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Abstract: Drought in Australia has widespread impacts on agriculture and ecosystems. Satellite-based
Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) has great potential to monitor
and assess drought impacts on vegetation greenness and health. Various FAPAR products based on
satellite observations have been generated and made available to the public. However, differences
remain among these datasets due to different retrieval methodologies and assumptions. The Quality
Assurance for Essential Climate Variables (QA4ECV) project recently developed a quality assurance
framework to provide understandable and traceable quality information for Essential Climate Variables
(ECVs). The QA4ECV FAPAR is one of these ECVs. The aim of this study is to investigate the capability
of QA4ECV FAPAR for drought monitoring in Australia. Through spatial and temporal comparison
and correlation analysis with widely used Moderate Resolution Imaging Spectroradiometer (MODIS),
Satellite Pour 1'Observation de la Terre (SPOT)/PROBA-V FAPAR generated by Copernicus Global
Land Service (CGLS), and the Standardized Precipitation Evapotranspiration Index (SPEI) drought
index, as well as the European Space Agency’s Climate Change Initiative (ESA CCI) soil moisture,
the study shows that the QA4ECV FAPAR can support agricultural drought monitoring and assessment
in Australia. The traceable and reliable uncertainties associated with the QA4ECV FAPAR provide
valuable information for applications that use the QA4ECV FAPAR dataset in the future.

Keywords: FAPAR; QA4ECYV; drought; MODIS; CGLS; Australia

1. Introduction

Hydroclimatic extremes such as heat waves and droughts are a common occurrence in arid and
semiarid areas of the world such as Australia [1]. These extreme events generally have significant
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impacts on humans, the environment, and the economy [2]. Specifically, most of Australia has
experienced severe droughts and heat waves in recent decades, which have induced significant stress
on natural environmental and socioeconomic systems [3,4]. For example, the “Millennium Drought”
(2001-2009) in southeast Australia caused severe damage to ecosystems and agriculture, and led to the
enforcement of water restrictions in many cities [5,6]. The 2009 Victorian heat wave killed more than
370 people with insured losses of 1.3 billion US dollars [4]. Climate projections show that there will
be a further increase in the frequency and severity of hydroclimatic extreme events in Australia [7].
Therefore, it is important to monitor and investigate the occurrence of droughts in Australia.

Generally, droughts and their associated impacts are difficult to define and can be classified
as meteorological, hydrological, agricultural, environmental, and socioeconomic based on different
drought characteristics of duration, intensity, and spatial and temporal extent [8-10]. Traditionally,
point-based in-situ measurements of hydrometeorological variables such as precipitation, soil
moisture, temperature, and streamflow have been used to track the severity and location of
droughts [11-13]. However, it is very challenging to monitor spatial and temporal variability of
drought with point observations from in-situ instruments. In addition, there are many areas where
hydrometeorological observation networks are not established [14]. Satellite remote sensing provides
a valuable way to monitor drought operationally over large areas. Compared with in-situ ones,
satellite-based measurements have the advantages of global long-term observations, multiple spatial
resolutions, and consistent data records [15,16]. Remote sensing observations from optical, thermal,
and microwave bands have been used to retrieve drought-related variables including precipitation,
soil moisture, evapotranspiration, snow cover, land surface temperature, vegetation, and total water
storage over recent decades [17-20]. Hydrological variables such as precipitation, soil moisture,
and evapotranspiration can be converted to drought indicators such as Standardized Precipitation
Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), and Evaporative Stress
Index (ESI) [21-24]. These indicators can be used to categorize and quantify drought extent and
severity [15,25]. Satellite observations can also be used to monitor and assess the impacts of drought on
the ecosystem. The optical and thermal band satellite observations have been widely used to monitor
vegetation changes and water stress of plants [26,27].

