides interesting opportunities for enlarging the training dataset, since such data
are publicly available [45–47]. Our proposed SINN approach could benefit from such datasets if
they were recorded with sufficient optical markers, since it requires three-dimensional orientations
as in/output. The relatively small dataset used in this work allowed for a fair comparison with the
previous work of the authors [24] and demonstrated that a shallow approach trained on such a dataset
can estimate full-body poses with good accuracy. It should be noted that a shallow network requires
significantly fewer parameters to be trained (the SINN approach has approximately 25 times fewer
trained parameters compared to the RNN approach), which impacts the minimal required training
dataset size.

It was chosen to use I = 2, P = 2 and F = 2 as an input configuration to evaluate the addition of
acceleration features, due to it being an acceptable trade-off between accuracy and delay. However,
this choice largely depends on the application and dataset as differences were also observed for the
various activities. Variations in the optimal settings for the various activities could be the effect of
differences in the involved dynamics. However, more insight in this relation is required, which could
reduce the search for optimal settings for specific applications. Therefore, this setting is not a final
recommendation, but the presented results can provide a direction for specific applications.

The gait trial was estimated with the smallest position error, which was to be expected due to
the repetitive and cyclic nature of the activity. The largest errors can be found in the activities that
are less cyclical, such as ADL. A trend observed for all activities is that the position error decreases
when more information was used as input (SIL). This effect was larger than changing the input vector
configuration (number of poses from past/future). However, including information about the future
resulted in a decrease of joint jerk errors, i.e., more smooth outcomes. This was to be expected, since
interpolating is a less error-prone task than extrapolating [48]. Joint jerk errors were further improved
by including acceleration information as input to both the RNN and SINN approaches, as can be seen
from the improved joint position errors for all trials.

These observations of use of a RNN approach for estimating full-body movements using a minimal
sensor set are consistent with the findings presented in [30]. Since a different dataset for training/testing
was used in their work, which could indicate that these effects are not dataset-dependent. Joint position
accuracy reported by Huang et al. was 6.49 cm on average (for their RNN approach) compared to
the 7.33 cm (mean of Figure 7) reported in this work. A larger joint position error can be the result
of a smaller dataset and/or of training SINN/RNN for the upper/lower body separately. The mean
joint position error for the proposed SINN approach is 6.23 cm. This error is smaller than both the
reported error of the RNN approach in this work and that of Huang et al. However, these differences
are small in magnitude, namely, approximately 1 cm. This indicates that the proposed SINN approach
can provide an alternative for estimating full-body poses using only five IMUs for the RNN approach,
requiring less computation power and training data.

Large jumps in outcome poses that were observed using a snapshot approach [24] have been
reduced by using a stacked input vector, as can also be seen from the supplementary material.
Furthermore, the mean joint position error is approximately 2 cm smaller than the one reported
in [24]. In addition, the joint position error of individual joints showed a similar distribution to that
observed in previous work. This was to be expected due to the kinematic chain that is evaluated,
which effectively accumulates joint position errors from the proximal joints to the more distal joints.
Joint jerk errors improved compared to previous work, which indicates that time coherency between
outcome poses can be improved by stacking poses in the input vector. However, RNN results show
smaller joint jerk errors than the SINN results, which shows that more time coherent outcomes can be
obtained by explicit recurrent modelling.
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The combined delay from the chosen configuration and reported computation time is 72 ms for
the SINN approach and 117 ms for the RNN approach using a MATLAB implementation. These
reported computation times are only indicative, since shorter delays are expected for a C++/firmware
implementation. The SINN approach can be used to estimate full-body poses within acceptable delay
boundaries (20–100 ms, according to [42]); however, the delay is close to the upper boundary. This can
be improved by using less future information at the expense of accuracy. The RNN approach delay
can be improved in a similar fashion or by using higher computational power. Alternatively, cloud
computing could provide a more powerful computing environment without requiring such powerful
equipment on site [49]. However, feasibility of such a solution for real-time pose estimation largely
depends on the available internet speed.

Results presented in this work allow for decreasing the number of sensors/markers in full-body
motion capture. While this approach is not tailored to any specific application, it was shown that
cyclical and repetitive motions are estimated with the highest accuracy. Therefore, this approach has
the largest potential to be applied to activities with these characteristics, e.g., biomechanical analysis of
running [4], providing biofeedback to patients [6] or industry applications [50]. However, applications
with less cyclical/repetitive motions may require more fine-tuning effort to reach the required level
of accuracy.

Future Work

The results in this work were obtained by training a shallow/deep learning approach on a
relatively small dataset. The effect of dataset size on performance of the proposed approaches
remain unclear, and would require further analysis. The increased number of publicly available
datasets [45–47] could provide opportunities for such an analysis.

The results in this work were based on inputs from the full-body motion capture output of Xsens
MVN, while using orientations of five single IMUs directly might result in a decreased performance for
estimating full-body poses. Therefore, additional research is required to evaluate the use of orientation
and acceleration input of five single IMUs.

Performance of the proposed approaches varies with dynamics of the evaluated activities.
A concept that could potentially improve this effect is to apply an adaptive time window based
on the acceleration data, e.g., longer input sequences for low dynamic activities and the opposite for
high dynamic activities. This concept can be applied to the RNN approach directly, while the SINN
approach would require various trained networks (with different settings), which can then be chosen
to use at run-time depending on the dynamics of the activity.

The current analysis was performed using MATLAB; for development of a specific application,
it should be preferred to use a different programming environment, such as Python or C++. This would
likely also result in improved evaluation delays; however, the presented delay results can provide
a benchmark.

5. Conclusions

The goal of this work was to evaluate the performance of estimating full-body poses using
only five IMUs with a shallow (SINN) compared to a deep (RNN) learning approach. It has been
shown that similar joint position accuracy (SINN ≈ 6 cm and RNN ≈ 7 cm) was achieved for both
approaches with the considered dataset. However, the RNN approach results in smaller joint jerk
errors, which is possibly the result of the explicit recurrency of the network. Furthermore, the SINN
approach estimates poses with smaller delays, which allows for real-time applications. However,
a SINN approach provides no flexibility to change the size and configuration of the stacked input
vector at run-time. Therefore, choosing either approach would depend on several factors, namely,
available computing power, dataset size, and/or real-time requirements.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/17/3716/s1
(accessed on 28 August 2019). Video S1: Shallow versus Deep Learning.

http://www.mdpi.com/1424-8220/19/17/3716/s1
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