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Abstract: Even if still at an early stage of development, non-invasive continuous glucose monitoring
(NI-CGM) sensors represent a promising technology for optimizing diabetes therapy. Recent studies
showed that the Multisensor provides useful information about glucose dynamics with a mean
absolute relative difference (MARD) of 35.4% in a fully prospective setting. Here we propose a method
that, exploiting the same Multisensor measurements, but in a retrospective setting, achieves a much
better accuracy. Data acquired by the Multisensor during a long-term study are retrospectively
processed following a two-step procedure. First, the raw data are transformed to a blood glucose (BG)
estimate by a multiple linear regression model. Then, an enhancing module is applied in cascade to
the regression model to improve the accuracy of the glucose estimation by retrofitting available BG
references through a time-varying linear model. MARD between the retrospectively reconstructed
BG time-series and reference values is 20%. Here, 94% of values fall in zone A or B of the Clarke Error
Grid. The proposed algorithm achieved a level of accuracy that could make this device a potential
complementary tool for diabetes management and also for guiding prediabetic or nondiabetic users
through life-style changes.

Keywords: diabetes; continuous glucose monitoring; non-invasive; multisensor

1. Introduction

Non-invasive continuous glucose monitoring (NI-CGM) has been widely investigated in the
last years [1–5] because it would obviously represent an appealing technology to monitor glucose
changes with no discomfort related to the use of subcutaneous needles [6–8] or implantable devices [6].
Although in terms of accuracy and reliability, the performance of NI-CGM is still far from that of
commercial minimally-invasive CGM sensors, some encouraging results have been demonstrated
in strictly controlled conditions during in-clinic sessions [5,9–11]. However, the use of NI-CGM
technology in uncontrolled conditions met in daily life has shown several critical aspects, mostly
related to the influence of external perturbations, e.g., environmental factors and non-glucose related
physiological confounders that influence the sensor measurements [10–15].

One interesting approach systematically evolved by Caduff et al. proposed to mitigate the
effect of such perturbing factors is the multisensor concept, i.e., the embedment of glucose and
non-glucose-related sensors in the same device [11,15]. The basic idea behind the multisensor
approach is to measure perturbing effects together with the glucose-related effects to allow for
proper compensation via suitable modelling [14,15]. In particular, Solianis Monitoring AG (Zurich,
Switzerland) acquired by Biovotion AG (Zurich, Switzerland), proposed and developed a multisensor
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solution, hereafter referred to as Multisensor and depicted in Figure 1, embedding a combination
of dielectric and optical sensors [11]. The Multisensor is worn on the upper arm and implements
black-box statistical models to combine the measured dielectric and optical signals into a glucose
estimation, providing useful information about glucose dynamics in controlled and semi controlled
conditions, as extensively documented in past recent literature [11,16–18].
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Figure 1. The Multisensor system worn on the upper arm and schematic illustration of its substrate.

The most recent clinical study conducted with the Multisensor in free-living conditions showed
a point accuracy of the estimated glucose versus a reference glucose measurement, computed as
mean absolute relative difference (MARD), of 35.4% [18]. These results were obtained considering
a fully prospective estimate of glucose profiles by a global model, with only an initial calibration when
the device is worn on the upper arm. The less accurate results, when compared with the current
state-of-the-art minimally invasive CGM devices [6] and the accuracy obtained with the Multisensor in
controlled conditions [19], is related to the sub optimality of the models and the algorithmic routines
that may not yet properly compensate for all the extrinsic (environmental) and intrinsic (physiological)
perturbations typical of the uncontrolled conditions mentioned above. These limitations currently
prevent the actual use of the Multisensor in real-time diabetes management. Here, we aim at assessing
the performance of the Multisensor system in a less challenging scenario, i.e., in retrospectively
estimating the blood glucose (BG) concentration given the raw sensor measurements and a few
self-monitoring BG (SMBG) samples that serve as a reference.

2. Materials and Methods

2.1. Database

The database was acquired during a long-term study conducted with the Multisensor device [20]
involving 20 patients with type 1 diabetes (13 male, 7 female, Caucasian origin, age 38 ± 13 years,
bod mass index, BMI, 24.1 ± 3.0 kg m−2, duration of diabetes 17.0 ± 13.0 years, HbA1c 7.5 ± 0.9%).
Table 1 reports the subjects’ demography and characteristics in finer detail. The study was performed
in accordance with Good Clinical Practice and the Declaration of Helsinki.