The most commonly used vegetation index for monitoring agricultural drought is the Normalized
Difference Vegetation Index (NDVI) [28]. There are also a number of other indices based on optical
and thermal bands such as the Vegetation Condition Index (VCI), Temperature Condition Index (TCI),
Normalized Difference Water Index (NDWI), and Vegetation Health Index (VHI) [15,29]. The idea
behind analyzing these indices is that rainfall stress can result in photosynthetic capacity reduction
of vegetation and changes in absorbed photosynthetic radiation by plants [30]. In addition to these
indices, the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) can directly reflect
the greenness and health conditions of vegetation [31,32]. A number of studies have used FAPAR to
monitor and assess drought impacts [33-35]. In particular, FAPAR has been selected and operationally
used as the Combined Drought Indicator (CDI) for monitoring drought in the European Drought
Observatory (EDO) within the Copernicus Emergency Management Service [30].

At present, several satellite-based global FAPAR datasets have been produced and updated
routinely for various applications. These FAPAR datasets include the Moderate Resolution
Imaging Spectroradiometer (MODIS), Satellite Pour 1'Observation de la Terre VEGETATION
(SPOT-VEGETATION), Advanced Very High Resolution Radiometer (AVHRR), Sentinel-3, and Joint
Research Center (JRC) FAPAR. Although these FAPAR products have been widely validated and
applied to a number of applications including drought monitoring, disagreements and inconsistencies
amongst these datasets have been reported by several studies [36,37]. The discrepancies between these
datasets are mainly due to different retrieval methods, assumptions, and definitions of FAPAR [38].
Therefore, as identified by Global Climate Observing System (GCOS) Implementation Plan (IP),
a quality-assured long-term FAPAR dataset is urgently required, which can provide reliable and
traceable quality information. With this background, the Quality Assurance for Essential Climate
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Variables (QA4ECV) project developed a quality assurance framework to provide understandable and
traceable quality information for Essential Climate Variables (ECVs) (http://www.qadecv.eu) [39,40].
Within the QA4ECYV project, long-term and quality assured FAPAR datasets were recently released.
These QA4ECV FAPAR datasets have great potential for drought monitoring and assessment. The main
objective of this study is a comprehensive investigation of the performance of the QA4ECV FAPAR
for drought monitoring over Australia. After introducing the study region in Section 2, a detailed
introduction to the QA4ECV FAPAR dataset, other FAPAR datasets, soil moisture, and the SPEI drought
index are described in Section 3. The fourth section discusses and evaluates the results. A concluding
section summarizes the results of the whole study.

2. Study Area

The current study was performed over Australia, which is the most drought-prone inhabited
continent in the world. Almost 70% of the whole continent is arid or semiarid land. Only the
southwestern and southeastern parts have moderately fertile soil and temperate climates. The northern
part of Australia has a tropical monsoonal climate. Australia has an annual average rainfall of 499 mm
and annual runoff of 70 mm, indicating only 14% of rainfall is runoff [41]. Owing to the influences of
climate variability modes of the El Nifio-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD),
the rainfall over Australia varies significantly from year to year, further inducing regular drought
cycles [42]. These climatic characteristics make Australia one of the countries most affected by extensive
droughts. The seasonal dynamics of vegetation across Australia also present significant variations
due to the complex climate and surface conditions [43]. Figure 1 shows the land cover map generated
from the European Space Agency (ESA) Climate Change Initiative (CCI) land cover dataset for the
year 2010 [44,45]. It can be seen that savannah, grassland, and bare areas dominate the majority of the
continent, whilst forests are mainly located in coastal areas.
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Figure 1. European Space Agency Climate Change Initiative (ESA CCI) land cover type map for
Australia divided into bare areas (BAR), savannas (SAV), grasslands (GRS), shrublands (SHR), deciduous
forest (DEF), evergreen forest (EVF), and croplands (CRO). The area with light red color denotes the
extent of Murray-Darling Basin.

