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Abstract: This paper proposes a general stability control method that uses the concept of zero-moment-
point (ZMP) and a turning algorithm with a light detection and ranging (LiDAR) sensor for a bipedal
alpine skiing robot. There is no elaborate simulator for skiing robots since the snow has complicated
characteristics, such as compression and melting. However, real experiments are laborious because of
the many varied skiing conditions. The proposed skiing simulator could be used, so that a humanoid
robot can track its desired turning radius by modeled forces that are similar to real ones in the snow.
Subsequently, the robot will be able to pass through gates with LiDAR sensors. By using ZMP control,
the robot can avoid falling down while tracking its desired path. The performance of the proposed
stabilization method and autonomous turning algorithm are verified by a dynamics simulation
software, Webots, and the simulation results are obtained while using the small humanoid robot
platform DARwIn-OP.
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1. Introduction

Research into humanoid robots is one of the most exciting topics in the field of robotics. As proof,
robot competitions, such as the DARPA Robotics Challenge (DRC), are becoming increasingly popular.
In particular, the Ski Robot Challenge was held for the first time during the PyeongChang Winter
Olympic Games. From this perspective, the importance of skiing robot is increasing.

Humanoid robots are those with two legs and there have been many developments in their
walking abilities over the last decade. In particular, the concept of the linear inverted pendulum
model (LIPM) is widely used [1,2]. It is advantageous that dynamic calculation is easy because the
vertical component of the center of gravity is always constant, which decouples the sagittal and lateral
components of the center of gravity. The zero-moment point (ZMP) is another concept [3]. It is possible
for a robot to maintain stability by moving its center of mass (CoM) to control the ZMP. These concepts
are also useful for skiing robots.

The objective of skiing is for the skier to reach their destination. Good skiers tilt their body to change
direction. The relationship between tilting angle and turning radius, and the forces acting on a skier while
skiing are already known [4–8]. Using this relationship, there have been a few attempts to experiment
with skiing robots in real environments. Yoneyama et al. tested a skiing robot that had legs with six
degrees of freedom, like those of human athletes on an artificial grass slope [9]. By considering the
relationship between joint motions, the skiing robot could turn on the slope by abduction–adduction
motion. Iverach-Brereton et al. used a humanoid robot to verify their braking motion and the
performance of posture control in a snowy environment while using proportional-integral-derivative
(PID) controllers [10]. In addition, ZMP has been applied to maintain stability during skiing and realize
the navigation algorithm while using cameras [11–14]. Almost all of them carried out an experiment in
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a real environment; however, skiing experiments are very challenging tasks, because snow requires
a wide variety of conditions, such as temperature or humidity. Unfortunately, there are no simulation
tools that can realize the precise properties of snow. Roller skis were used to test the skiing robot in
a real environment to overcome this problem, but the experiments with roller-skis did not work well,
because roller skis with wheels are not suitable for carving turns [10].

This paper presents a simulator that can test a skiing robot by applying modeled forces that are
similar to real forces when in snow. When considering the relationship between the leaning angle
and turning radius, a skiing robot can track its desired path by leaning its body in the simulation.
In addition, a novel navigation algorithm has been proposed that uses a light detection and a ranging
(LiDAR) sensor. ZMP control is applied to avoid falling over while tracking the desired path. Finally,
this method’s performance is verified with the proposed simulator.

The paper is organized, as follows: Section 2 describes the system overview. First, the robot
kinematics of what we used is shown. Next, the turn radius of the carving turn is described and
the relationship between the ski’s edging angle and the robot’s center of mass (CoM) is derived.
Finally, the process of modeling the forces on the ski plate that results from the ski–snow interaction is
explained. Section 3 proposes a turning algorithm while using a LiDAR sensor. Section 4 describes the
stability control using the ZMP control. The ZMP is reviewed and the method of applying the ZMP
to a skiing robot is described. Section 5 presents the simulation results and Section 6 discusses the
results in comparison with previous studies. Finally, Section 7 concludes the paper with possibilities of
development and future works with the proposed framework.

