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Abstract: For the research and development of sensor systems, the collection and fusion of sensing
data is the core. In order to make sensor data acquisition change with the change in environment,
a dynamic data acquisition and fusion method based on feedback control is proposed in this paper.
According to the sensing data acquisition and fusion model, the optimal acquisition of sensor data
is achieved through real-time dynamic judgment of the collected data, decision-making of the next
acquisition time interval, and adjustment. This model enables the sensor system to adapt to different
environments. An experimental study of the proposed model was carried out on an experimental
platform, and the results show that the proposed model can not only reflect the change in sensing
data but also improve the transmission efficiency.
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1. Introduction

Sensors are one of the main equipment for data acquisition and an important bridge to obtain
environmental information. How to process the data collected by sensors is a hot research topic in
industry. Because of the complex and changeable environment, sensors cannot perform their best.
How to dynamically adjust the sensor acquisition frequency according to environmental changes and
then fuse the sensor data is therefore very meaningful.

Sensor data acquisition indicators include accuracy and bandwidth. The former requires the
collected data to accurately reflect the objective facts, while the latter requires the collected data to
be as few as possible in order to achieve the fastest transmission efficiency. At present, there are two
kinds of sensor data acquisition methods in industry and academia: the best accuracy method and the
minimum bandwidth method.

In order to improve the accuracy of the best accuracy method, we usually adopt the method of
shortening the acquisition time interval. The advantages of this method are high precision and accurate
prediction, while the disadvantages are larger transmission bandwidth occupation and lower handling
efficiency. The sensor data collection of DSP chip TMS320VC33 [1] and the sensor data collection based
on the Advantech card PCI-1811L [2] are examples of the best accuracy method.

In the minimum bandwidth method, in order to reduce the number of acquisitions, we usually
expand the acquisition time interval. Therefore, the minimum bandwidth method reduces the
number of acquisitions and achieves the real-time processing requirements for environmental data.
The advantage of this method is high collection efficiency that is suitable for concurrency and real-time
systems, while the disadvantage is lower collection precision. The multiplex signal asynchronous
sampling model proposed by Shi et al. [3], microbial environmental data collection [4], data collection
in biological and environmental sciences [5], and collection of experimental data for aerosol monitoring
cyclones [6] belong to this sensor data acquisition method.
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In practical applications, the best accuracy method and the minimum bandwidth method are
often combined. The merged method is a compromise method, which uses as little bandwidth as
possible to meet the basic acquisition accuracy, thus promoting the progress of environmental data
acquisition [7–9].

However, the traditional method is a static method, which does not take into account the dynamic
characteristics of current environmental data. If we can mine the changes in sensor data from the current
collected data in the recent period, then we can regard them as a priori knowledge to dynamically
adjust the collection intervals and therefore achieve collection precision and maximum utilization of
transmission bandwidth. Based on this, we adopted a dynamic collection method for sensor data
that predicts the changing degree of data according to the collected sensor data and decides whether
the current acquisition timeintervals need to be dynamically adjusted. If the timeintervals need to
be adjusted, then the algorithm will be immediately conducted; otherwise, the original values are
maintained. The method proposed in this paper can achieve collection precision and maximum
utilization of transmission bandwidth.

In this paper, we propose a dynamic and adaptive data acquisition interval adjustment method to
solve the problem of data acquisition efficiency and accuracy.

The key issues are judgment of data changing degree and dynamic regulation of acquisition
timeintervals. The judgment process of data changing degree is as follows. First, collect N data and
compute the predicted value of the N+1 data based on the collected N data. Second, collect the N+1
data and compute its measured value. Finally, compare the predicted value and the measured value
of the N+1 data.If the difference between the predicted value and the measured value of the N+1
data exceeds the designated threshold, the acquisition timeintervals need to be adjusted. The existing
research includes the Delta model [10], Markov model [11], Shirai model [12], and data detection
model [13]. The process of dynamically adjusting the acquisition timeintervals is as follows. According
to the current changing degree of collection data, adaptively adjust the acquisition timeintervals, i.e.,
designate a basic acquisition time unit in advance, and the practical collection timeinterval is K times
the basic acquisition time unit (K is an integer).When the collection timeinterval needs to be increased,
appropriately increase the value of K; otherwise appropriately decrease the value of K acquisition time.
The existing research includes [14–16].

