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Abstract: Inter-floor noise is a severe social problem which causes illegal arson, violence, and even
murder. In this paper, an inter-floor noise sensing system is proposed to detect and record information
related to inter-floor noise in an apartment building. The proposed system measured the noise
level and estimated the direction of the noise source along with the type of noise. The noise level
measurement is based on the sound pressure level (SPL) measurement, which is a logarithmic measure
of the effective pressure of a sound relative to a reference sound pressure. Noise source localization
was performed using the estimated time difference of arrival (TDOA) from the microphone array.
For the classification of noise types, the Mel frequency cepstral coefficients (MFCC) and zero-crossing
rate (ZCR) were extracted from a noise signal, and the k-nearest neighbor algorithm was used to
classify the type of noise. In addition, we developed a noise monitoring hardware to evaluate our
methods in the actual environment. The experimental results demonstrated that the proposed system
had a reliable accuracy for each functional unit. The results showed that the error of the noise level
was approximately ±1.5 dB(A), the error of the direction estimation was approximately ±10◦, and the
accuracy of the classification for the noise type was more than 75%. These output data from the
proposed system are expected to be used as important reference data for any dispute cases due to
inter-floor noise.

Keywords: acoustic noise sensor; inter-floor noise; microphone array; sound classification;
sound pressure level; sound source localization

1. Introduction

Due to high population density, many countries have a very high rate of apartment housing. In the
case of South Korea, the proportion of apartment house among all types of housing has continuously
increased and the total percentage of apartment housing reached 75% in 2016 [1]. Roughly speaking,
about three quarters of Korean citizens are sharing floors with their neighboring residents in their
current housing situation. The unavoidable problem that arises from the high percentage of apartment
housing is the inter-floor noise between neighboring residents.

Inter-floor noise in many countries has been a serious social problem. Conflicts between
neighboring residents have occurred frequently, and some of them resulted in crimes such as arson,
violence, and even murder. The governments of several countries created a legal standard related
to inter-floor noise to provide a quantitative definition of it. The legal standard specifies different
threshold levels of inter-floor noise according to their type and occurrence time [2,3].

A major problem of current situations is the lack of a specialized device for recording inter-floor
noise even though there are a number of noise sensors in the market. With the currently available
sound level meters, users can only measure the noise level without localization and classification [4–7].
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In addition to the noise level, there are other more important data regarding inter-floor noise which
can be used as reference data in dispute cases.

In this paper, an inter-floor noise sensing system, which detects not only the noise level, but also
other meaningful information related to inter-floor noise is proposed. The proposed system captures
and displays three pieces of information related to inter-floor noise: noise level, three-dimensional
direction of the noise source, and type of noise. The noise level measurement is based on a logarithmic
measure of the effective pressure of a sound relative to reference sound pressure, and the noise source
localization is performed using the estimated time difference of arrival (TDOA) from the microphone
array which consists of three pairs. For the classification of noise types, Mel frequency cepstral
coefficients (MFCC) and zero-crossing rate (ZCR) were extracted from the noise signal, and k-nearest
neighbor algorithm was used to classify the type of noise. Knowing the direction of the noise source
helps in finding the location of the point where the inter-floor noise occurs frequently. The classification
of the noise type is also important because the legal standard is different according to the type of
inter-floor noise that is occurring.

The rest of this paper is organized as follows. Section 2 introduces related works. Section 3
illustrates how each function of the proposed system is implemented with detailed algorithms. Section 4
provides the experimental results of the proposed system. Finally, the conclusion of this paper is
presented in Section 5 with recommendations for future studies.

2. Related Works

The proposed inter-floor noise sensing system contains three functional blocks: noise level,
sour localization, and noise classification. In this chapter, we briefly introduce related works of each
functional block of the proposed system.