2. System Modeling Consideration

The proposed framework is composed of four parts. First, the relationship between the robot’s
leaning angle and the turning radius is modeled by approximation. Second, the modeling procedure
for the forces from the snow to ski plate is introduced. Third, an autonomous navigation algorithm for
a skiing robot is proposed. Finally, the method by which the robot maintains stability is explained.

2.1. Robot Kinematics

The DARwIn-OP, as shown in Figure 1, was used in the skiing simulation. The kinematics are
solved by homogeneous transformation matrices from the base, which means the supporting foot
(right foot) to the CoM and to the end of the link (left foot). Each leg of the robot consists of six motors.
Therefore, rotation matrices from the supporting foot to the CoM and to the end of the link are
as followed:

RCoM
1 =

5∏
i=1

Ri+1
i , Rend

1 =
11∏

i=1

Ri+1
i (1)

where RCoM
1 and Rend

1 are the rotation matrices from the base to the CoM and to the end of the link
and Ri+1

i is a rotation matrix from the frame {i} to the frame {i + 1}. In this paper, the navigation
algorithm and stability control are performed by changing the position of the CoM. The inverse
kinematics are solved by an iterative method using Jacobian transpose matrices with roll–pitch–yaw
(RPY) conventions to place the CoM at the desired position and the end of the link on the ground.

.
xCoM

1 = JCoM
1

.
θ ,

.
xend

1 = Jend
1

.
θ (2)

where xCoM
1 is a 6 × 1 matrix that is composed of positions and orientations that were obtained by

Equation (1), θ is a 6 × 1 or 12 × 1 matrix composed of joint angles, JCoM
1 is a 6 × 6 matrix, and Jend

1 is
a 6 × 12 matrix. The angles in the robot’s joints are calculated by using the transpose of Equation (2),
which is the pseudo-inverse iterative approach to solving inverse kinematics.
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Figure 1. (a) DARwIn-OP robot and ski; (b) Kinematic lower body configuration of DARwIn-OP.

2.2. Turn Radius of a Carving Turn

A carving turn is a turning technique where the ski shifts to one side on its edges. Shaped skis
make carved turns possible with a short turn radius. The turn radius of a carving turn, as follows [5]:

rd =
RSC cosθ

1 + (e/D) sinθ cosθ
(3)

where rd is the turn radius, RSC is the sidecut radius of the ski plate, θ is the edging angle, e is penetration
depth, and D is the side cut of the ski plate; these are shown in Figure 2. In [5], they used a ski of mass
3.8 kg and of sidecut radius 15.4 m, the mass of the skier was 80 kg, and the mass of the DARwIn-OP
robot we used was 2.922 kg. Therefore, the mass of the ski was proportionally set to 0.15 kg. Since the
maximum value of cosθ is 1, RSC was set to 22 m to test a variety of turn radii. Additionally, the shovel
(front of the ski) and tail (back of the ski) are both 70 mm and the length of the ski L is 500 mm.
This makes the waist (middle of the ski) 67 mm. Thus, the side cut D of the ski is 1.5 mm.
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Figure 2. (a) Turn radius rd; (b) Parameters characterizing of ski geometry; (c) Edging angle θ and
penetration depth e.

Snow is divided into hard snow and soft snow, depending on hardness. The difference between
the two is that penetration does not occur in the case of the hard snow, but it occurs in the case
of the soft snow. However, penetration is difficult to measure or predict on a ski slope. Therefore,
in the simulation, we used the turn radius formula of the hard snow. If the penetration e is known,
more accurate simulation results can be obtained by using Equation (3). The turn radius formula in the
hard snow that is the same as when e = 0 in the turn radius equation of the soft snow is as follows.

rd = RSC cosθ (4)
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There are several types of skis, including traditional skis and carving skis. The main difference
between the two is the sidecut radius. Traditional skis have large sidecut radii, while the carving skis
have small sidecut radii. Additionally, unlike downhill skis with high bending stiffness, carving skis
are designed to bend well. The carving ski basically does not need skidding when turning [11]. That is,
carving skis exploits their shape to make turns. Because of this, the sidecut radius of the ski becomes an
important factor in determining the turn radius, as in Equation (3). Although carving skiing essentially
does not require skidding to turn, skidding always occurs somewhat in real snow environments,
because snow has limited strength [8]. Therefore, Equation (3) is the lower bound of the actual turn
radius, and the turn radius in the real snow can be larger than that in the simulation.

