

Supplementary Materials: A High Voltage Energy Harvesting Interface for

Irregular Kinetic Energy Harvesting in IoT Systems with 1365% Improvement using All-NMOS Power Switches and Ultra-low Quiescent Current Controller

Hassan Saif, Muhammad Bilawal Khan, Jongmin Lee, Kyoungho Lee and Yoonmyung Lee

Figure S1. (a) Current peak detector (IPD) schematic. (b) Reverse current detector (RCD) schematic.

Figure S2. (a) Block diagram of leakage-based clock generator. **(b)** Symmetrical voltage controlled delay cell schematic.

Figure S3. Flexible piezoelectric harvester

(a) Simulation model.

(b) Timing plot of input current triangular pulse (*I_P*) and open circuit harvester voltage (*V*_{HRV_OC}) for *V*_{HRV(OC)_PEAK} = 45 *V*.

(c) Fixed period (100ms) I_P pulse vs V_{HRV_OC}.

(d) Simulation model for battery charging from flexible piezoelectric harvester using a full bridge rectifier (FBR).

(e) Timing plot of *I_P* vs FBR harvesting voltage (*V_{FBR_HARV}*) (Vth_FBR* = FBR threshold voltage)

Figure S4. Proposed harvesting interface operation at charging 3.3V battery at discontinuous harvesting from flexible piezoelectric harvester (C_P = 500pF) at $V_{HRV(OC)_PEAK}$ = 45 V.

Figure S5. Proposed harvesting interface operation at charging 3.3V battery at periodic harvesting from MIDE V22B harvester ($C_P = 19.5nF$) at $V_{HRV(OC)_PEAK} = 45 V$.