2.1. Noise Level Measurement

Risojevic et al. [8] proposed accurate indoor sound level measurement on a low-power and
low-cost wireless sensor node with limited computational resources. They implemented non-calibrated
calculation of the sound pressure level and performed digital A-weighting filtering on the node.
According to the experimental results, their approach could measure the noise levels of up to 100 dB
with a mean difference of less than 2 dB compared to Class 1 sound level meters. Santini et al. [9]
developed a system for the collection and logging of noise pollution data based on tiny sensor
nodes. Two studies enabled real-time acquisition, processing, and visualization of data collected
in wireless sensors networks. Zamora et al. [10] presented a Smartphone-based noise monitoring
system. They focused their effort on the sound capture, processing procedure, and analyzing the
impact of different noise calculation algorithms. They could measure the noise level of up to 95 dB
and reduce average error below 2%. Most previous studies adopted the A-weighting function to
improve the accuracy of the system [11,12]. It is defined as a standard in the international standard IEC
61672-1: 2003 [13]. They have complied with the requirement of the international standard in terms of
accuracy. However, they did not consider noise source localization and the classification of noise types.
These factors can be used as important reference data for any dispute cases due to inter-floor noise.

2.2. Sound Source Localization

The sound source localization technique is being widely used in various applications such
as teleconferencing [14] and robot navigation [15,16]. There have been several investigations that
attempted to localize the source of the sound. Among those approaches, the sound source localization
based on time difference of arrival (TDOA) from microphone arrays [17–21] is the most widely used
and reliable technique. In the proposed sound localization system, the TDOA estimated from the
microphone array was used to localize the direction of the noise source. The microphone array structure
consisted of several pairs of microphones. Basically, one microphone pair was an angle sensing sensor
of the incoming sound signal. To estimate the incident angle of sound, it was assumed that the distance
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to the sound source is much larger than the interval of the microphones such that incoming sound
waves can be considered as coming in parallel [22–24].

Other studies [25,26] presented localization systems based on the time difference of arrival on
Zigbee networks. They achieved high accuracy within several meters even though they use 2.4 GHz
radio frequency. These approaches require accurate time synchronization since their localization
methods are based on multiple sensor nodes.

2.3. Sound Classification

The sound classification technique is also widely used in various fields of applications such as
environmental sound recognition [27,28] and speech recognition [29]. Figure 1 provides the basic
steps of the classification task. In order to perform the classification, the first requirement is to
train a classifier. Meaningful information is extracted from the training data, and this meaningful
information is often referred to as a feature. Features are extracted from the raw data because the raw
data contain a considerable amount of redundant information and reduction in the dimensionality of
the data for later computation is desired. The extracted features were placed onto the feature space,
and ‘clustering’ of the labeled data was conducted using the extracted features. This process represents
the training of a classifier. The trained model was created as a result of the training process, and the
test data was classified in a trained model.
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Figure 1. Basic methodology of classification task.

After the feature extraction, a classifier should be selected to train a model from the extracted
features. There are several classifiers widely used in the field of machine learning such as k-nearest
neighbor (k-NN), support vector machine (SVM), convolutional neural network (CNN), recurrent
neural network (RNN), and artificial neural network [30–34].

3. Implementation of the Inter-Floor Noise Sensing System

First, a hardware system was designed and implemented to measure the noise by using
a microphone array. Figure 2 shows the block diagram and appearance of the system. The system
uses a STM32F407IG MCU based on an ARM 32-bit Cortex-M4 MCU that operates at 120 MHz. A 12
bit analog-to-digital converter (ADC) is used to convert analog the audio signal into digital data.
Additionally, it contains 2 MB of extra SRAM to improve the computing power and has an external
flash memory to store the noise data over the long term. Other components, such as the humidity,
temperature sensor, and Bluetooth module are used for our convenience. The inter-floor noise
measurement function and sound localization function are implemented in the designed hardware
system. The output information (i.e., noise level and direction of the noise) with the raw data is
transferred to PC and displayed in real time.
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Figure 2. Sensor board of the system: (a) block diagram and (b) hardware prototype.