Since a 3-D LIPM was used, there is a constant CoM height zc normal to the snow surface.
Using this leads to the following geometrical equation.

ϕ = tan−1
( yCoM

zc

)
(5)

where ϕ is the lean angle between CoM and the middle of the vertical line and yCoM is the distance
between the lateral CoM and the middle of the vertical line. In Figure 3b, the edging angle θ was
almost the same as ϕ. Therefore, if θ and ϕ are equal through an approximation, we can obtain the
equation for yCoM and rd by combining Equations (4) and (5), as follows.

θ = cos−1
(

rd
RSC

)
≈ ϕ = tan−1

( yCoM

zc

)
(6)

yCoM = zc tan
(
cos−1

(
rd

RSC

))
(7)

This equation means that, if the desired turn radius rd is selected, the robot will change its yCoM
according to Equation (7). Figure 3a shows a representation of the relationship between the parameters
and Figure 3b shows an approximation between ϕ and θ.
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said that there is no simulation tool that can accurately reflect the models of the skiing robot, the ski, 
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and it does not require a joystick. 
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2.3. Modeling the Forces Applied to the Ski Plate

This paper’s purpose is to enable the simulation of a skiing robot’s carving turn in a simulator.
However, it is difficult to realize the properties of the real snow in a simulator. Therefore, most of the
researchers have conducted real experiments to try to verify their algorithms [9–11]. Some researchers
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said that there is no simulation tool that can accurately reflect the models of the skiing robot, the ski,
and the terrain in real-time. Therefore, they developed their own system and conducted the simulation.
However, the turn radius of the skiing robot in the virtual environment was controlled by a joystick.
It was stated that, in the future, they wish to replace the human operator, with a high-level control
algorithm to achieve autonomous behavior [13]. In this paper, the simulator that applies the modeled
force from the snow to the ski plate is proposed. In particular, our simulator is automated and it does
not require a joystick.

Many researchers have already studied the forces that are applied to skis during a carving turn.
The force equation is as follows [6].

Ftl = FC + Flat =
mv2

rd
∓W sinα cos β (8)

where Ftl is the total radial force, FC is the centrifugal inertial force, Flat is the lateral gravitational force,
m is the total mass of the skier with skis, v is the skier’s linear velocity, W is the gravitational force,
α is the slope inclination, and β is the angle between the horizontal direction of the slope and the ski.
FC can be rewritten, as follows:

FC =
mv2

rd
=

mv2

RSC cosθ
(9)

This force can be applied to both hard snow and soft snow. The reason is that when the type of
snow changes, altered rd affects the value of FC. Additionally, since the skidding is minimized in the
carving turn, FC is similar to the force that is generated in the actual snow environment. However,
FC is only valid in real snow conditions. Therefore, we applied modeled forces the same as FC to the
middle of the ski plates in the simulator instead of realizing real snow conditions. Thus, it was possible
to simulate a carving turn like a real experiment on a flat solid slope in the simulator. Figure 4 is
a diagram of FC and Flat.
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3. Navigation Using a LiDAR Sensor

Alpine skiing is a sport that slides down snowy slopes while using skis with a fixed heel binding.
There are four categories of official alpine ski competitions: slalom, giant slalom, super giant slalom,
and downhill. The primary goal of these is to get through the designated gates (a set of two flags)
as quickly as possible. Therefore, gate tracking capability and fast turning techniques were needed.
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However, navigating during skiing is very hard, even for human skiers, because it is difficult to control
velocity. Therefore, the skiing robot needs to be able to find the target gates, reduce the current speed,
or generate the desired turn radius that is appropriate for the current speed, and take motion to follow
it. The proposed navigation algorithm for a skiing robot to track the target gates is realized by using
a LiDAR sensor.