In order to verify the method of dynamic sensing data acquisition, we used the W5 experimental
system [17], which has common sensor types. This is an experimental system for monitoring, image
acquisition, data analysis, meteorological prediction, and pesticide spraying. It is simple and direct
and was therefore chosen as the experimental platform in this study.

The quality and efficiency of sensor data acquisition are of great significance to Internet of Things
equipment, namely, (1) improving the quality of Internet of Things equipment because accurate sensor
data is the scientific basis for improving the quality of equipment; (2) real-time understanding of
the status of equipment because staff can understand the status of the system in real time through
sensor data acquisition so as to monitor the equipment; (3) measuring the quality of Internet of Things
equipment. In practice, the quality and efficiency of sensor data collection are always regarded to be
an important factor to measure the quality of Internet of Things equipment.

The aim of this study was to introduce the dynamic change judgment model of sensor data and
adjust the acquisition frequency in real time according to the change in sensor data. The change
insensor data was calculated and judged according to data collected in the recent period, and the
amount of data collected depended on the performance of the system. Feedback control was used
to deal with the change in environment and make the model adaptive. We mainly investigated the
acquisition timeinterval algorithm and the data changing degree judgment algorithm.

The rest of this paper is organized as follows. Section 2 discusses the dynamic acquisition
algorithm of sensor data, including judgment of the degree of data change, adjustment of acquisition
time interval, dynamic acquisition model of sensor data, and the method of data fusion. Section 3
outlines the experiment, and Section 4 concludes the work.
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2. Dynamic Acquisition and Fusion

2.1. Data Change Decision

In data change decision, we make decisions based on the data currently collected. It determines a
collection window in advance and then fits the data in the collection window and predicts the data of
the next collection point. After collecting the data of the next collection point, the predicted data and
the practical data are compared. If the compared result exceeds the specified threshold, the data is
regarded to be changing remarkably; otherwise, the data is considered to be changing slowly.

During the whole movement process, due to the interference of external factors, the change in
sensor data appears irregular. However, in a relatively small range, this change can be approximated
by a function [14]. In order to facilitate calculation, the data in the acquisition window are processed
by regression.

Suppose m to be the size of the collection window. For xi, which is one of the components of X,
we continuously conduct the collection process m times, i.e., collect m times the values of xi,1, xi,2, . . . ,
xi,m and then predict the value of xi,m+1 based on the collected data.

If the predicted value of xi is xi’, then the absolute value of the degree of change will be |xi – xi’|.
Let D

m
i denote the variance of m collection points related with xi. Then, |xi – xi’|/D

m
i denotes the

relative changing degree related with xi. Obviously, the relative changing degree is a numeric number
greater than 0, and in most cases, the number is less than 1.

For the method of data change decision, we give a data changing degree threshold [ε−, ε+] in
advance and then compare the value of actual change and the threshold. If the value of actual change
is greater than the given threshold ε+, we regard the data change as exceeding the maximum linear
errors permitted by the system, and the acquisition time intervals will be shortened to improve the
fitting precision. If the actual change is less than the given threshold ε−, we regard the data change
as lower than the minimum linear errors permitted by the system and then adopt the method that
increases the acquisition timeintervals to decrease the bandwidth. If the actual change is within the
interval [ε−, ε+], we regard the current acquisition timeintervals as better portraying the changing data,
and the acquisition timeintervals are kept the same. Equation (1) formalizes these situations.

∣∣∣∣xi − x′i

∣∣∣∣/D
m
i > ε

+ shorten collecting interval∣∣∣∣xi − x′i

∣∣∣∣/D
m
i < ε

− increase collecting interval

otherwise mantain collecting interval

(1)

In Equation (1), xi takes values according to the domain knowledge; xi’ is the predicted value of xi,
whose unit is the same as xi; m is the size of the collection window, i.e., the number of samples; D

m
i is

the variance of m samples; ε− is the minimum threshold of data changing degree; ε+ is the maximum
threshold of data changing degree. The size of the collection window, m, is set according to the domain,
and the values of m are different in different fields. If m takes the larger values, more historical data is
used for prediction and the predicting precision is higher, but the time consumption is larger. If m
takes the smaller values, less historical data is used for prediction and the predicting precision is lower,
but the time consumption is smaller.

