ﬂ SCNSors m\py

Article

Toward Cost-Effective Mobile Video Streaming
through Environment-Aware Watching
State Prediction

Xuanyu Wang, Weizhan Zhang *, Xiang Gao, Jingyi Wang, Haipeng Du and Qinghua Zheng

MOEKLINNS Lab, School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
* Correspondence: zhangwzh@xjtu.edu.cn; Tel. /Fax: +86-29-8266-3860

check for
Received: 2 August 2019; Accepted: 20 August 2019; Published: 22 August 2019 updates

Abstract: Mobile video applications are becoming increasingly prevalent and enriching the way
people learn and are entertained. However, on mobile terminals with inherently limited resources,
mobile video streaming services consume too much energy and bandwidth, which is an urgent
problem to solve. At present, research on cost-effective mobile video streaming typically focuses
on the management of data transmission. Among such studies, some new approaches consider the
user’s behavior to further optimize data transmission. However, these studies have not adequately
discussed the specific impact of the physical environment on user behavior. Therefore, this paper
takes into account the environment-aware watching state and proposes a cost-effective mobile video
streaming scheme to reduce power consumption and mobile data usage. First, the watching state is
predicted by machine learning based on user behavior and the physical environment during a given
time window. Second, based on the resulting prediction, a downloading algorithm is introduced
based on the user equipment (UE) running mode in the LTE system and the VLC player. Finally,
according to the corresponding experimental results obtained in a real-world environment, the
proposed approach, compared to its benchmarks, effectively reduces the data usage (14.4% lower
than that of energy-aware, on average) and power consumption (about 19% when there are screen
touches) of mobile devices.

Keywords: sensors in mobile phones; cost effective; mobile video streaming; sensor-based
environment-awareness; user behavior; watching state prediction

1. Introduction

In recent years, an increasing number of video applications involving entertainment, news,
instructional videos, etc. have been developed for mobile users. In order to achieve high-quality media
content streaming on the Internet, researchers have produced studies regarding the delivery level,
among which HTTP adaptive streaming (HAS) occupies a dominant position, as its flexible service
model allows users to increase or decrease video quality as needed during playback [1]. For example,
YouTube has adopted HAS to bring adaptive streaming to mobile devices and TVs [2]. In addition to
the delivery level, however, at the data download level, to reduce resource consumption, there are two
major problems with mobile video applications. First, downloading video data consumes a substantial
amount of power. Second, once enough data have been downloaded, users” skip/quit operations will
lead to downloaded data being unused. Even though HAS is so commonly applied in video delivery,
these two problems still exist on the data download level, for which there are the following two main
reasons. First, the client may have the capacity to download extra video segments when the bandwidth
provided to users is larger than the highest bitrate of HAS. Second, the k-push strategy in HAS over
HTTP/2 leads to the download of segments that may be unused.

Sensors 2019, 19, 3654; d0i:10.3390/s19173654 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/19/17/3654?type=check_update&version=1
http://dx.doi.org/10.3390/s19173654
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 3654 2of 14

Therefore, setting our sights on the data download level, this paper focuses on data
download strategies to provide cost-effective video streaming. Several studies have already
examined cost-effective mobile video streaming, focusing on providing bandwidth or energy saving
schemes [3-9]. Specifically, some researchers considered user behavior and proposed optimized
cost-effective strategies [10-12]. However, these studies did not consider the impact of the physical
environment on user behavior. Thus, the optimization methods proposed above could fail in diverse
physical mobile environments since a classic study has already shown that user behavior is affected by
the physical environment [13].

Therefore, in this paper, we propose a cost-effective mobile video streaming scheme by considering
both the physical environment and the operation behavior of a mobile user. First, a prediction model
of the user watching state is developed utilizing machine learning methods, revealing the influence
of the user’s physical environment on the user’s operation behavior. An actual watch record from
an online education platform is used for the case study in the experiment. Second, a downloading
algorithm is proposed to provide differentiated download strategies according to stable and unstable
user watching states. When the state is stable, the video streaming strategy tries to save energy through
data transmission batching. When the state is unstable, the video streaming strategy seeks to minimize
the download of unused data via a conservative download method. Third, we conduct verification
experiments to verify the advancement of the algorithm, and the experimental results show that the
proposed scheme, compared to existing methods, can effectively reduce power consumption and
mobile data usage. Finally, to implement our algorithm, a mobile video streaming prototype based
on the VLC player is developed on the Android platform. The main contributions of this paper are
summarized as follows.

e The proposed scheme does not concentrate on deploying a specific delivery system for
video streaming. It provides a cost-effective data download strategy through environment-aware
watching state prediction and provides a generalized strategy that can be used for many other
video delivery technologies, extending the domain of the traditional data download algorithms
for mobile videos.

e The proposed data download algorithm considers both the physical environment and the
operation behavior of a mobile user. Machine learning is adopted to reveal the influence of
the user’s physical environment on the user’s operation behavior. In this manner, the data
download algorithm can provide differentiated download strategies according to the watching
state of the user.

The rest of this paper is organized as follows. In Section 2, related work is presented. Section 3
introduces user watching state prediction based on machine learning. Section 4 presents the download
algorithm based on the watching state. Section 5 describes the implementation and evaluates the
performance of our solution. Section 6 concludes the paper.