3.1. LiDAR Sensor

LiDAR sensors can tell the distance from and direction to an object. In [11], gates were recognized
through image processing while using a camera. However, since cameras are sensitive to light, a target
may be unrecognized, depending on the environment. Meanwhile, a LiDAR sensor is accurate in terms
of distance and direction, irrespective of light, and this is advantageous in terms of calculation amount,
because there is no need to perform image processing. The LiDAR sensor that we used scanned the area
180◦ ahead in one dimension and the resolution was 0.25◦. The maximum scannable distance was 80 m.

3.2. Navigation Algorithm

The direction in which the robot looks is 90◦ in the LiDAR sensor. Therefore, if the robot’s motion
is controlled, such that the direction of the gate obtained through the LiDAR sensor is maintained
at 90◦, the robot can track the target gate. The calculation method for the direction information of the
gate that is used to generate the control input and move to the center of the gate is as follows.

θtarget =


∑i

k=1 θle f t,k

i
+

∑ j
k=1 θright,k

j

/2 (10)

where θtarget is the angle from the front of the skiing robot to the middle of the target gate, θle f t and
θright are the angles to the left flag and to the right flag, and i and j are the numbers that are detected by
the LiDAR sensor in the left flag and the right flag. For example, in Figure 5, the LiDAR sensor detected
the left flag (green box) three times and detected the right flag (yellow box) two times. Subsequently,
θtarget was calculated using the angles and the number of detections.
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Through this, we can derive the control law to satisfy the desired turn radius, as follows.

urd = KP,rd erd + KD,rd

.
erd (11)

where urd is the control input of the turn radius controller, KP,rd is the proportional gain of the turn
radius controller, KD,rd is the derivative gain of the turn radius controller, and erd is

(
θre f − θtarget

)
.
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θre f is 90◦, because the purpose of the turn radius control is to direct the robot to the target gate, and
the robot’s orientation is 90◦ in the LiDAR sensor. Figure 5 depicts θre f and θtarget.

The navigation algorithm is performed, as follows. θtarget is first obtained by the LiDAR sensor
and erd , the difference between θre f and θtarget is calculated. Afterwards, erd is used to get urd as in
Equation (11), and urd is added to current yCoM. At this time, the sum of urd and yCoM is named yCoM,re f .
When yCoM of the robot moves to yCoM,re f , the lean angle changes accordingly. If the edging angle
and the lean angle are approximated, the robot turns with the turn radius that was calculated by
Equation (4). The advantage of this method is that the turn radius is changed in real-time so that the
robot is towards the center of the gate, allowing the robot to track the gate regardless of the current
speed or distance between the robot and the gate. In addition, the robot can pass through the target
gate while using this real-time navigation algorithm, even if there is an error of turn radius due to
skidding or modeling error.

However, if there are more than two gates within the maximum scannable distance and orientation,
only the gates within 8 m will be recognized based on the nearest gate to the robot. In the giant
slalom, which is a type of alpine skiing competition, the legal gate width is 4.5–8 m (min./max) and the
distances between the gates are 15–27 m (min/max). Therefore, it is reasonable to set the searching
range to 8 m. The skiing robot can ski in various gate environments while using this condition.

4. Stability Control

One of the most important priorities for skiing robots is skiing without falling over. Therefore,
maintaining stability in robots is one of the most important purposes. Unlike walking robots, the sagittal
side of the skiing robot is equipped with a ski, which makes it difficult to fall over. Therefore,
the stability control in the lateral direction is key. The ZMP concept is used to maintain stability under
dynamic conditions.

ZMP means that the sum of the moments acting on the robot’s feet is zero. The closer the ZMP to
the center of the foot, the more stable it becomes. If the ZMP moves away from the robot’s support
polygon, it will fall down. In addition, robots are generally modeled as LIPM, because dynamic
computation becomes easier when the CoM height from the ground is constant. The ZMP equation of
the LIPM can be expressed, as follows.