Equation (1) shows that the correction of the acquisition interval is not only related to the deviation
between the current value and the mean value but also to the variance of the acquisition interval. This
is an optimization process, and by constantly calculating deviations and variances, we can find a local
optimal time interval.

2.2. Dynamic Regulation

When the system judges the data changing degree as greater than the preset threshold, it will
adjust the acquisition timeintervals dynamically. In the following section, the dynamic regulation
technique based on acquisition timeintervals is introduced.
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Definition 1 (acquisition time slice, ∆τ). The acquisition time slice is the basic unit of acquisition time,
and the acquisition time interval consists of one or more acquisition time slices.

Suppose acquisition timeinterval to be T and T = K∆τ, where K takes the integers greater than or
equal to 1.

The basic unit of dynamic adjustment technology based on acquisition time interval is the time

slice: When
∣∣∣∣xi − x′i

∣∣∣∣/D
m
i > ε

+ , the collection timeinterval will decrease ∆τ, and this judgment will

be conducted periodically, i.e., if
∣∣∣∣xi − x′i

∣∣∣∣/D
m
i > ε

+ still holds, then the acquisition timeinterval will

continue to decrease ∆τ until the condition does not hold; when
∣∣∣∣xi − x′i

∣∣∣∣/D
m
i < ε

− , the acquisition

timeinterval will increase ∆τ, and this judgment will be conducted periodically, i.e., if
∣∣∣∣xi − x′i

∣∣∣∣/D
m
i < ε

−

still holds, the acquisition timeinterval will continue to increase ∆τ; in other cases, the collection
timeinterval will stay unchanged.

A dynamic regulation method based on acquisition time and feedback control is shown in Figure 1.
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Figure 1. Dynamic regulation based on acquisition time and feedback control.

In Figure 1, the control index is the data changing threshold [ε−, ε+], which is used to adjust the
acquisition timeinterval; the controlled object is the collection timeinterval T, which is a variable; and
the control law is the associated relationship formed by data collection, computing D

m
i , predicting xi’,

computing
∣∣∣∣xi − x′i

∣∣∣∣/D
m
i , comparing [ε−, ε+], and so on.

The implementation steps for dynamically regulating the acquisition timeinterval based on
feedback control are as follows.

First step: Initialize system and define the size of the collection window, data changing degree threshold,
and size of the acquisition time slice.
Second step: Start the timer and make the timeinterval of the timer equal to the acquisition timeinterval.
Third step: Conduct the data acquisition.
Fourth step: Collect the data in the acquisition window and compute the variance and predict the
value of the next acquisition point.
Fifth step: Collect the next data point and conduct comparison with the predicted value and compute
the relative changing degree.
Sixth step: Judge according to the changing degree, i.e., if the changing degree is larger than the given
maximum threshold, decrease the current collection timeinterval; if the changing degree is smaller
than the given minimum threshold, increase the current acquisition timeinterval.
Seventh step: Modify the current timeinterval of the timer and make it equal to the new
acquisition timeinterval.
Eighth step: Execute steps 3–7 repeatedly until the end of data collection.
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Algorithm 1. Dynamic Adjustment Algorithm of Acquisition Time Interval

Input: m, size of acquisition window; [ε−, ε+], threshold of data changing degree; T, acquisition timeinterval;
∆τ, acquisition time slice; alpha, threshold of confidence;

Output: S, acquisition dataset;

Design of algorithm:

(1) Initialization (m, [ε−, ε+], ∆τ); //System initialization

(2) Start the timer with T; //Start the timer with collection timeinterval T

(3) while (acquisition is not terminated) { //data acquisition loop

(4) S← conduct collection;