2. Related Work

To reduce bandwidth and computing resource consumption on mobile devices, work has
been done from several perspectives. First, dynamically adjusting the size of the buffer is one
solution. Exploring the impact of the mobile cache threshold on video streams, Wu et al. [3]
proposed an adaptive cache threshold algorithm to achieve cost-effectiveness and reduce resource
consumption of unused content. Moreover, Ghoreishi et al. [4] proposed using a hierarchical cache
structure to determine the optimal video buffer size at different layers, thus minimizing the ratio of
transmission bandwidth cost to storage cost. For the LTE core network, Zhu et al. [7] proposed using
a cache framework in the network to optimize data requests. By analyzing the energy efficiency of
DASH (Dynamic Adaptive Streaming over HTTP) in the LTE network environment and the energy
consumption of different fluidization strategies (segment length and buffer size), the ratio resource
control (RRC) was analyzed, and its impact on energy consumption was quantified to reduce energy

Sensors 2019, 19, 3654 3of 14

consumption in Zhang et al. [11]. Furthermore, MEC can help enhance adaptive bitrate (ABR) video
delivery by combining content caching and ABR streaming together [9].

Second, solutions from other perspectives can be applied for some specific tasks. Video codecs
can be optimized to reduce power consumption during encoding, decoding, and display [5].
For mobile tasks that consume huge amounts of power such as illumination, Liu et al. [6] presented
content-adaptive display (CAD), to transfer the load of luminance compensation for videos from the
mobile device’s CPU to the GPU to produce power savings. A decision algorithm to select the most
efficient video codec according to its chroma characteristics was introduced by Jiménez et al. [14] to
save bandwidth.

Third, novel and user-friendly changes can be made considering the influence of user behavior.
To reduce the resource consumption of mobile devices, Hu W. et al. [10] analyzed the power
consumption mode of the LTE wireless interface and dynamically adjusted the data transmission
algorithm based on the user’s touch screen behavior to keep the LTE interface in the energy-saving
state for as long as possible. By analyzing the relationship between the time span of video viewing and
the power consumption of mobile devices, Li et al. [12] adjusted when and how data were downloaded
according to the viewing timespan to reduce power consumption. Aguiar [15], Brinton [16,17], and
Sinha [18] classified user participation and learning mode by analyzing the click stream. Yang et al. [19]
used the user’s click stream in a Markov model to predict the user’s next click. The leaving time was
modeled to predict which users tended to leave prematurely and permanently using machine learning
algorithms [20]. Machine learning algorithms are used to analyze learners behavior and detect student
withdrawal at an early time in the course based on MOOC (massive open online courses) datasets [21].

In the above research on mining and predicting user behavior to achieve power conservation
for mobile video applications, the sequence of historical operations that occur when a user watches a
video is used as the basis for prediction and further saves energy in mobile devices, but the influence of
the physical environment on user behavior is not taken into account, and the consideration of factors
affecting user behavior is not comprehensive or accurate enough, resulting in low prediction accuracy.
Therefore, in this study, the influence of the user’s environment is considered, and the scope of
user behavior prediction is expanded to the prediction of the user’s viewing status rather than
specific operations.

3. User Watching State Prediction

During video playback, users perform various operations such as starting playback, pausing,
skipping, and quitting. These operations may result in downloading unused data. For example,
a portion of the video data may have been downloaded into RAM only to be skipped by the user.
In practice, a user’s operation behavior is affected by various factors, so it is difficult to obtain
accurate predictions. Therefore, the task of predicting the user’s operation behavior is transformed
into that of predicting the watching state in this study, and such states can be divided into two
categories: (1) stable, where the user continues watching the video within the prescribed time
interval T, and (2) unstable, where skip/quit operations occur within the prescribed time interval T.
The reason why we divided the user watching state into only two categories is that, since the criterion
for this classification is stability, besides stable and unstable, there should be at most one intermediate
state. However, the main purpose of classifying the user watching state is to determine which
downloading strategy out of two should be applied under certain circumstances, and further achieve
cost effectiveness. The two alternative strategies achieve minimum data waste and minimum power
consumption respectively, which are two representative characteristics of cost effectiveness. Therefore,
in order to address these two strategies one by one, only two user watching states need to be defined.

In this study, we analyze the behavior of a user watching an educational courseware video, and
three factors are considered to predict the user’s watching behavior: (1) courseware video information,
(2) physical environment, and (3) historical watching behavior. These three factors are analyzed to
obtain effective features, and machine learning is used to model and predict the user’s next watching

Sensors 2019, 19, 3654 4 of 14

state. We collected video content information, sensor data, and learning operation logs from an
online educational platform from 1 September 2016-31 December 2017 (486 days), including data
for 3905 students and 380 courses (6164 courseware videos). In total, 57,207 samples were obtained
through the video player to train the model, and the dataset is made available to potentially further
benefit the community since it may be useful for other environment-aware studies [22]. Note that
there are many types of video content, such as news, entertainment, and education. Users’ response
characteristics vary with content type. However, the research methodology based on these educational
videos can also be reasonably applied to other video-streaming applications such as movies or videos
just for pleasure.

3.1. Courseware Video Information

The data for a courseware video include course ID, courseware ID, and duration. Duration is
recorded because, in addition to video content, it affects the user’s watching time. Statistics for the
learning time obtained from learning operation logs of the online education dataset are shown in
Figure 1. The left part of the figure shows that when the video duration is greater than six minutes,
the average watching time remained less than 10 minutes. The right part of Figure 1 indicates that
the average ratio of watching time to video duration continued to decrease with the increase of
video duration.

c
70 510 o e
—_ ©
£ ©
g60 20'8
E 50 3 -
g 806
§ 40 ; ’
©
S B
<30 §0.4
C —
S 20 2
[[
. EO'Z
o
0&.5@ 200 T I == e
©
o 0-3 36 69 912 12-40 >40

0-3 36 6-9 9-12 12-40 >40
Duration of courseware (minutes) Duration of courseware (minutes)
Figure 1. Distribution of a user’s watching time and the ratio of watching time to video duration for

various durations of video courseware.

3.2. Physical Environment

To determine the impact of the physical environment on users’ behavior, it is necessary to
assess the users’ current physical environment. Therefore, this study determines whether the current
environment is noisy or quiet based on the sensors in the mobile client. Guided by a previous
study [23], acceleration sensors, a microphone, and features extracted from those data (mean, standard
deviation, median, skewness, kurtosis, and quartile range) are used in this paper to examine the
physical environment, all given equal weights.