3. Data and Methods
3.1. Satellite-Based FAPAR Datasets

3.1.1. QA4ECV FAPAR

The QA4ECYV project produced two FAPAR datasets. One was created from a long albedo time
series measured using the Advanced Very High Resolution Radiometer (AVHRR) combined with
geostationary instruments using the 5D Two-stream Inversion Package (TIP, referred as BHR-TIP
FAPAR) [40]. This represents the diffuse component of the FAPAR. Another FAPAR was generated
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from daily spectral measurements acquired by AVHRR on board a series of National Oceanic and
Atmospheric Administration (NOAA) platforms using the JRC algorithm for the retrieval of Directional
Hemispherical Reflectance FAPAR [46]. This is known as the green and direct FAPAR. Specifically,
the BHR-TIP FAPAR was derived with the TIP retrieval method from white-sky albedos (BHR)
in the visible and near-infrared broadband [47]. TIP delivers a Gaussian approximation of the
probability density functions (PDFs) of the retrieved model parameters of a 1D canopy model which
characterizes the radiative status of the vegetation—soil system. The method aims at consistency
with large-scale climate and Earth system models and does not require assumptions about other
factors (e.g., biome type) to be made. In general, the TIP-FAPAR based on various albedo products
has been widely validated, such as shown in [47-49]. Verification studies within the QA4ECV
project revealed that a bias in the QA4ECV albedo product introduces noise and non-systematic
biases into the BHR-TIP FAPAR product, which are expected to be present in the monthly product
(http://www.qadecv.eu/sites/default/files/D5.4_v1.0.pdf). A reprocessing of the QA4ECV albedo dataset
is planned. Based on the global daily and monthly albedo data on 0.5 degree and 0.05 degree regular
grids, BHR-TIP FAPAR is available for 35 years, from 1982 to 2016 (http://www.qa4ecv.eu/ecv/laifapar-p).
In this study, the BHR-TIP FAPAR was used due to its longer temporal coverage than Directional
Hemispherical Reflectance (DHR) FAPAR. Therefore, the QA4ECV FAPAR further refers to BHR-TIP
FAPAR in this paper.

3.1.2. MODIS FAPAR

The MODIS FAPAR was calculated from the atmospherically corrected surface reflectance observed
by MODIS installed on the NASA Terra and Aqua satellites. The main retrieval method is based on
three-dimensional radiative transfer model inversion, from which the clumping at canopy scale is
accounted [50]. The radiative transfer model inversion is realized with a Look-Up-Table (LUT), which
is separated into 8 biome types to represent structurally different three-dimensional vegetation canopy
types [47]. If the main radiative transfer retrieval method fails, an empirical method based on the
relationship between the NDVI and FAPAR is used to retrieve FAPAR [50]. A detailed description of
the radiative transfer method and empirical algorithm can be found in the Algorithm Theoretical Basis
Document (ATBD) [51]. The MODIS Collection 6 FAPAR dataset has a temporal resolution of eight
days and spatial resolution of 500 m, which has been comprehensively evaluated with ground-based
measurements and inter-compared with other FAPAR products by many studies such as [52,53].

3.1.3. SPOT/PROBA-V FAPAR

The SPOT/PROBA-V FAPAR dataset was generated from SPOT VEGETATION (1998-2014)
and Project for On-Board Autonomy-Vegetation (PROBA-V) mission (2013-now) observations [54].
The retrieval algorithm is based on fusing and scaling MODIS and CYCLOPES FAPAR products via a
neural network approach to obtain the ‘best estimate” of FAPAR. The satellite-observed top of canopy
directional normalized reflectance serves as input data. Detailed information on the retrieval method
can be found in [54]. The SPOT/PROBA-V FAPAR dataset is delivered on a 1/112° grid every 10 days.
The dataset has been validated for different biomes and reported to have good quality by many studies
such as [55,56]. The version 2 of this dataset provided by COPERNICUS Global Land Service (CGLS) is
used in the current study. In the following parts, CGLS FAPAR is referred to SPOT/PROBA-V FAPAR.