(5) W← get data (S, m); //get the collect data to W

(6) Wvar = var(W); //compute the variance of the dataset W

(7) x’←regress_predict(W, alpha); //predict by regress method

(8) x← sampling(S); //collect the value of the next point

(9) if(|x - x’| / Wvar> ε+) {

(10) T = T – ∆τ; //Decrease the acquisition timeinterval

(11) }else if(|x - x’| / War < ε−) {

(12) T = T + ∆τ; //Increase the acquisition timeinterval

(13) }

(14) } //The system converges or runs the prescribed iteration steps

Remarks: In Algorithm 1, firstly initialize the system according to the parameters, such as the
size of acquisition window, data changing degree threshold, and acquisition time slice. Then, start the
timer and set the initial collection timeinterval to be T. Finally, enter into the data acquisition loop.
In the data acquisition loop, firstly save the collected data into the dataset S, then compute the variance
of the data in the acquisition window according to the collected data, and then conduct the regression
analysis for the data in the collection window and predict the value of the next acquisition point.
According to Equation (1), judge whether the data changing degree exceeds the preset threshold. If the
value of the relative changing degree is greater than the maximum data changing degree threshold,
the acquisition timeinterval will be decreased by an acquisition time slice; if the value of the relative
changing degree is less than the minimum data changing degree threshold, the acquisition timeinterval
will be increased by an acquisition time slice; and in other circumstances, the acquisition timeinterval
will be maintained.

In addition, in the dynamic adjustment algorithm of acquisition timeinterval, the sampling interval
is adjusted by adding or reducing a fixed time unit. When the deviation between the predicted value
and the actual value is large, the increase or decrease of the calculation is linear and frequent. When
the deviation between the predicted value and the actual value is small, the increase or decrease of
the calculation will occur less. This is an effective adjustment method, which has three advantages:
(1) simple and easy to implement; (2) high operating efficiency; (3) high fault tolerance if the time slice
value is small.

The potential algorithms in this paper include data preprocessing, calculation of acquisition
interval, acquisition of data transmission rate, dynamic adjustment of acquisition interval, etc. Their
logical relationship is that data preprocessing is carried out first, and periodic cycle is then introduced.
In the cycle, data are collected according to the current acquisition interval, and the data transmission
rate is detected; the mean and variance are also computed at the same time. According to the
transmission rate, adjust the acquisition interval or maintain the status quo so that the cycle continues
until the completion of data acquisition.
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Because this algorithm collects data from adjacent time intervals, the number of acquisitions is
small, and the training can be completed in a very short time. In addition, there is a local correlation
between the data, which also ensures the validity of the training model. The training model is a linear
model. According to the current fitting model, the data of the next moment are predicted, and a new
fitting model is then generated at the next moment to predict the data of the next time, i.e., iteration.

Acquisition and fusion of sensor data is an organic whole. After the data of the first N frames
are collected by several sensors, the average values are fused and compared with the actual values to
determine the sampling rate of the next frame.

3. Sensor Data Acquisition System

3.1. System Composition

W5 is an experimental system for verifying sensor networks, which has the advantages of
convenient operation, high accuracy, reliable transmission, and accurate positioning. W5 has been
proven to be stable, functional, and expansible in multiparty testing and teaching, and it can play a
good platform role in practical research. This training platform provides full ecological practice training
for sensing equipment, which involves many contents, such as the Internet of Things technology,
electronic engineering, computer engineering, mobile internet, communication engineering, biomedical
electronics, and so on [18–25]. It is especially suitable for Internet of Things, electronic engineering,
computer software, medical electronics, and communication engineering. An image of the system is
presented in Figure 2.
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The sensor network of W5 consists of ground control station, remote control adapter, radio control
(RC) receiver, RC controller, data radio, autopilot, and so on, as shown in Figure 3.

Sensors 2019, 19, x 6 of 12 

 

Acquisition and fusion of sensor data is an organic whole. After the data of the first N frames 

are collected by several sensors, the average values are fused and compared with the actual values to 

determine the sampling rate of the next frame.  

3. Sensor Data Acquisition System 

3.1.System Composition 

W5 is an experimental system for verifying sensor networks, which has the advantages of 

convenient operation, high accuracy, reliable transmission, and accurate positioning. W5 has been 

proven to be stable, functional, and expansible in multiparty testing and teaching, and it can play a 

good platform role in practical research. This training platform provides full ecological practice 

training for sensing equipment, which involves many contents, such as the Internet of Things 

technology, electronic engineering, computer engineering, mobile internet, communication 

engineering, biomedical electronics, and so on [18–25]. It is especially suitable for Internet of Things, 

electronic engineering, computer software, medical electronics, and communication engineering. An 

image of the system is presented in Figure 2. 

 

Figure 2.W5 experimental platform. 

The sensor network of W5 consists of ground control station, remote control adapter, radio 

control (RC) receiver, RC controller, data radio, autopilot, and so on, as shown in Figure 3.  