As a user watches a video, sensor data are collected at a frequency of 1 Hz and saved
as a CSV file with a unique identifier. The acceleration sensor’s output includes values
in three directions (AACx, ACCy, and ACCyz). The variable ACC, defined as ACC =

\/ AAC%, + ACCZ + ACC3, is added as a uniform measure. The microphone captures the sound
intensity of the current environment. The volume of sounds in real life is described in decibels, but the

physical quantity provided by Android is amplitude. Hence, we convert the raw data from amplitude
to decibels.

Because it is difficult for the original data to reflect directly the state of the physical environment,
we used a sliding window to extract six features—mean, standard deviation, median, skewness,
kurtosis, and quartile range—which were proven effective in an existing study [23]. Skewness and

Sensors 2019, 19, 3654 5o0f 14

kurtosis describe the steepness and symmetry of a distribution, respectively. These statistics were
compared with those of a Gaussian distribution.

3.3. Operation Behavior

When a user watches a video, he or she may engage in various click operation behaviors.
We recorded operations including playback, pausing, skipping, and quitting, as well as the duration
of each operation, to represent the entire video watching process. The features we extracted for
operational behavior included cumulative watching time, pause time, drag time, number of playbacks,
number of pauses, number of drags, playback ratio, pause ratio, drag ratio, and semantic weight,
which were obtained from the user operation sequence using two-level analysis and quantification.

Level 1: Serialization. First, the click operations were coded and serialized. The records of a users’
playback, quitting, pausing, and dragging operations are represented by 1, 2, 3, and 4, respectively.
For example, the sequence of operations in Figure 2 is serialized as “1314432”.

Play Pause Drag Stop Drag Stop Drag Start

2834 3303 3502 43:49 49:31 54:34
—0 00 ® o0 00 ©°
Time
33:23 48:22 54:22 56:02
Play Drag Pause Quit

Figure 2. Trace of a video watching process.

Level 2: Weighting behavior patterns. Second, we defined two semantics: stable and unstable.
Next, we used fuzzy string matching to calculate the semantic weight of the operation sequence.
Each semantic contained multiple substrings of length n. According to the study of [18], we counted
substrings of length four (called a pattern) in all operation sequences, selected the top 50 most frequent
substrings, and assigned semantics to them, as shown in Table 1. Then, we calculated the weights of the
stable and unstable semantics for each sequence of operations. The semantic weight of the ith operation
sequence sample s; in semantic j was calculated by the formula w;; = Zil Weight(P;,,s;), where P;,
is the pth pattern in semantic j, ¢; is the total number of patterns in semantic j, and Weight(P;,, s;)
calculates the weight of sample s; in the pth pattern in semantic j. There is no need for exactly four
operations since for shorter videos, by the time the user performs enough operations, the video may
already be nearly over. We only need to know how many times the four-digit patterns occurred during
the time window. If none of those patterns occurred, there were other variables in the input without
the weighted behavior patterns.

Table 1. Final representation of semantics with n = 4,k = 50.

Semantic 4-Digit Patterns

Stable 1313, 1312, 1342, 1432,
Unstable 1344, 4444, 4442, 4443, 4431, 3444,

3.4. Watching State Prediction

We selected the seven most commonly-used machine learning algorithms, namely ridge, LASSO,
elastic net, ExtraTrees, random forest, gradient boosting, and XGBoost, for modeling and prediction of
the watching state. The 10-fold cross-validation method was used to prevent overfitting. The evaluation
indexes of the results were modeling time, mean absolute error (MAE), root mean squared error (RMSE),
and the coefficient of determination R?. MAE can avoid the problem of mutual cancellation of errors,
so it can accurately reflect the actual prediction error. RMSE measures the deviation between the
observed value and the true value. The smaller MAE and RMSE are, the higher the quality of the
prediction is. R? determines the degree of closeness. An R? closer to one represents a higher quality

Sensors 2019, 19, 3654 6 of 14

prediction model. The results are shown in Table 2. We observe that, except for the longest modeling
time of XGBoost, modeling times of the remaining algorithms were relatively short. Additionally,
we observe that the R? of random forest was the highest, with the minimum MAE and RMSE at the
same time (0.0093 and 0.0114, respectively). Therefore, we used random forest to predict the user
watching state. The time consumed by the prediction was short enough to support real-time delivery.

Table 2. Modeling results under 7 machine learning algorithms.

Modeling Method Modeling Time (s) R? MAE RMSE

Ridge 3.66 0.6108 0.0122 0.0820
Lasso 0.90 0.5813 0.0181 0.0823
Elastic Net 4.49 0.6512 0.0152 0.0814
XGBoost 898.41 0.7886 0.0269 0.0907
Random Forest 12.76 0.8332 0.0093 0.0114
ExtraTrees 1.59 0.8183 0.0151 0.0123
Gradient Boosting 9.26 0.8080 0.0175 0.0856

4. Downloading Algorithm Based on the Watching State

Since the LTE technology dominates the current mobile telecom infrastructure, downloading
was considered to use the LTE network as the platform for video transmission. In the LTE system,
the user equipment (UE) has two running modes that are switched by the RRC by changing the state
of the wireless interface. These modes are LTE-ACTIVEand LTE-IDLE, and during the switch from
LTE-ACTIVE mode to LTE-IDLE mode, there is an intermediate high-power state of duration £,
called TAIL. When the system is transmitting data, the UE is in high-power LTE-ACTIVE mode. When
data transmission ends, the UE enters low-power LTE-IDLE mode after the t;,; TAIL.