..
xc =

g
zc
(xc − p) (12)

where xc is the position vector of the CoM with respect to the support origin, p is the ZMP vector with
respect to the origin of the support polygon, and g is the gravity constant. The method of measuring
the ZMP in a real robot can be obtained while using force-sensing resistor (FSR) sensors. The FSR sensor
is a pressure sensor whose resistance changes when a force, pressure or mechanical stress is applied.
It uses the property that the resistance value changes according to physical force or weight. Figure 6
shows the robot’s feet with FSR sensors. In Figure 6a, f denotes the sensed pressure and p denotes the
position of the sensor. The ZMP is also known as the center of pressure. Therefore, the formula for
obtaining the ZMP through FSR sensors is as follows.

px =

∑8
i=1 pi,x fi,x∑8

i=1 fi,x
, py =

∑8
i=1 pi,y fi,y∑8

i=1 fi,y
(13)

In Figure 6b, the dotted red square means the stable region, and the robot will not fall if the ZMP
is inside this region. The goal of stability control is to send the ZMP as far as possible to the middle of
this stable region.

Using a LiDAR sensor allows for gate tracking and turning algorithms to be implemented.
However, without considering the robot’s stability, it is possible to input a tiny turn radius that makes
the centrifugal inertial force FC large according to Equation (9). In addition, according to Equation (4),
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the tiny turn radius makes the edging angle larger, which makes the robot’s ZMP move outward.
Especially, when the turn radius very close to zero is calculated, the edging angle almost reaches 90◦,
and the robot can directly fall. Therefore, stability control is applied to minimize the robot’s instability
due to excessive input while the robot tracks the gates. Stability control can move the ZMP towards
zero and reduce the edging angle by slightly increasing the tiny turn radius.
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The control input of stability control is as follows:

uZMP = KP,ZMP eZMP + KD,ZMP
.
eZMP (14)

where uZMP is the control input of the ZMP controller, KP,ZMP is the proportional gain of the ZMP
controller, and KD,ZMP is a derivative gain of the ZMP controller, eZMP is

(
py,re f − py

)
. Py,re f is a reference

of the lateral side ZMP that is equal to zero. Thus, the input yCoM for the skiing robot changes,
as follows.

yCoM = yCoM,re f + uZMP (15)

where yCoM,re f is the lateral CoM for meeting the nominal reference turn radius. If a fixed yCoM is
applied, the robot could become stable again when the ZMP tries to move out of the supporting feet.
Figure 7 shows the overall process.
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5. Simulation Results

Simulations were performed by the dynamics simulation software, Webots [15]. Figure 8 shows
the slope that we tested and the slope angle is 8◦. The friction coefficient between the slope and ski
plate is 0.1, which is the average for the actual ski slope. All of the gates were made of two flags,
two meters apart. The differences between Figure 8a,b are the gaps between the gates. In Figure 8a,b,
the gaps between gates are narrow and broad, respectively. Table 1 shows detailed distances of the gates.Sensors 2019, 19, x FOR PEER REVIEW 9 of 15 
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Table 1. Gate distances of the simulation.

Gate Number
Short Interval (m) Long Interval (m)

Front Horizon Front Horizon

1 13 1 13 2
2 21 5 23 12
3 29 4 33 3
4 37 8 43 14
5 49 6 58 2
6 61 9 70 11
7 73 11 85 4
8 85 7 - -

First, we verified that the turn radius has been correctly implemented in the simulator.
In Figure 9a,b, we can see the results of the trajectory when 3 m and 6 m are inputted to the
robot, respectively. Although the robot cannot draw a complete circle because the velocity changes
continuously as it moves down the slope, it can be seen that the turn radius comes close to 3 m and
6 m, respectively, through the graph.