 

Figure 3.W5 sensor network. Figure 3. W5 sensor network.



Sensors 2019, 19, 3668 7 of 12

In Figure 3, the components of the W5 system are divided into two classes: sensor parts and
controlled parts. The controlled parts include autopilot, airborne data radio, and so on, while the
sensor parts include ground control station, RC receiver, RC controller, remote control adapter, ground
data radio, and so on.

In the W5 system, there are three wireless transmission paths: the first is the wireless transmission
path between RC controller and RC receiver, whose frequency is 2.4 GHz; the second is the wireless
transmission path between ground data radio and airborne data radio, whose frequency is 433 MHz;
and the third is the wireless transmission path between the video receiver on ground and the video
capture card onboard, whose frequency is 5.8 GHz.

There are three functional modules in the W5 system: (1) remote control module, i.e., the data link
consisting of RC remote controller, RC receiver, remote control adapter, ground data radio, and airborne
data radio, whose function is to provide the interfaces for users to remotely control the controlled
objects; (2) planning and management module, i.e., the data link consisting of ground control station,
remote control adapter, ground data radio, airborne data radio, and autopilot, whose function is route
planning, task management, and automatic control; (3) video collection module, i.e., the data link
consisting of the video receiver on the ground part and the video capture card on the airborne part,
whose function is video collection, video display, and video recording.

3.2. Sensing Data Acquisition

The acquisition of sensor data involves different devices, including the following:

(1) Location identification: data obtained from the sensor of the global positioning system
(GPS) receiver

(2) Number of satellites: data obtained from the sensor of the GPS receiver
(3) Control pattern: data obtained from the ground control station
(4) Type of reception: data obtained from the ground control station
(5) Identification of reception: data obtained from the sensor of the RC receiver
(6) Mark of automatic aerial photography: data obtained from the ground control station
(7) Mark of cycling route: data obtained from the ground control station
(8) Flight mode: data obtained from the sensor of the RC remote controller and the ground

control station
(9) Types of taking off and landing: data obtained from the sensor of the RC remote controller and

ground control station
(10) Longitude and latitude: data obtained from the sensor of the GPS receiver
(11) Heading: data obtained from the sensor of the autopilot
(12) Speed: data obtained from the sensor of the autopilot
(13) GPS altitude: data obtained from the sensor of the GPS receiver
(14) Barometric height: data obtained from the sensor of the autopilot
(15) Distance to the destination waypoint: data obtained from the sensor of the autopilot
(16) Lateral deviation distance: data obtained from the sensor of the autopilot

In order to facilitate research, the relevant variables are formalized, namely, location identification
(x1), number of satellites (x2), control pattern (x3), type of reception (x4), identification of reception
(x5), mark of automatic aerial photography (x6), mark of cycling route (x7), flight mode (x8), types of
taking off and landing (x9), longitude (x10)and latitude (x11), heading speed (x12), GPS altitude (x13),
barometric height (x14), distance to the destination waypoint (x15),and lateral deviation distance (x16):

X = [x1, x2, . . . , x16] (2)

Obviously, X is a 16-dimensional vector.
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Vector is a good way to express input data. It expresses equations in a concise way, and it is
suitable for multidimensional data applications. Therefore, the X represents the input data.

We can regard the sensor data as a time-varying function X(t) = f(t) = [x1(t), x2(t), . . . x16(t)].
Obviously, the changes in X(t) are related to the sensor device, and different time intervals correspond
to different states.

When the data changing degree is different, the acquisition period has a different influence on the
change curve, i.e., the larger the acquisition period, the harder it is for the change curve to reflect the
real situation; in contrast, the smaller the acquisition period, the greater the impact on the efficiency of
the system. Therefore, the data acquisition algorithm based on equal timeinterval is low efficiency,
which ignores the changing feature of acquisition data.

4. Experiments

We used W5 experimental device for dynamic data acquisition and fusion experiments, and the
results are shown in Figures 4–6.