To both save power and reduce the waste of mobile data, the idea of our algorithm is to make a
decision based on the user’s watching state during time window T. When the user is in the stable state,
we can fully utilize the client buffer to download enough data in the LTE-ACTIVE mode and then
switch to LTE-IDLE and remain in that state as long as possible. When the user is in the unstable state,
we can download a group of pictures (GoP) that the user will watch, minimizing the download
of unused data. A GoP contains a fixed number of I, P, and B frames and is the basic unit of
video transmission, with a duration of /; and a data size of d;.

At present, there are two typical cost-effective mobile video streaming scheduling strategies.
(1) bitrate streaming [24] is a strategy that downloads a GoP only when it needs to be played
back. The advantage of this strategy is that it minimizes the amount of unused data being
downloaded and the required buffer space. However, network fluctuations may cause video stalling.
(2) ON-OFF streaming [25] is a strategy implemented by exploiting the buffer capacity of the mobile
client. It seeks to download video data into the buffer at the highest speed until the buffer is filled;
afterwards, it switches the LTE mode into a power-saving state. When the data size in the buffer is less
than the threshold, data downloading is resumed.

If the video continues to play during time window T, the data size is Dr = v * T during
this period, where v is the video playback rate. For bitrate streaming, since the UE is always
in the LTE-ACTIVE mode, the total energy consumed during time window T is calculated by
Equation (1). For ON-OFF streaming, multiple GoPs are downloaded in the LTE-ACTIVE mode
before switching the wireless interface to the TAIL state. The energy consumption of downloading
the ith GoP under this strategy is calculated in Equation (2) by an existing method [10], where At is
the time interval for downloading g; and g; 1. The power consumption values of the TAIL, ACTIVE,
and PROMOTION (the process of switching from IDLE to ACTIVE) states are expressed as Py,i1, Psctive,
and Py, respectively. At the same time, the data throughput in the network is .

ET—Bitmte =Tx Pactive (1)

Sensors 2019, 19, 3654 7 of 14

d; .
E - Ppro * tpro + Pactive * 71 + Praip * tiair, if At >ty o)

dj ,
Pactive * 71 + Pyaip * tgi1, Otherwise

The total energy consumption of downloading k GoPs during a given time window T is
Er_ON—OFF = Z}i’f E;. If each GoP is downloaded, the UE running mode will be switched to
LTE-IDLE, and the maximum amount of energy will be consumed during the window, as shown in
Equation (3). For the minimum value described in Equation (4), the UE running mode will remain in
the LTE-IDLE mode for as long as possible, reducing the number of promotions and leading to the
minimum energy consumption during the time window.

Dt
ET%oN—_orr = k * (Ppro * tpro + Praip * trair) + > * Poctive ®3)
, i+k
]""ZTON—OPF = minimize Z E]- 4)

J=t

Calculating the duration of time window T. To save energy, ON-OFF streaming needs to be
adopted, but there will be additional energy consumption due to state switching. When using
bitrate streaming, since the amount of data downloaded in the beginning is small and there is no
state switching, power consumption is low. However, there is a threshold that makes the power
consumption of bitrate streaming higher than that of ON-OFF streaming. Therefore, our objective is
to determine the minimum time window in Equation (5). Combining Equations (1) and (3), we can
obtain Equation (6). By letting ¢ be defined as Equation (7), we can obtain Equations (8) and (9). If a
state transition occurs, there must be more than two GoPs downloaded in a time window, i.e., k > 2.
The size of the time window T obtained here serves as the basis for the subsequent analysis of the
learning behavior and physical environment in Section 3.

E1_Bitrate > EYWEXON—OPF ®
T - k . r N ppro * tpTO + Ptdil * ttﬂil (6)
_ Pactive

. Ppm * tpm + Prair * tiair (7)
Pactive

T >k °

e (8)
r

Tmin:k*r,zj*c)

Determining the mode switching time of ON-OFF streaming in the stable state. We used the
lower bound g and the upper bound « of the buffer to decide when to start and stop downloading.
When the user is in the stable state, if Dy < B, « = D7, and the wireless interface is activated to
download the amount Dt of data into the buffer. There is no state switching during the download
process, so there is no need to determine the lower bound . If Dt < B, &« = B, and according to [10],
the lower bound f can be calculated by »-'— B, where the probability of the occurrence of skip/quit
operations is (1 — r?)p, where 72 is the accuracy of the prediction result and p is the probability of
skipping/quitting.

If the predicted result of the watching state is the unstable state, we switch the strategy to
bitrate streaming to minimize the download of unused data. Algorithm 1 describes the downloading
algorithm, where the function predict() returns a Boolean value (0, 1), indicating either a stable or an
unstable state.

Sensors 2019, 19, 3654 8 of 14

Algorithm 1: Cost-effective mobile video streaming downloading algorithm with
environment-aware watching state prediction.

Input: Ef: environmental features (sensor), Of: operation features, Li: lecture info
Output: Downloading strategy in a given time window

1 Initialization: Data Dy are downloaded to the buffer

2 while Intervals of T do

3 | nextWatchState = predict(Ef,Of, Li);
4 if nextWatchState == unstable then
5 ‘ switch the download strategy to bitrate streaming
6 else
7 if Dt < B then
8 ‘ download Dr to buffer
9 else
10 while monitor the size of data in the buffer do
11 if data size in the buffer < p then
12 WirelessInterfaceState = RRC_CONNECTED
13 download the GoP to the buffer
14 if data size in the buffer > B then
15 WirelessInterfaceState = RRC_IDLE
16 stop the GoP download
17 end
18 end
19 end
20 end

The proposed algorithm in this section can switch the download strategy between bitrate
streaming and ON-OFF streaming and determine the mode switching time of ON-OFF streaming.
However, it relies heavily on the prediction result of the user watching state in Section 3, which makes
it error-prone when the prediction is delayed and may fluctuate when new factors occur, resulting in
extra data waste or power consumption.