Figure 2 shows a graphical representation of the study procedure. After the initial screening visit
(month 0), subjects entered block A of the study procedure, which consisted of one day of in-clinic
sessions per subject. Following block A, subjects entered block B of the study design, which consisted
of 10 days of home-use. This period of home-use was followed by another in-clinic period of 3 days and
2 nights per subject (block C). Then, the study ended with block D, a second period of home-use of at
least 20 days for each subject. In total, the study lasted for 18 months and globally the following study
days (or runs) were acquired: 20 days in block A, 200 days in block B, 99 days in block C, and 753 days
in block D, for a total of 1072 runs (data acquired during the two in-clinic nights were not used in
our analysis). The median length of all runs in the study was between 10 and 11 h. The minimum,
maximum, and median durations of the home-use study blocks across subjects was 11, 79, and 31 days
for block B and 29, 183, and 119 for block D.
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Table 1. Subjects’ description.

Subject Age [years] BMI [kg/m2] Diabetes Onset [year] HbA1c [%] Pump Carrier Gender

AB04 52 23.3 1971 7.2 Yes female
AB06 38 27.4 1998 7.6 No male
AB07 28 22.6 1995 8.9 No male
AB09 28 24.7 1997 7.5 Yes female
AB10 54 20.0 1972 6.4 Yes female
AB12 21 24.4 2000 6.9 Yes male
AB13 54 25.2 1970 8.3 Yes male
AB16 29 22.1 1982 7.3 No male
AB18 22 23.5 2005 7.3 No female
AB19 18 26.0 1993 9.5 Yes male
AB23 23 24.8 2004 8.7 No female
AB24 35 27.1 1985 7.4 No male
AB25 37 20.6 1991 7.3 Yes female
AB28 24 24.3 2008 5.5 Yes male
AB30 58 21.5 2005 7.4 No male
AB31 45 24.1 2002 7.7 Yes female
AB32 54 24.2 1976 6.5 Yes male
AB34 36 24.8 2000 8.0 No male
AB35 32 26.3 1999 6.4 No male
AB37 46 25.2 2007 7.5 Yes male

The in-clinic study days, i.e., the runs belonging to blocks A and C, include the following glucose
data: blood samples taken routinely every 10 to 20 min via a venous catheter for BG reference using
a HemoCue Glucose 201 + (HemoCue, Sweden); regular SMBG samples taken via finger pricking
about every 60 min using an Ascensia Contour (Bayer, Switzerland) glucose monitor. The home-use
days, i.e., the runs belonging to blocks B and D, include only the SMBG measurements, which were
taken in free-living conditions. In total, during the 4 study blocks, 3431 HemoCue and 13,338 SMBG
measurements were collected. Moreover, for each run in blocks A, B, C, and D, the raw data collected
with the Multisensor were available for processing. The Multisensor device, which has been extensively
described in previous studies (see, e.g., [21] and references quoted in) and is shown in Figure 1, embeds
dielectric spectroscopy and optical modules, as well as temperature, humidity, and sweat sensors, plus
a 3-axes inertial sensor. All sensor signals were measured and recorded every 20 s. The capabilities
of the Multisensor system have been expanded in a separate development in the last few years with
new algorithmic routines allowing the monitoring of vital signs such as heart rate, pulse oximetry,
and heart rate variability within an upper arm worn subsystem of the Multisensor, focusing around
optical sensing and now commercially termed Everion® [22,23].
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0 and ended after 18 months. Block A and C correspond to in-clinic sessions, while block B and D
correspond to home-use of the device.
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2.2. Method

To retrospectively reconstruct the BG time-series from the raw Multisensor data and relative
reference BG samples, we implemented a two-step procedure, illustrated in Figure 3. In step 1, the raw
Multisensor data were transformed to a BG estimate through a multiple linear regression model.
In step 2, an enhancing module was applied to improve the accuracy of the BG estimation obtained at
step 1 by retrofitting available SMBG samples through a time-varying linear model. The two steps are
described in detail in the following subsections.

2.2.1. Step 1: Multiple Linear Regression

The multiple linear regression step implements the same model proposed in recent literature to
estimate the BG from the Multisensor data [16–18]:

y = Xβ+ e, (1)

where y is the n × 1 vector collecting the BG reference samples, X is the n × p matrix containing the
Multisensor measurements, β the p × 1 vector of model coefficients, and e the n × 1 error vector,
assumed to be independent and identically distributed.