3.2. ESA CCI Soil Moisture

The European Space Agency’s Climate Change Initiative (ESA CCI) soil moisture product is
an unique multi-decadal soil moisture record, which was generated by merging several microwave
satellite soil moisture products together into harmonized datasets [57,58]. The ESA CCI soil moisture
has a spatial resolution of 0.25° and daily temporal resolution, covering the period from 1978 to 2018
(v04.2). The ESA CCI soil moisture comprises three products, namely active, passive, and combined soil
moisture datasets. The accuracy of the products has been carefully evaluated with in-situ measurements
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by many studies such as [59-61]. Furthermore, the products have been successfully applied for various
applications such as drought analysis [62], climate model evaluation [63], and hydrological monitoring
and prediction [64]. A recent review paper comprehensively summarizes the accuracy, applications,
and future algorithms of the ESA CCI soil moisture [65].

3.3. SPEI Drought Index

The Standardized Precipitation Evapotranspiration Index (SPEI) is designed to take into account
both precipitation and potential evapotranspiration (PET) for determining drought. It is a multi-scalar
drought index and can capture the impact of temperature increase on water demand [22]. A global
SPEI dataset is available based on Climatic Research Unit (CRU) TS 3.24 input data for the period from
1901 to 2015 [66]. This SPEI dataset is delivered with spatial resolution of 0.5° and monthly temporal
resolution. In recent years, this SPEI dataset has been widely used for a number of drought-related
studies such as drought monitoring and investigating the response of vegetation to drought [67,68].
It should be noted here that the SPEI used in this study is at a three month scale because the optimal
time-scale for integration of SPEI for monitoring agricultural drought was found to be three months [30].

3.4. Methods

3.4.1. Data Pre-Processing

All of the datasets used in this study were aggregated to monthly mean values for the period of
2001-2015, which correspond to the common temporal span for all datasets. All the datasets were
further aggregated to the same spatial resolution of 0.5°. After that, the standardized anomaly for all
FAPAR datasets and soil moisture were calculated during the available temporal extent.

3.4.2. Evaluation Strategies

The characteristics of all the FAPAR datasets were investigated through direct spatial and
temporal comparison between products. The spatial patterns of the monthly mean FAPAR were
analyzed, including the identification of low and high values. To evaluate the feasibility of FAPAR for
drought analysis, the relationship between FAPAR, SPEI, and soil moisture was explored spatially and
temporally. To facilitate direct comparison between FAPAR and SPEI as well as soil moisture, both
FAPAR and soil moisture are standardized with the following equation:

O Xi-X
0

Y

@

where Y is the standardized anomaly of FAPAR or soil moisture, X; is FAPAR or soil moisture for
month i, X and ¢ are the monthly mean and standard deviation of X for the years from 2001 to
2015. The standardized method has been recommended by many studies for evaluating drought
indices such as [69,70]. The correlation between FAPAR, SPEI, and soil moisture is quantified with
Spearman’s correlation coefficient (R). In addition, the spatial and temporal variations of all datasets in
a typical drought year 2015 were also investigated in order to show the performance of FAPAR for
drought detection.

4. Results

4.1. Comparison of Mean FAPAR Estimates

Figure 2 presents the monthly mean FAPAR estimates from MODIS, CGLS, and QA4ECV
respectively. In general, all three FAPAR show similar patterns with low FAPAR (less than 0.4) present
over most parts of the continent. The coastal areas, particularly in the west and east, display high
FAPAR values. These patterns are in agreement with the land cover map of Australia (Figure 1).
In addition, the Pearson correlation coefficient values between the three FAPAR datasets are shown in
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Figure 3. It can be seen that MODIS, CGLS, and QA4ECYV have good correlation with r values higher
than 0.5 for most areas. It is noted that the p value is less than 0.05 for all grid cells, which shows that
the comparison is statistically significant. Slightly better agreement between MODIS and CGLS can
be observed compared to that between MODIS and QA4ECV, CGLS, and QA4ECV. This is because
the generation of CGLS FAPAR involves the fusing and scaling of MODIS FAPAR and CYCLOPES
FAPAR products. In addition, the time series of the three datasets for Australia and the different land
cover types are presented in Figure 4. It can be seen that all datasets show agreement in seasonal
variability, while the magnitudes are different among the datasets. Generally high agreement among
the datasets occurs for croplands and grasslands, and high disagreement occurs for forests. Slightly
better agreement between MODIS and CGLS is found over savannas, while better agreement between
QA4ECV and CGLS happens over shrublands. These results are consistent with previous studies such
as [36,71], which also found high consistency between different FAPAR products for croplands and
substantial disagreement for forests. The reasons for discrepancies among datasets might be different
retrieval methods, model-specific assumptions, use of different land cover, and others. In order
to quantify differences and validate these FAPAR datasets, more intensive and continuous in-situ
measurements over different land cover types are needed. Nevertheless, the generally good spatial
correlation and consistent seasonal variability among different FAPAR datasets suggests the potential
of a long-term QA4ECV FAPAR dataset for drought monitoring.