5. Experiments

After introducing the above video data downloading algorithm in Section 4, in this section,
we apply it on the Android application platform and compare it with two representative approaches,
bitrate streaming [24] and the energy-aware algorithm [10], to verify the usability and effectiveness of
our proposed algorithm, proving that the application of the algorithm in the system can improve the
endurance of the UE and save data traffic costs.

5.1. Experimental Setup

The proposed strategy was developed in an Android application that uses the VLC player by
modifying the stream_output and user_interfaces modules. The default download strategy for
VLC is bitrate streaming [24]; we added the energy-aware approach [10] and our solution to the
stream_output module and added a strategy switch interface to the user_interfaces, which was
controlled by the predicted watching state. Afterwards, we compiled and generated libvlc.aar
and embedded it into our application. ON-OFF streaming was used in both our strategy and the
energy-aware method, where the default buffer size is 10 MB in VLC. We used MediaPlayer.Event to
intercept the user’s click operation and SensorManager provided by Android to collect sensor data at
the frequency of 1 Hz. The data were stored in memory, and the features were generated locally and
sent to the predictive model.

Sensors 2019, 19, 3654 9of 14

In the experiment, an Android cell phone was used as our client, and third-party applications
were used to measure throughput and power consumption; power consumption was measured in
mAh, and voltage was assumed to be 3.7 V during the experiment.

5.2. Experimental Results and Analysis

We analyzed the performance of our solution by comparing it with existing algorithms. We used
three different algorithms to record the total energy consumption and the unused data under
different conditions. The comparison algorithms were:

e Bitrate streaming [24]: Download a GoP only when it needs to be played back, with UE running
mode always in the LTE-ACTIVE mode. VLC uses this strategy by default.

o Energy-aware [10]: Switch between ON-OFF streaming and bitrate streaming depending on
whether the user touches the screen. If the user touches the screen, the strategy realizes that the
user tends to skip/quit and uses bitrate streaming. Otherwise, ON-OFF streaming is used to
save energy.

e Our method: Consider the impact of the physical environment on user behavior by predicting the
user’s watching state within a defined window. If it is unstable, use bitrate streaming; otherwise,
use ON-OFF streaming to minimize energy consumption and unused data.

The downloading experiments were performed on the dataset mentioned in Section 3.
The characteristics of the test videos are listed in Table 3. We used bitrate streaming, the energy-aware
approach, and our solution to watch these videos in three cases of user operation. In the first case,
there was no skipping during the entire video watching process. In the second case, several skips
were performed during video watching. The operation mode was determined based on the sequence
of operations in the test dataset. In the last case, parts of videos were skipped, and the screen was
touched (without skipping/quitting) during the video watching process. To evaluate the impact of
environmental factors on user operation, two physical environments (quiet and noisy) were considered;
therefore, three sets of experiments were performed.

Table 3. Test videos.

Video Name Resolution Frame Rate Duration Size
Java Language Features 960 x 720 25 2583 s 121 MB
Thread Scheduling 960 x 720 25 483 s 22.4 MB

5.2.1. Experiments with a Single Video in a Single Environment

For the three algorithms, when the operations on a single video were performed in the
same environment, the results were as shown in Figure 3 separately for the three cases. The video
“Java language features” was used in this part.

5
S
3

o

3
IS
S

60

N
S
3
IS
S
@
5

40

N

S
n
S

Downloaded data (MB)
w
8
Power consumption (mAh)

=]
8

20

=

Power consumption (mAh)
5

Power consumption (mAh)
Downloaded data (MB)

)

0
Bitrate Energy-aware ours Bitrate Energy-aware ours Bitrate Energy-aware ours Bitrate Energy-aware ours Bitrate Energy-aware ours
(a) Without skip (b) With skip (c) With skip (d) With skip and screen touch (e) With skip and screen touch

)
)
)

Figure 3. Amount of power consumed and downloaded data size for “Java language features”
under three different methods for a single video in the same environment: (a,b,d) show the power
consumption in the three cases, while (c,e) illustrate the corresponding downloaded data size.

Without skipping: No operations or screen touches occurred during the entire video
watching process. Figure 3a shows the energy consumption of various algorithms. We observe that the

Sensors 2019, 19, 3654 10 of 14

bitrate streaming algorithm had the highest energy consumption because the UE running mode was
always the LTE-ACTIVE mode. The energy-aware algorithm had the lowest energy consumption since
the screen was not touched, and the user was always in the stable state during playback. Therefore,
the ON-OFF strategy was adopted at all times to save energy, saving 70.49% compared to bitrate
streaming. For our algorithm, the amount of energy consumption depended entirely on the accuracy
of the prediction results of the user watching state. Because our prediction accuracy was not 100%,
the prediction result would change the watching state so that the switching download strategy could
slightly increase the energy consumption compared to that of the energy-aware algorithm.

With skipping: We took a sample of the operation sequence of the courseware from the test
dataset; the operation sequence was represented as a series of operation(time). The test sample was
1(29 October 2016 16:22:16) 4(22:21) 4(22:59) 4(23:01) 4(23:04) 4(23:05) 4(23:07) 4(23:39) 4(23:40) 4(23:42)
4(23:43) 4(23:47) 4(23:49) 4(23:53) 4(23:54) 4(23:56) 4(23:57) 4(24:00) 4(24:01) 4(24:39) 4(24:40) 1(36:32)
3(40:02) 1(40:42) 2(42:06). There was no further screen touching during the playback process, and this
sequence of operations during playback was analyzed under various algorithms. The results are
shown in Figure 3b,c. From the figure, we observe that the energy consumption of bitrate streaming
was lower than that of (a), but higher than that of the other two methods. The power consumption
figures of the energy-aware algorithm and our method were very similar, but our method downloaded
less data because the energy-aware algorithm downloaded data to the buffer until the buffer was filled
when no screen touching occurred. In contrast, our method downloaded only D; in the ON-OFF mode,
resulting in a reduction in the total amount of downloaded data.