The data collected in X depicted in Figure 3 (first panel), are characterized by high dimensionality
and high correlation because most of the p channels of the Multisensor provide measurements of
dielectric properties of the skin as a function of the frequency, thus exhibiting the correlated behavior
typical of spectroscopy data. The problem of estimating β from Equation (1) is thus ill-conditioned,
requiring a suitable regularization approach to control complexity and avoid overfitting. Here, we
used the elastic net regularization, resulting in the following solution:

β̂ = argmin
β

(
‖y−Xβ‖2

2 + α‖β‖2
2 + (1−α)‖β‖1

)
, (2)

where α is the hyper parameter balancing the linear and quadratic penalty terms (details on its
estimation later in Section 2.3.1).

The model coefficients β̂ were estimated from the training set, and then used to obtain the BG
glucose prediction, ŷ, on an independent test set (training and test sets will be defined in Section 2.3.1):

ŷ =Xβ̂. (3)

The estimated BG profile ŷ was then scaled to match the first BG reference as in [16–18]
(see second panel of Figure 3, dots and black curve, vs. SMBG references, triangle and red curve, from
a representative subject). Note that, as a preprocessing procedure, the first 75 min of each Multisensor
channel were removed from each run, since an adaptation process due to the Multisensor/skin contact
dominates this time interval. Also, the Multisensor measurements in X were standardized to have
unitary standard deviation (in the test set, the standard deviation estimated from the training set
was used).

2.2.2. Step 2: Enhancing Module

The enhancing module was applied in cascade to the multiple linear regression to obtain a more
accurate glucose estimation, by exploiting the available SMBG references. In particular, given the BG
estimation of step 1, ŷ, let z be the vector containing the samples in ŷ corresponding to the time instants
at which the SMBG references were collected. Then, the following model was used to relate the BG
estimation given by the linear regression model to the reference BG:

z = u + b + c∆t + w, (4)
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where u is the vector of SMBG reference values, w is the measurement noise, b and c are model
parameters, and ∆t is the vector containing the times from sor application (in min) at which each SMBG
was acquired. The model parameters b and c are estimated by least squaresens:

b̂, ĉ = argmin
b,c

‖z− u− b− c∆t‖2
2. (5)

Then, the enhanced BG estimation, ŷen, is obtained as follows:

ŷen = z− b̂− ĉ∆t. (6)

The enhanced BG profile ŷen is shown in the third panel of Figure 3, blue curve, vs. the output of
step 1 (ŷ, dots and black curve) and the SMBG references (triangle and red curve), for a representative
subject. The enhancing module and, in particular, the use of the time-varying model of Equation (4)
serves to adjust the point BG estimate by considering possible time-varying factors, e.g., environmental
or non-glucose related phenomena that can influence the estimation. An example of this phenomenon
is observable in Figure 3, second panel, where the BG estimation before the enhancing module shows
a time-varying drift with respect to the reference BG. The application of the enhancing module, and, in
particular, of the time-varying model of Equation (4), allows the compensation of such drift, as visible
in the enhanced BG estimation profile reported in the bottom panel of Figure 3.
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time-series from the Multisensor measurements (real data from one representative subject). From top to
bottom: raw Multisensor measurements, converted by the multiple linear regression (step 1) into a BG
estimate (black curve, vs. reference measurements, red curve), further converted by the enhancing
module (step 2) to enhanced BG estimate (blue curve, vs. BG estimate, black curve, vs. BG reference,
red curve).
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2.3. Implementation