Figures 4–6 are the first phase of the experiment and show the changing situations of collection
data in the following time intervals: 0–100, 101–200, and 201–300 s.
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In Figure 4, it can be seen that the curve changes sharply in the 51–75 s time interval. If equal
timeinterval collection is adopted, it will be hard to find the details of the changes. Therefore, within
51–75 s, the sampling rate needs to be reduced to find the detailed changes.
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In Figure 5, the current sampling rate is too large for data collection in the 101–125 s and 175–200 s
time intervals. Therefore, the sampling rate needs to be reduced to capture the data changes within the
two time intervals.Sensors 2019, 19, x 9 of 12 
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Figure 7. Result of dynamic regulation technique for the acquisition timeintervals.

In Figure 7, according to the dynamic regulation technique, the collection effect in the 201–225 s
time interval is basically the same as the changes in Figure 6.However, in the 226–300 s time interval,
the collection effects has obvious enhancement, i.e., the collection effect is basically the same as the real
changes and better than the results in Figure 6.

In order to verify the effectiveness of this method, the data collected by the sensors were fused in
stages. For the processing, the time estimation method [4], passive monitoring method [5], sampling
method [6], and dynamic adaptive method were used, among which the first three are fixed acquisition
intervals and the last one is dynamic acquisition interval.

Table 1 shows a comparison between the sensor data dynamic collection algorithm and the
algorithms of [4–6].
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Table 1. Comparison between the collection algorithms.

Experimental Content

Fixed Acquisition Interval Dynamic TimeInterval

Improvement (%)Sampling
Interval (ms)

Deviation to
the Desired

Value

Sampling
Interval (ms)

Deviation to
the Desired

Value

Heading experiment 10 512.0 Dynamic 125.0 309.6
Speed experiment 10 51.4 Dynamic 41.2 24.8

GPS altitude 10 37.6 Dynamic 27.8 35.3
Barometer height 10 41.7 Dynamic 39.2 6.4

Distance to waypoint 10 682.7 Dynamic 122.8 455.9
Lateral deviation

Distance experiment 10 75.4 Dynamic 23.4 222.2

Locating
identification 10 450 Dynamic 180 150.0

Number of satellites 10 0 Dynamic 0 0
Control mode 10 0 Dynamic 0 0

Reception types 10 0 Dynamic 0 0
Reception

identification 10 0 Dynamic 0 0

Automatic
photography 10 0 Dynamic 0 0

Cycling route
identification 10 0 Dynamic 0 0

Flight pattern 10 0 Dynamic 0 0
Types of taking off

and landing 10 0 Dynamic 0 0

Longitude and
latitude 10 5.8 Dynamic 1.2 383.3

In Table 1, “deviation to the desired value” denotes the standard deviation between the measured
values and the desired values, i.e., Sqrt[(

∑
(xi - xi’)ˆ2) / (m – 1)]. In this formula,

∑
denotes the

summation, xi’ denotes the desired value of xi, m denotes the size of the sampling window, and Sqrt
denotes solving the square root. The desired values are measured by as little sampling timeinterval as
possible. “Improvement (%)” means (deviation to the desired value in old method – deviation to the
desired value in new method) / deviation to the desired value in new method * 100 %.

The efficiency of all stages of experiments was not significantly reduced under the premise of
improving the experimental accuracy, as shown in Figure 8.Sensors 2019, 19, x 11 of 12 
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In Figure 8, the average sampling interval of the dynamic sampling method is 200/16 = 12.5,
which is larger than that of the fixed sampling method. This reduces the processing time and data
transmission time of the processor and improves the average efficiency.

The experimental effects (improvement) of the heading, distance to the destination waypoints,
lateral deviation distance, and longitude and latitude experiments were the best, achieving over 300%
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improvement on average. The effects of the speed, GPS altitude, barometric height, and locating
identification experiments were next, achieving about 20% improvement on average.

5. Conclusions

Sensor data dynamic adaptive acquisition is a meaningful research topic. In this paper, an adaptive
data acquisition method based on time interval dynamic adjustment is proposed. Sensor networks
are located in a variety of complex natural environments, which makes it necessary for sensor data
acquisition to adapt to them. The existing data processing methods based on sensor networks adopt
fixed acquisition time interval, which not only wastes bandwidth but also reduces the accuracy of
sensor data acquisition. By detecting and judging the degree of data change, the proposed method can
dynamically adjust the time interval of sensor acquisition according to the data change, thus ensuring
the efficiency and accuracy of acquisition. In this study, a wireless communication system with sensor
devices was constructed to verify the effectiveness and efficiency of the proposed method.
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