With skipping and screen touching: We used the previous sequence of operations and added
a screen touch between every two operations. The experimental results are shown in Figure 3d,e.
From Figure 3d, we observe that bitrate streaming remained stable compared with the second case.
However, according to the energy consumption, our scheme outperformed the energy-aware algorithm
by 19.14%. In this case, screen touching was added, and the download time of bitrate streaming would
increase for the energy-aware algorithm; however, the video was not skipped at this time.

The experiment showed that, when there were many screen touches during the video watching
period, our strategy obtained the lowest energy consumption and the mobile data usage. When there
were few user operations, the energy savings of our approach would be reduced, but the data usage
remained less than that of the benchmarks.

5.2.2. Experiments with Different Videos in a Single Environment

For two videos with different durations (“Java language features” and “thread scheduling”),
experiments were performed in the same environment (quiet) using the three algorithms. The operation
trace of “thread scheduling” was 1(8 March 2017 15:45:34) 4(15:47:22) 4(15:49:43) 2(15:52:35), and the
new results are shown in Figure 4 for the three cases, which can be compared with the counterparts in
Figure 3.

20

N
S

40

IS
S

15
40

-
@

30

@
3

10
20

N
S

20

10 5

o
=
5

Power consumption (mAh)
Power consumption (mAh)

Power consumption (mAh)
Downloaded data (MB)

Downloaded data (MB)
-

0 0 0
BitrateEnergy-aware Ours BitrateEnergy-aware Ours BitrateEnergy-aware Ours BitrateEnergy-aware Ours BitrateEnergy-aware Ours

(a) Without skip (b) With skip (c) With skip (d) With skip and screen touch (e) With skip and screen touch

[S)
S

Figure 4. Amount of power consumed and downloaded data size under three different methods for
“thread scheduling” in the same environment: (a,b,d) show the power consumption in the three cases,
while (c,e) illustrate the corresponding downloaded data size.

Without skipping: For all three methods, when the frame rate and resolution were constant, the
power consumption increased dramatically with the increase in video duration, as can be seen from
Figures 3a and 4a.

Sensors 2019, 19, 3654 11 of 14

With skipping: Comparing the energy-aware algorithm and our algorithm with bitrate streaming
in Figures 3b and 4b, respectively, it can be seen that watching “thread scheduling” saved more
power and wasted less downloaded data than watching “Java language features”. This result is
mainly because the duration of the former video was shorter, resulting in a smaller proportion of skip
operations and a larger portion of the video being viewed, compared to that of the “Java language
features” video; thus, the number of switches of the download strategy to bitrate streaming was
reduced, resulting in more significant energy savings.

With skipping and screen touching: As the proportion of screen touches and skip
operations increased, the power consumption of the energy-aware algorithm increased relative to that
in the with skipping case, while our method showed little increase.

5.2.3. Experiments with a Single Video in Different Environments

For “Java language features”, experiments were performed in quiet and noisy environments using
the three algorithms. For the noisy environment, the user operation trace from the Section 3 dataset
was 1(31 October 2016 20:54:04) 4(20:54:00) 4(20:54:06) 4(20:54:07) 4(20:54:08) 4(20:54:08) 4(20:54:09)
4(20:54:10) 4(20:54:11) 4(20:54:12) 4(20:54:14) 4(20:54:15) 4(20:54:17) 4(20:54:18) 4(20:54:21) 4(20:54:23)
4(20:54:25) 4(20:54:25) 4(20:54:26) 4(20:54:28) 4(20:54:29) 4(20:54:29) 4(20:54:29) 4(20:54:31) 4(20:54:32)
4(20:54:33) 4(20:54:34) 4(20:54:35) 4(21:03:32) 4(21:03:33) 4(21:03:34) 4(21:03:36) 4(21:03:38) 4(21:03:38)
2(21:04:28). The results are shown in Figures 3 and 5 for the three cases.

60

IS
S
1
'
o
1

'
S
1

50 1

S
S
1
w
=]
1

40 4

w
S
1
@
S
1

30 1
20 1

)
S
1

20 1

=
S)
1

10 A

Power consumption (mAh)
-
1S
1

Downloaded data (MB)
Power consumption (mAh)
Downloaded data (MB)
®)
3
1

10

o
I

0 - 0 -
BitrateEnergy-aware Ours BitrateEnergy-aware Ours BitrateEnergy-aware Ours BitrateEnergy-aware Ours
(a) With skip (b) With skip (c) With skip and screen touch (d) With skip and screen touch

Figure 5. Amount of power consumed and downloaded data size under three different methods for
“thread scheduling” in the same environment: (a,b,d) show the power consumption in the three cases,
while (c,e) illustrate the corresponding downloaded data size.

Energy-aware and our method were in touch screen and unstable states for a long time under
both with skipping and with skipping and screen touching; thus, they saved less power than in a
quiet environment, as shown in Figures 3b,d and 5a,c. The reason was assumed to be the increase
in skipping operations for the trace in the noisy environment. To determine statistically the effect of
the physical environment on user operation, we separately counted the number of skip operations
users performed in quiet and noisy environments. As shown in Figure 6, skipping operations were
performed more often in the noisy environment (red dots) than in the quiet environment (green dots).

In the scenario of a single video and multiple environments, since different physical environments
were ultimately reflected in skip times during the viewing process, the result was the same as before;
i.e., the more skips there were, the lower the energy savings.

Sensors 2019, 19, 3654 12 of 14

100 +

Noisy environment
e Quiet environment

= o)
S S
1 1

Total skipping operations

20 4

T T T T T T T
0 500 1000 1500 2000 2500 3000 3500

Sample number

Figure 6. The distribution of skipping operations for quiet and noisy environments.