2.3.1. Dataset Subdivision into Training and Test Sets

To assess the method and fairly evaluate the performance, the entire dataset has been subdivided
into training and test sets. The available data from blocks A, B, and C were used as a training set to
estimate the regression model parameters β̂ of Equation (2). In particular, we used all BG references
acquired either with the EmoCue instrumentation or with the standard SMBG finger prick device for
the estimation (i.e., in Equation (1), vector y contains all available BG references in the 20 subjects and
matrix X contains the Multisensor measurements at corresponding times). In addition, the training
data were also used to estimate the regularization hyperparameter α in Equation (2) by minimizing the
standard error as calculated during a 5-fold cross-validation internal to the training set (i.e., the training
runs were divided into 5 folds; for each fold, the standard error was computed by applying the
regression model estimated in the remaining 4 folds, for various values of α). The available data from
block D (which, we remind, were data acquired during free-living conditions) were used as a test set
to assess the method. Firstly, the linear regression step was applied to each run as in Equation (3).
Then, the enhancing module was used as in Equation (6). The parameters b̂ and ĉ of the enhancing
module were estimated, for each run, by fitting the vector u of available SMBG references. In particular,
besides using all available SMBG references, we also tested different scenarios in which a different
number of SMBG samples were considered (from 10 to 4 SMBG references per run), in order to assess
the robustness of the method against the number of available reference points. To create the scenarios
with fewer than the total number of available SMBG, we defined a uniform time grid with the desired
frequency of SMBG per run (from 10 to 4 references per day) and selected the references closer to the
defined sampling times.

2.3.2. Comparison with the Current State-Of-The-Art Method

To assess the performance of our two-step method, we compared the accuracy of the reconstructed
BG time-series to that obtained with the method discussed in [16–19] (hereafter referred to as the
baseline method). It is based on a multiple linear regression model (like that used in step 1 of our
two-step method) plus a one-point calibration to adjust the offset of the estimated BG profile by adding
a constant value. In formal terms, with all variables as defined previously and k calibration constant,
the baseline method is represented by:

ŷ = Xβ̂+ k. (7)

The value of the constant k was determined in a one-point calibration procedure by matching the
first BG reference acquired after sensor application.

The baseline method as described in [16–19] is intended for real-time use. The comparison of
our retrospective approach with this real-time approach would not be fair, since we would use more
information than only one BG reference. Thus, to allow a fair comparison, we fed the baseline method
with the same amount of information used by our method, i.e., in estimating k in Equation (7) we used
the mean of all available BG references instead of using only the first BG collected. Note that, for the
baseline method, the estimation of the regression model parameters β̂ was conducted as in step 1 of
our two-step method, with the same training–test subdivision of the dataset.

2.3.3. Performance Metrics and Statistical Analysis

The performance of our method and of the baseline method was assessed in terms of accuracy
by comparing the retrospectively reconstructed BG time-series under test and the SMBG references
acquired at the same time instants, using standard metrics. In particular, we performed two different
evaluations. When all SMBG references were used to retrospectively reconstruct the BG time-series, then
the same SMBG points were also used for accuracy assessment (indeed, there are no other references
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available to compute accuracy). When instead only a subset of the available SMBG references were
used in the estimation, accuracy was computed in the remaining subset.

For each run, we computed the mean absolute difference (MAD) and the MARD [24]. We then
computed the percentage of data matching the SMBG standard International Organization for
Standardization (ISO) 15197:2013 [25], i.e., the percentage of data falling within either 15 mg/dL from
the reference measurement if the reference was lower than 100 mg/dL or within 15% of reference if
reference was above 100 mg/dL (15/15%). We also considered two other ranges, 20/20% and 30/30%.
Moreover, accuracy was assessed by computing for each run the percentage of data falling in zone A
and zone B of the Clark Error Grid (CEG) [26]. Finally, the population mean (standard deviation) was
reported for normally distributed metrics and population median [interquartile range] was reported
for non-normally distributed metrics. Normality was assessed by the Lilliefors test.

The statistical significance of the differences in performance metrics obtained with our method and
with the baseline method was determined by a Wilcoxon signed-rank test for non-normally distributed
data and by a paired t-test for normally distributed data. In particular, we tested the null hypothesis
that the median/mean (in case of non-normally/normally distributed data) difference between the
paired values of the two groups was zero, with a significance level of 0.05.

3. Results

Table 2 shows the performance metrics of the new method compared to the baseline method when
all available SMBG references were used to retrospectively reconstruct the BG time-series. The average
number of SMBG samples used was 10 per run. The new method shows superior performance
compared to the baseline method for all the considered metrics. Also, the improvement brought by
the new method was statistically significant for all performance metrics (p-values < 10−3, not shown).
In particular, focusing on metric MARD, which is one of the most popular metrics used in recent
literature, a significant improvement from 25% to 20% (p-value < 10−10) was observed. A boxplot of
the MARD distribution in the population is reported in Figure 4a, where the left boxplot refers to the
baseline method and the right boxplot to the new method, showing a significant MARD reduction.
This global performance improvement was also observable at a single-run level.