Next are the results of the turn algorithm. In order for the skiing robot to track the target gate,
the current linear velocity of the robot should not be too high. The reason is that the ZMP of the robot
will saturate if the modeled force FC becomes too large. According to Equation (9), if the square of the
linear velocity v2 is increased, rd cannot be reduced by that much. The fact that rd cannot be reduced
means that if erd is large, the robot cannot reach the target gate. On the other hand, even if the speed
is moderate, if rd is calculated too small, the edging angle increases too much, and the ZMP can be
saturated. In this situation, stability control is applied to solve this problem, and Figure 10 presents
the results, which show that the ZMP is saturated at the tip of the feet before the control. However,
ZMP moves toward 0 after the control, which shows that the stability is improved when compared
to the conventional posture control method. Figure 11 shows the GPS trajectory before and after the
control, respectively. In Figure 11, it seems to be that the trajectory of the robot without stability control
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(blue line) is more efficient than that of the robot with stability control (red line). The reason is that the
robot turned to the lowest turn radius possible while only considering navigation. However, since the
robot did not consider stability, even if the slope angle was slightly larger or the friction coefficient of
the slope was slightly lower, the robot fell down when moving to the next gate.Sensors 2019, 19, x FOR PEER REVIEW 10 of 15 
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In addition, the speed of the skiing robot is reduced when it turns to pass through the gate.
However, if the turn radius that is calculated by the navigation algorithm is too small, the skiing robot
will turn too rapidly, which can make the robot unstable. At this time, when the stability control is
applied, the turn radius is changed, so as not to be abrupt, so that the speed is further reduced than
that before the control. These results can be seen in Figure 12. On the other hand, there is currently no
way to control the speed in a simple sliding state. This is the subject of future research.

Next, the simulations were conducted with varying friction coefficients and slope angle in order
to verify the performance of the navigation algorithm. As you can see in Figure 12, the skiing robot
slows down during the turn. In real skiing, a skier can reduce the speed by attacking the skis relating
to his moving direction. That is, shearing energy is dissipated, skidding occurs, and then speed is
reduced. However, when the centrifugal force is large because of the small turn radius or high speed,



Sensors 2019, 19, 3664 11 of 15

attacking the skis could also happen, which can make skidding. Therefore, since the turn radius when
the robot turns through the gate is much smaller than the turn radius when the robot moves to the
gate, much more skidding occurs when turning. This is the reason that the skiing robot’s speed is
reduced during the turn. In Figure 12, the speed of the skiing robot increases overall in short interval
gates, while the speed decreases at the turning part in the long interval gates. This is because the turn
radius for the robot to turn through the gate is smaller in the long interval gates than in short interval
gates. Therefore, the effect of stability control increases in the long interval gates. Accordingly, we ran
additional tests in the long interval gates.
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First, Figure 13a is the lateral ZMP result tested by changing the friction coefficient µslope to
0.09. When the friction coefficient is lowered, the speed of the skiing robot is increased, and thus
FC is increased. As FC increases, the ZMP becomes more likely to saturate. As a result, without the
stability control being applied, the skiing robot fell down. Figure 13b shows the lateral ZMP result
with a coefficient of friction of 0.12 and a slope angle of 10◦. When the coefficient of friction was 0.1,
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even though the stability control was performed, it failed to pass through all of the gates when the
slope angle was 10◦. Thus, the test at the slope angle of 10◦ was conducted at the friction coefficient of
0.12. Under these conditions, Figure 14 shows the robot’s trajectory and Figure 15 shows the linear
velocity of the robot. In Figure 14, the end of the blue line indicates the position of the overturn because
of no control. This point corresponds to the point where the blue line, which means linear velocity,
sharply in Figure 15. In addition to these cases, various simulations were conducted, and Figure 16
shows the results. Figure 16 shows the number of the gates passed out of a total of seven gates when
the coefficient of friction and slope angle change. According to [6], the friction coefficient of the slope
ranges from 0.02 to 0.2. At the friction coefficients of 0.02 and 0.2, the slope angles at which the robot
could pass through all the gates were 2◦ and 15◦, respectively.Sensors 2019, 19, x FOR PEER REVIEW 12 of 15 
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6. Discussion

In this paper, the turning and stability control algorithms for skiing robots and a simulator
for verifying them are proposed. This simulator is meaningful, in that it can be tested in various
environments through simulations instead of a laborious experiment in an actual snow environment.
In particular, in the real snow environment, various conditions, such as humidity and temperature,
must be met, the appropriate slope angle should be found, and there should be no unwanted obstacles.
Although it is difficult to achieve exactly the same turn radius as an actual experiment in the simulation,
it can be used to quickly and easily verify ski algorithms in a variety of environments.

Many studies have dealt with the turn radius through experiments in real snow environments.
However, the snow has very complex properties, so it is difficult to find the simulator that can accurately
realize them. Even in the simulator Webots, which we used, it was difficult to realize the realistic snow
itself. However, through researches of the forces that occur when skiing, we could apply the same
force to the ski in the simulator and this can make us verify the proposed navigation and stability
control algorithms without realizing snow.