6. Conclusions

In this paper, we proposed a mobile video streaming scheme to reduce energy consumption and
bandwidth usage in an LTE network. A prediction model of the user watching state was developed
using machine learning, considering the influence of the user’s physical environment on user behavior.
Afterwards, a download algorithm was introduced based on the UE running mode in the LTE system.
The download strategies were adjusted according to the user watching state. When the state was stable,
the UE running mode was LTE-IDLE for as long as possible to save energy, and the ON-OFF streaming
strategy was used. When the state was unstable, the skip/quit operations occurred. The bitrate
streaming strategy was used to minimize the download of unused data. The scheme was implemented
in the VLC player on the Android platform, and the performance of the scheme was compared with
that of the existing methods under three scenarios of video watching. The experimental results showed
that our method was effective and performed best when the user touched the screen frequently.

Considering the physical environment, this paper studied on-demand downloading of online
video data, mainly concerning MP4 file transfer under the HTTP /1.1 protocol, in which data are
actively requested according to user’s needs. Recently, delivery-level research on HAS over HTTP /2
has received increasing attention. Switching between the ON-OFF streaming strategy and the bitrate
streaming strategy is also suitable for HTTP/2-based adaptive streaming. The switching strategy
can be applied to the dynamic server push strategy to determine the push number of HTTP/2-based
adaptive streaming. Therefore, future research will focus on how to provide cost-effective
HTTP/2-based adaptive streaming through the environment-aware watching state prediction. In the
meantime, detailed video information affecting user’s viewing state prediction, such as the way of
video production, the difficulty of video courseware, and the chroma characteristics of the video, was
not taken into account in our research. It can be analyzed and added in the follow-up study to achieve
more accurate user watching state prediction.

Sensors 2019, 19, 3654 13 of 14

Author Contributions: W.Z. and X.W. proposed the ideas and the methodology in this paper. X.G. managed
the data. W.Z., X.G., and H.D. performed the analysis. X.W. conducted the experiments. W.Z. and X.W. wrote
the paper. X.W. and X.G. developed the software. Q.Z. provided the funding and the project administration.
XW., WZ, X.G, JW, and H.D. reviewed and edited the manuscript. All authors read and approved
the manuscript.

Funding: This work is supported by “The Fundamental Theory and Applications of Big Data with Knowledge
Engineering” under the National Key Research and Development Program of China (Grant No. 2016YFB1000903),
the National Science Foundation of China (Grant Nos. 61772414, 61721002, 61532015, 61532004, and 61702400),
the MOE Innovation Research Team (Grant No. IRT17R86), the Project of the China Knowledge Centre for
Engineering Science and Technology, and the consulting research project of Chinese academy of engineering “The
Online and Offline Mixed Educational Service System for “The Belt and Road” Training in MOOC China”.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sackl, A.; Zwickl, P; Reichl, P. The trouble with choice: An empirical study to investigate the influence of
charging strategies and content selection on QoE. In Proceedings of the 9th IEEE International Conference
on Network and Service Management (CNSM 2013), Zurich, Switzerland, 14-18 October 2013; pp. 298-303.

2. Roettgers, J. Don’t Touch That Dial: How YouTube Is Bringing Adaptive Streaming To Mobile, TVs. 2013.
Available online: http://gigaom.com/2013/03/13/youtube-adaptive-streaming-mobile-tv (accessed on
22 August 2019).

3. Wu, D,; Huang, J.; He, J.; Chen, M.; Zhang, G. Toward cost-effective mobile video streaming via smart cache
with adaptive thresholding. IEEE Trans. Broadcast. 2015, 61, 639-650. [CrossRef]

4. Ghoreishi, S.E.; Friderikos, V.; Karamshuk, D.; Sastry, N.; Aghvami, A.H. Provisioning cost-effective
mobile video caching. In Proceedings of the 2016 IEEE International Conference on Communications (ICC),
Kuala Lumpur, Malaysia, 22-27 May 2016; pp. 1-7.

5. Pelcat, M.; Nogues, E.; Ducloux, X. Energy Reduction in Video Systems: The GreenVideo Project.
In Proceedings of the ACM International Conference on Computing Frontiers, Como, Italy, 16-19 May 2016;
ACM: New York, NY, USA, 2016; p. 398, doi:10.1145/2903150.2911716. [CrossRef]

6. Liu, Y,; Xiao, M.; Zhang, M,; Li, X.; Dong, M.; Ma, Z.; Li, Z.; Chen, S. Content-adaptive Display Power
Saving in Internet Mobile Streaming. In Proceedings of the 25th ACM Workshop on Network and Operating
Systems Support for Digital Audio and Video, Portland, OR, USA, 18-20 March 2015; ACM: New York, NY,
USA, 2015; pp. 1-6, doi:10.1145/2736084.2736087. [CrossRef]

7. Zhu, J.; He, J.; Zhou, H.; Zhao, B. EPCache: In-network video caching for LTE core networks. In Proceedings
of the 2013 IEEE International Conference on Wireless Communications and Signal Processing, Hangzhou,
China, 24-26 October 2013; pp. 1-6.

8. Karagkioules, T.; Concolato, C.; Tsilimantos, D.; Valentin, S. A comparative case study of HTTP adaptive
streaming algorithms in mobile networks. In Proceedings of the 27th Workshop on Network and Operating
Systems Support for Digital Audio and Video, Taipei, Taiwan, 20-23 June 2017; pp. 1-6.

9. Xu, X, Liu, J.; Tao, X. Mobile edge computing enhanced adaptive bitrate video delivery with joint cache and
radio resource allocation. IEEE Access 2017, 5, 16406-16415. [CrossRef]

10. Hu, W,; Cao, G. Energy-aware video streaming on smartphones. In Proceedings of the 2015 IEEE Conference
on Computer Communications (INFOCOM), Hong Kong, China, 26 April-1 May 2015; pp. 1185-1193.