Table 2. Performance metrics as median [interquartile range] or mean (standard deviation). MAD:
mean absolute difference, MARD: mean absolute relative difference, CEG: Clark Error Grid.

Pairs (#) MAD
(mg/dl)

MARD
(%)

15/15%
(%)

20/20%
(%)

30/30%
(%)

CEG-A
(%)

CEG-A + B
(%)

Baseline method 10 [3] 29 [16] 25 [14] 40 [27] 54 [28] 75 [29] 54 [29] 92 [26]
New method 10 [3] 24 [13] 20 [12] 50 [28] 64 [28] 82 [19] 64 [28] 94 [25]

In Figure 4b, we depicted how the MARD changes in each single run under test when passing
from the baseline method to the new method. In particular, in the left plot we reported (in red) the
runs in which the MARD does not improve with the new method, while in the right plot we reported
(in green) the runs that show a MARD improvement with the new method. As clearly observable from
the figure, there are only a few runs (about 5% of all test runs) in which the MARD shows a very slight
deterioration (runs in left panel, in red). On the contrary, the majority of the test runs (runs in right
panel, in green) shows a significant improvement with the new method.
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In Figure 5, we reported the estimated BG time-series versus the reference SMBG measurements
in a representative subject and run. It is observable how the BG estimation obtained with the new
method (blue line) is much closer to the reference SMBG samples (red line) than the BG estimation
obtained with the baseline method (black line). Indeed, MARD values of this specific run and subjects
were 35% and 25% with the baseline and new method, respectively.
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After having demonstrated the superiority of the present method compared to the state-of-the-art
baseline method, we also assessed the robustness of the new method against the number of SMBG
references used to retrospectively reconstruct the BG time-series. In particular, we implemented the
enhancing module (step 2 of the procedure described in Section 3) by varying the number of SMBG
references from 10 to 4 per run.

Results of this assessment are reported in Table 3. Although, as expected, there was a slight
deterioration of performance when reducing the number of SMBG references used for the estimation,
the method appears relatively robust against the number of references available.

Indeed, the performance of the new method was always superior to that of the baseline method,
independently from the number of SMBG references used (see the comparison reported for each
performance metric in Table 3). Also, with the new method, even in the case in which only four SMBG
samples were used, 90% of the estimations were in zone A or B of the CEG.

Table 3. Performance metrics as median [interquartile range] or mean (standard deviation).

Method SMBG #pairs
{#runs}

MAD
(mg/dl)

MARD
(%)

15/15%
(%)

20/20%
(%)

30/30%
(%)

CEG-A
(%)

CEG-A + B
(%)

New Baseline 4/run 5 {723} 29 [16]
35 [18]

25 [18]
30 [20]

43 [35]
35 [32]

56 [35]
46 [36]

75 [26]
64 [23]

50 [35]
41 [32]

90 [33]
83 [35]

New Baseline 5/run 5 {546} 27 [18]
34 [17]

24 [19]
29 [19]

45 [35]
36 (34)

54 [35]
45 [35]

75 [40]
65 [30]

50 [35]
40 (30)

83 [33]
75 [33]

New Baseline 6/run 5 {333} 28 [16]
34 [18]

24 [16]
28 (20)

43 [35]
35 [32]

56 [35]
45 (33)

75 [40]
65 [30]

50 [35]
42 [31]

83 [33]
75 [33]

New Baseline 7/run 5 {205} 28 [18]
34 [16]

25 [19]
29 [19]

40 [35]
34 [30]

50 [35]
42 [34]

75 [40]
64 (35)

50 [35]
41 [32]

83 [33]
73 (35)

New Baseline 8/run 5 {123} 28 [20]
35 (17)

25 [20]
28 (19)

50 [35]
39 (30)

57 [35]
46 [35]

75 [28]
64 [28]

50 [35]
40 [34]

87 [33]
77 [31]

New Baseline 9/run 5 {72} 26 [17]
34 [18]

27 (13)
30 [18]

50 [38]
40 [32]

54 [32]
44 (30)

76 [21]
64 [28]

50 [32]
42 (32)

75 [32]
67 [30]

New Baseline 10/run 5 {38} 29 (13)
35 (18)

22 [19]
28 (19)

50 [35]
40 [32]

67 [25]
55 [30]

80 [40]
68 (30)

63 [35]
53 [32]

95 (22)
85 [31]

4. Discussion

Wearable non-invasive technologies for blood glucose monitoring, although widely investigated,
still show important accuracy issues that hinder their use in a prospective real-time scenario.
One of the major issues that contribute to sensor inaccuracy is the influence of external
perturbations, e.g., environmental factors and non-glucose-related physiological confounders, on
sensor measurements. The Multisensor system aims at mitigating the effect of such perturbing factors
by embedding both glucose and non-glucose-related sensors in the same device and compensating for
those via a multiple linear regression model [16–19]. We refer to this approach as the baseline method
for BG estimation with the Multisensor.