w " w " w |
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Figure 2. Spatial patterns of monthly mean average Fraction of Absorbed Photosynthetically Active
Radiation (FAPAR) for the years 2001-2015: (a) Moderate Resolution Imaging Spectroradiometer
(MODIS), (b) COPERNICUS Global Land Service (CGLS), (c) Quality Assurance for Essential Climate
Variables (QA4ECV).

20°s

Figure 3. The Pearson correlation coefficient among the FAPAR datasets for the years 2001-2015:
(a) MODIS against QA4ECYV, (b) MODIS against CGLS, (¢) QA4ECV against CGLS.
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Figure 4. Time series of different FAPAR products over Australia and different land cover types:
(a) Australia, (b) Savannas, (c) Grasslands, (d) Shrublands, (e) Croplands, (f) Forests.

4.2. Correlation Analysis between FAPAR and SPEI, and Soil Moisture

Since SPEI has been widely used for drought monitoring [72,73], the relationship between SPEI
and the FAPAR standardized anomaly was explored to test if FAPAR can capture drought signals.
Figure 5 shows the r values between different FAPAR products and SPEI during 2001-2015. It can
be seen that FAPAR and SPEI generally agree with positive correlations. Better results are shown
for CGLS FAPAR (Rmean = 0.44) compared to MODIS (Rpean = 0.37) and QA4ECV (Rpean = 0.35).
In terms of spatial areas, all the FAPAR present better correlation with SPEI over eastern Australia
than western Australia. In addition, the correlation between FAPAR and CCI soil moisture was also
calculated and shown in Figure 6, with mean R values of 0.53 for CGLS, 0.46 for MODIS, and 0.40
for QA4ECV. Similarly, all FAPAR agree well with soil moisture and better accuracy was observed in
eastern Australia. Since eastern Australia is covered more by vegetated areas compared to western
Australia, it might explain the better correlation between FAPAR and SPEI, as well as soil moisture
over eastern Australia. It is noted that the weaker correlation of QA4ECV FAPAR with the other
products may also partly be a consequence of the bias in the QA4ECV albedo data, which leads to
non-systematic deviations in the QA4ECV FAPAR [74].

1 10°s 1

40°s, 40°s

120°E 130°E 140°E 150°E 120°E 130°E 140°E 150°E 120°E 130°E 140°E 150°E

(a) (b) ©

Figure 5. The Pearson correlation coefficient between FAPAR and Standardized Precipitation
Evapotranspiration Index (SPEI) during the years 2001-2015: (a) MODIS, (b) CGLS, (c) QA4ECV.
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Figure 6. The Pearson correlation coefficient between FAPAR and Climate Change Initiative (CCI) soil
moisture during the years 2001-2015: (a) MODIS, (b) CGLS, (c) QA4ECV.