11. Zhang, J.; Fang, G.; Peng, C.; Guo, M.; Wei, S.; Swaminathan, V. Profiling Energy Consumption of
DASH Video Streaming over 4G LTE Networks. In Proceedings of the 8th International Workshop
on Mobile Video, Klagenfurt, Austria, 10-13 May 2016; ACM: New York, NY, USA, 2016; pp. 3:1-3:6,
doi:10.1145/2910018.2910656. [CrossRef]

12. L, X;; Dong, M.; Ma, Z.; Fernandes, F.C.A. GreenTube: Power Optimization for Mobile Video Streaming
via Dynamic Cache Management. In Proceedings of the ACM International Conference on Multimedia,
Nara, Japan, 29 October—2 November 2012; pp. 279-288.

13. Drew, C.J. Research on the Psychological-Behavioral Effects of the Physical Environment. Rev. Educ. Res.
1971, 41, 447-465.

http://gigaom.com/2013/03/13/youtube- adaptive-streaming-mobile-tv
http://dx.doi.org/10.1109/TBC.2015.2465173
https://doi.org/10.1145/2903150.2911716
http://dx.doi.org/10.1145/2903150.2911716
https://doi.org/10.1145/2736084.2736087
http://dx.doi.org/10.1145/2736084.2736087
http://dx.doi.org/10.1109/ACCESS.2017.2739343
https://doi.org/10.1145/2910018.2910656
http://dx.doi.org/10.1145/2910018.2910656

Sensors 2019, 19, 3654 14 of 14

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Jiménez,] M.; Diaz,].R,; Sendra, S.; Lloret,]. Choosing the best video compression codec depending on the
recorded environment. In Proceedings of the 2014 IEEE Global Communications Conference, Austin, TX,
USA, 8-12 December 2014; pp. 1347-1352.

Aguiar, E.; Nagrecha, S.; Chawla, N.V. Predicting online video engagement using clickstreams.
In Proceedings of the 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA),
Paris, France, 19-21 October 2015; pp. 1-10.

Brinton, C.G.; Chiang, M. MOOC performance prediction via clickstream data and social learning networks.
In Proceedings of the 2015 IEEE Conference on Computer Communications (INFOCOM), Hong Kong, China,
26 April-1 May 2015; pp. 2299-2307.

Brinton, C.G.; Buccapatnam, S.; Chiang, M.; Poor, H.V. Mining MOOC Clickstreams: On the Relationship
Between Learner Behavior and Performance. Comput. Sci. 2015, 64. Available online: http://arxiv.org/abs/
1503.06489 (accessed on 22 August 2019).

Sinha, T; Jermann, P.; Nan, L.; Dillenbourg, P. Your Click Decides Your Fate: Inferring Information Processing
and Attrition Behavior from MOOC Video Clickstream Interactions. In Emnlp Workshop on Modelling
Large Scale Social Interaction in Massive Open Online Courses; Association for Computational Linguistics:
Stroudsburg, PA, USA, 2014; pp. 3-14.

Yang, T.Y.; Brinton, C.G.; Joe-Wong, C.; Chiang, M. Behavior-based grade prediction for MOOCs via time
series neural networks. IEEE]. Sel. Top. Signal Process. 2017, 11, 716-728. [CrossRef]

Xie, T.; Zheng, Q.; Zhang, W.; Qu, H. Modeling and predicting the active video-viewing time in a large-scale
E-learning system. IEEE Access 2017, 5, 11490-11504. [CrossRef]

Al-Shabandar, R.; Hussain, A.J.; Liatsis, P; Keight, R. Analyzing Learners Behavior in MOOCs: An
Examination of Performance and Motivation Using a Data-Driven Approach. IEEE Access 2018, 6,
73669-73685. [CrossRef]

Xiang, G. Prediction-of-IEarning-Behavior Data Set. 2018. Available online: https://github.com/
substitute05/Prediction-of-learning-behavior.git (accessed on 23 February 2019).

Mi, Z.; Sawchuk, A.A. A Feature Selection-Based Framework for Human Activity Recognition Using Wearable
Multimodal Sensors. In Proceedings of the Acm Conference on Ubiquitous Computing, Beijing, China,
7-8 November 2011; ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering): Brussels, Belgium, 2011; pp. 92-98.

Hoque, M.A.; Siekkinen, M.; Nurminen, J.K.; Aalto, M. Dissecting mobile video services: An energy
consumption perspective. In Proceedings of the 2013 IEEE World of Wireless, Mobile and Multimedia
Networks, Madrid, Spain, 4-7 June 2013; pp. 1-11.

Rao, A.; Legout, A.; Lim, Y.S.; Towsley, D.; Barakat, C.; Dabbous, W. Network characteristics of video
streaming traffic. In Proceedings of the Conference on Emerging Networking Experiments and Technologies,
Tokyo, Japan, 6-9 December 2011; p. 25.

@ (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://arxiv.org/abs/1503.06489
http://arxiv.org/abs/1503.06489
http://dx.doi.org/10.1109/JSTSP.2017.2700227
http://dx.doi.org/10.1109/ACCESS.2017.2717858
http://dx.doi.org/10.1109/ACCESS.2018.2876755
https://github.com/substitute05/Prediction-of-learning-behavior.git
https://github.com/substitute05/Prediction-of-learning-behavior.git
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	User Watching State Prediction
	Courseware Video Information
	Physical Environment
	Operation Behavior
	Watching State Prediction

	Downloading Algorithm Based on the Watching State
	Experiments
	Experimental Setup
	Experimental Results and Analysis
	Experiments with a Single Video in a Single Environment
	Experiments with Different Videos in a Single Environment
	Experiments with a Single Video in Different Environments

	Conclusions
	References