Unlike traditional skis, carving skis are characterized by minimized skidding during a turn.
In real snow, however, even with carving skis, skidding can occur, which results in a larger turn radius
than expected. Nevertheless, this simulator has the advantage that the performance of the navigation
and stability control algorithms of the robot can be estimated to some extent before the experiment on
the real snow.
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The navigation algorithm that was verified by this simulator was realized by LiDAR sensor.
In [11–14], the gate was recognized by the camera. In this case, it was sensitive to light. If the light
condition is changed, the gate may not be correctly recognized. In addition, the LiDAR sensor that was
used in the simulation can scan from 0◦ to 180◦ in the forward direction, but the camera has a limited
angle of view in most cases and it must undergo a complicated image processing process. Therefore,
the LiDAR sensor does not need to be affected by the color of the gate, and it can make the robot move
to the nearest gate through the distance to the gate that can be known in real-time.

However, even with such a navigation algorithm, it is impossible to properly follow the gate
unless stability control is applied. In [10], the robot was prevented from falling by using posture control.
However, by simply controlling the posture of the robot, it can easily fall when the slope change
was abrupt or it moves with a tiny turn radius. On the other hand, if stability control is performed
while using the ZMP that was measured by FSR sensors, it can be kept stable, even when the robot
moves dynamically.

In real skiing, the original purpose of the carving turn is to keep the speed as far as possible when
the skier turns. However, in the current robot skiing algorithm, the robot’s speed was reduced when
stability control was applied. This is because the stability control gain was set high. In the proposed
robot skiing algorithm, one of the main differences from real skiing is that there is no way for the robot
to slow down, except for turning. However, if the robot’s speed continues to increase, the centrifugal
force will increase, which makes it impossible to pass all the gates. Therefore, in this research, the
stability control gain was set high to reduce the robot’s speed as much as possible when the robot turns.

The simulation results show the lateral ZMP, the robot’s trajectory, and the linear velocity.
In the case of the short interval gates, the turning time is short, so the speed gradually increases.
On the other hand, in the case of the long interval gates, the speed decreased during the turn, and
the deceleration became larger when the control was performed. Therefore, in order to verify the
performance of the algorithm, simulations were carried out with various friction coefficients and slope
angles for the long interval gates that were more affected by stability control. As a result, it can be seen
that the robot could pass through more gates in general when stability control was applied. However,
this result also changed, depending on the positions of the gates and the point where the robot started.
Therefore, even if the robot cannot pass all of the gates at a certain coefficient of friction and slope
angle, it can pass through by adjusting the positions of the gates. The reason for this is that, if the robot
turns less and sliding time is longer, the speed is increased greatly, reaching a situation where it cannot
be controlled at all.

As a result, in future research, it is aimed to study the motions that can reduce the speed while the
skiing robot is sliding, and the forces that are applied when the motions are taken. If the algorithm that
the robot can control its speed is developed, it would be possible to decrease the stability control gain
and increase the navigation control gain to make it more similar to the actual skiing. In addition, a new
controller is needed to generate an optimal trajectory that the skiing robot can turn as fast as possible,
without falling over. The method of designing this new controller remains as further research.

7. Conclusions

This study constructed a simulator environment that is similar to an actual ski slope and modeled
the leaning angle of the body by inputting the desired turn radius. We also modeled the force that
is required to move the robot in the input turn radius and implemented a gate passing algorithm
while using a LiDAR sensor. In addition, the LiDAR sensor reduces the sensitivity to environmental
changes as compared to using a camera to follow the gate and improves upon the stability by applying
stability control through ZMP control. The ski simulation in the basic environment is now possible in
the simulator; therefore, future work will be carried out in various environments, such as forming an
irregular slope and changing the gate’s angle to create a more realistic environment. Finally, we will
devise the motions to reduce the robot’s speed and a new controller to generate an optimal trajectory
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for the skiing robot. When this process has been completed, a simulator that can be used as a realistic
environment before carrying out actual experiments will be completed.
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