In addition to the spatial comparison, the temporal correlation analysis between FAPAR anomalies
and SPEI, and the soil moisture anomaly was investigated. Figure 7 shows the temporal variation
of area mean values of all explored variables. It is noted that the uncertainties of QA4ECYV is also
shown in the figure, which is an advantage of the QA4ECV FAPAR compared to MODIS and CGLS
FAPAR. We can see that the FAPAR anomalies show generally close agreement with SPEI and the soil
moisture anomaly. For example, the FAPAR anomalies, SPEI, and the soil moisture anomaly present
large negative values during the Millennium drought period (2001-2009) such as the years 2003 and
2005 [6]. However, all the variables show much higher values in 2011 than in the other years, which
is due to the strong La Nifia in 2010-2011 inducing heavy precipitation and large-scale flooding in
Australia [75]. The results here imply that FAPAR can be used to monitor drought and that the recently
developed QA4ECV has similar performance as MODIS and CGLS FAPAR for drought monitoring.

: : : —— QA4ECV-FAPAR

Y I B S S S |— caLs-FaPAR

: = MODIS-FAPAR
SPEI

_ |=— CClI soil moisture |

Uncertainies of QA4ECV

i i 1 i I I
2002 2004 2006 2008 2010 2012 2014

Figure 7. Temporal variation of area means of SPEI, standardized anomalies of analyzed FAPAR
products, and the soil moisture anomaly for the period of 2001 to 2015. It is noted that the grey areas
are the uncertainties of QA4ECV FAPAR.

4.3. Spatial and Temporal Analysis for the 2005 Australia Drought

In this section, the temporal variations of spatial patterns of all the variables are explored during a
typical drought year in 2005, that was within the Australian Millennium drought period (2001-2009) [6].
Figure 8 shows the latter from March to May in 2005. The negative values in blue represent the dry
areas, while positive values in red identify wet areas. In general, all variables represent negative values
for most of Australia from March to May, implying that the drought lasted without interruption for
these areas. However, southwestern Australia changes from dry to wet, and southeastern Australia
becomes drier from March to May. These variations were captured well by all FAPAR datasets
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considered here, as well as by SPEI and CCI soil moisture. Similar findings have been reported by
Leblanc et al. [76] using the Gravity Recovery and Climate Experiment (GRACE) groundwater storage
data. Similar patterns among all the FAPAR datasets further support the fitness of QA4ECV FAPAR in
drought monitoring.
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Figure 8. Temporal variation of spatially distributed FAPAR, CCI soil moisture standardized anomaly,
and SPEI (rows) over Australia from March to May (columns) in 2005.
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5. Discussion

This study has comprehensively explored the performance of different satellite-based FAPAR
datasets for drought monitoring in Australia. The newly released QA4ECV FAPAR generally shows
similar temporal and spatial patterns to MODIS and CGLS FAPAR. Since MODIS and CGLS FAPAR
have been both validated and applied in previous studies, particularly for drought analyses such
as [33-35], the agreement of QA4ECV FAPAR with these datasets suggests its potential for drought
monitoring. The MODIS and CGLS FAPAR datasets have the advantage of higher spatial resolution,
however they are limited to short temporal coverage; only since around the 2000s. The QA4ECV
FAPAR accounts for the lack of longer time series and covers the time period from 1982 to 2016.

Regarding drought monitoring for agriculture and vegetation growth status, the FAPAR can
serve as a proper proxy for greenness and vegetation health [35,77,78]. SPEI and soil moisture
have been recognized as reliable tools for meteorological and hydrological drought monitoring.
The inter-comparison between FAPAR, SPEI, and soil moisture can to some extent show to the ability
of FAPAR for drought monitoring. The correlation analysis presented here shows that the FAPAR
standardized anomaly generally agrees well with soil moisture standardized anomaly and SPEIL
In particular, the high correlation appears in highly vegetated areas, which suggests the ability of
FAPAR to be useful for agricultural drought monitoring [79]. These results are consistent with previous
studies such as lvits et al. [77], who reported good agreement between SPEI and FAPAR in the
vegetation growing season. The similar performance given by MODIS, CGLS, and QA4ECV FAPAR
endorses the ability of the latter dataset for drought monitoring in Australia. Another advantage of
QA4ECV FAPAR is that the traceable uncertainty information is provided in the dataset, which are not
available for other existing FAPAR datasets to the same extent.