A recent study showed that the Multisensor accuracy in estimating BG in free-living conditions
and in a fully prospective scenario was 35.4% MARD [18]. The same prospective scenario, when applied
in strictly controlled conditions, showed instead 21.1% MARD [19], confirming that the environmental
and physiological perturbations typical of the uncontrolled conditions significantly impact sensor
accuracy and thus need more sophisticated compensation.

Acknowledging the current existing accuracy limitations in utilizing the Multisensor for
prospective (i.e., online) BG estimation, we analyzed here the less challenging, but still interesting,
scenario of retrospective (i.e., offline) BG estimation. A retrospective approach allows the use of a few
BG references to match the Multisensor estimation and compensate for those sources of bias (caused
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by physiological and/or environmental factors) that we may currently not be able to capture/describe
with the Multisensor measurements/models.

In the retrospective approach presented in this paper, we have developed an enhancing module
to be applied in cascade to the Multisensor regression model. The enhancing module consists of
a time-varying linear model fit to a few SMBG references per day. To compare our results with the
baseline method, we considered a retrospective implementation of the baseline method where we
used exactly the same amount of information to feed the models, i.e., the same Multisensor input and
the same SMBG references. The new method here proposed shows improved accuracy compared to
the retrospective implementation of the baseline method, independently from the number of SMBG
references used. When an average of 10 SMBG references per day was used as input data, MARD was
reduced from 25% (baseline method) to 20% (new method). Also, the new method maintains superior
performance compared to the baseline method when the number of SMBG inputs was reduced from
10 to 4 per day (30% MARD vs. 25% MARD).

The increased accuracy brought by the enhancing module attached in cascade to the regression
model came at the cost of no more prospective applicability. However, we believe that a retrospective
BG estimation from a non-invasive wearable device can still be useful for various applications. First of
all, to estimate quality of glycemic control, magnitude of glycemic variability, daily patterns of hypo-
and hyperglycemia, and time of day with the highest risks of hypo- or hyperglycemia events. Secondly,
the retrospectively estimated BG profile and relative identified patterns can be subsequently used to
make long-term changes in diet, medications, insulin, and physical activity [27]. Such applications
are of interest not only for people with diabetes, but also to guide prediabetic or nondiabetic people
through life-style changes towards healthier habits [28].

5. Conclusions

Given their potential advantages in terms of economic cost and user acceptability, NI-CGM devices
can represent an interesting tool to investigate. In recent studies, encouraging results of NI-CGM have
been shown in controlled situations, but their use in free-living conditions still represents a challenge,
mostly because of inaccuracy problems related to the influence of intrinsic and extrinsic perturbing
factors that can have adverse effects on the sensor measurements.

In the present study we assessed the accuracy of a multisensor device for NI-CGM in the
less challenging, but still useful application, of retrospective, off-line, BG estimation. We proposed
a two-step procedure in which, at step 1, the Multisensor measurements were combined into a BG
estimate by multiple linear regression, and at step 2 an enhancing module, which represents the
major novelty of this work, was used to improve the BG estimation. The method proved effective
in retrospectively reconstructing the BG time-series, showing improved performance compared to
a current state-of-the-art method used as a baseline for comparison. In particular, MARD was reduced
from 25% of the baseline method to 20% of the new method.

Although the point accuracy was still significantly worse than that of minimally invasive CGM
sensors, the BG estimations obtained by retrospectively processing the Multisensor data could be
combined and used as additional and complementary information to the vital signs already provided
by Everion®. It provides medical grade heart rate, blood oxygenation and perfusion, respiration
rate, and further derived parameters [22,23,29], with the aim of facilitating effective glucose control in
patients with diabetes but also in prediabetic or nondiabetic users that can benefit from this additional
information for life-style changes, such as diet, weight loss programs, or physical exercise.
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