Although the three FAPAR datasets considered here present many similarities, differences still exist.
The reasons may be summarized as follows: (1) Different sensors and satellite platforms; (2) different
retrieval methods and associated model-specific assumptions; (3) spectral responsivity differences.
Specifically, Pickett-Heaps et al. [36] reported that the differences between satellite-based FAPAR
datasets are largely due to different sensitivities in FAPAR to variations in vegetation cover. These
inconsistencies are further related to changes in biome type and relevant to model-specific assumptions.
Therefore, improvements of the retrieval methods and quantification of the uncertainties still need to
be highlighted in future studies. The QA4ECV FAPAR was generated based on a quality assurance
framework, which can provide traceable, reliable, and understandable uncertainty information from
the propagation through the processing algorithms. The uncertainty information provides spatial and
temporal information on the data quality to the user, which can be used in any application of the data,
most notably data assimilation and data fusion.

It is noted that different drought indictors are based on different variables, which should provide
complementary information on droughts. Take Murray—Darling Basin in southeast Australia as an
example—the time series of different drought indicators are shown in Figure 9. It can be seen that SPEI,
QA4ECV FAPAR, and CCI soil moisture show good consistency in seasonal variability but with large
discrepancy in magnitude. In particular, large differences in magnitude are observed between SPEI and
soil moisture, and FAPAR. Specifically, the SPEI shows greater water deficiency for years from 2010 to
2014 than both FAPAR and soil moisture, which show similar magnitude. This might be because SPEI is
calculated based on precipitation and potential evapotranspiration, which can capture the loss of water
well, while CCI soil moisture only measures the shallow surface of the soil. Therefore, the soil moisture
drought tends to stabilize at low levels. Similar results have also been found by previous studies such
as [6,70]. The better agreement in magnitude between soil moisture and FAPAR indicates that the
shallow-rooted vegetation might decide the greenness in the Murray-Darling Basin. Zhao et al., [70]
also found that NDVI has better agreement with soil moisture than the GRACE drought severity index.
Therefore, different drought indicators should be used as complementary for drought monitoring and
should not replace each other. For example, FAPAR, SPEI, and soil moisture have been selected and
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operationally used as the Combined Drought Indicator (CDI) for monitoring drought in the European
Drought Observatory (EDO) within the Copernicus Emergency Management Service.

-_ QA4ECV-FAPAR
. : _SPEI ;. ]
== CClI soil moisture

i i i i i i i
2002 2004 2006 2008 2010 2012 2014

Figure 9. Time series of QA4ECV FAPAR, CCI soil moisture, and SPEI over Murray-Darling
Basin, Australia.

6. Conclusions

This study aimed to evaluate the newly developed QA4ECV FAPAR dataset for drought analysis
in Australia. Firstly, the QA4ECV FAPAR was compared with MODIS and CGLS FAPAR datasets
for a common time period from 2001 to 2015. Similar spatial patterns and high positive correlation
were found among the datasets. In order to show to the ability of FAPAR for drought monitoring,
the standardized anomaly of FAPAR was calculated and compared spatially and temporally with the
drought index SPEI. Generally good agreement, particularly over highly vegetated areas, was found
between FAPAR and SPEL In addition, the same analysis was also conducted between the SPEI
standardized anomaly and the CCI soil moisture standardized anomaly. Similar results were found
between SPEI and CClI soil moisture, indicating the potential of FAPAR for drought monitoring. Similar
performance was also found between different FAPAR datasets in the spatial and temporal analysis
against SPEI and soil moisture, which suggests that the QA4ECV FAPAR dataset offers potential for
drought monitoring. A case study of the 2005 Australia drought specifically shows the capability of
FAPAR in monitoring the temporal and spatial variation of drought. Compared with MODIS and
CGLS FAPAR, QA4ECV FAPAR has the advantages of being much longer-term, as well as providing
traceable and reliable uncertainty information. In a future study, the QA4ECV FAPAR dataset will be
further improved based on a reprocessed and bias-corrected QA4ECV albedo dataset.
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