3.1. Measurement of Noise Level

The procedure for estimating the noise level from the noise signal is shown in Figure 3. First,
an analog audio signal is converted into an analog voltage signal through a microphone. Sensitivity
of the microphone is −45 dB and operating voltage is 2 V. The analog voltage signal is sampled and
converted into digital data through the ADC. The fast Fourier transform (FFT) is performed on the
digitized samples. In the frequency domain, the A-weighting is applied to consider the human’s
different perceptions of different frequency levels. After that, the root mean square (RMS) of the signal
is calculated. The time weighting is applied to smoothen the displayed data, and finally the sound
pressure level (SPL) of the noise is calculated. A detailed explanation of each step will be presented in
the following subsubsections.
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Figure 3. Flow chart of the sound pressure level (SPL) measurement unit.

3.1.1. Amplifying Circuit

Since the output voltage level of the microphone is very low, an amplifying circuit is needed to
amplify the voltage produced from the microphones. In the designing process, two things needed to be
considered: gain and bandwidth. Gain and bandwidth can be adjusted by changing the values of the
resistor and capacitor in the feedback circuit. The audio amplifying circuit in the sensor board is shown
in Figure 4. The gain of the amplifying circuit is 20 dB, and the 3 dB cut-off frequency is approximately
11 kHz. The bandwidth of the amplifying circuit should exceed at least 8 kHz, which is a typical
frequency range of commercial SPL meters. Therefore, the feedback gain and cut-off frequency should
be considered according to the target noise level and bandwidth.
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3.1.2. Sampling and FFT

An amplified voltage signal is sampled in a 12 bit-ADC of the sensor board. The sampling rate is
200 kHz in the proposed system. A much higher sampling rate is used compared to the conventional
audio sampling rate (44.1 kHz). This approach was chosen because later in the localization system,
a high enough sampling frequency is required to compensate for the very short distance between the
microphones (5.7 cm). The Cooley–Tukey algorithm [35], specifically radix-2 FFT is used to calculate
the FFT.

3.1.3. A-Weighting

A-weighting is applied to consider the human ear’s different sensitivity of the different frequencies
of sound. The international standard [13] defines the frequency weightings by tables for certain
frequencies; but there are appropriate functional realizations of the frequency weightings:

RA( f ) =
121942

· f 4

( f 2 + 20.62)
√
( f 2 + 107.72)( f 2 + 737.92) ( f 2 + 121942)

, (1)

A( f ) = 20 log10(RA( f )) + 2.0. (2)

We apply the A-weighting in the frequency domain by calculating the appropriate values of A(f ) for
each frequency component.
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3.1.4. Time-Weighting

After the A-weighting, the RMS voltage of the A-weighted signal is calculated. Then,
a time-weighting is applied on the time series of the RMS voltage. A time-weighting is needed
to smoothen the output displayed data. The displayed data cannot be read if the rate of data change is
too fast. The time weighting is sometimes called exponential averaging, and it acts as low-pass filters
to remove the high frequency noise. In the proposed system, the time-weighting of the RMS voltage is
expressed as the following equation:

VRMS = αVRMS_new + (1− α)VRMS_old, (3)

where α in the above equation is the smoothing factor, and 0 < α < 1. The lower values of α indicates
smoother data displays. The value of α is given by:

α = 1− exp
(
−∆T
τ

)
, (4)

where ∆T is the sampling rate of the data and τ is time as a constant. Two types of time constants are
often used to display the sound pressure level: F (Fast, 125 ms) and S (Slow, 1 s). Both time constants
are implemented in the proposed SPL measurement unit.

3.1.5. Computing SPL

The final step is to compute the sound pressure level of the signal. It is calculated as:

SPL = 20 log10
VRMS
VREF

[dB(A)], (5)

where VREF is the output RMS voltage when the pressure level of the sound signal is equal to the
reference sound pressure P0 (20 micro-pascal). VREF is determined from the microphone sensitivity
and gain in the amplifying circuit.

3.2. Localization of Noise Source

3.2.1. Introduction to Time Difference of Arrival

The basic geometry of a microphone pair is shown in Figure 5. Basically, one microphone pair was
an angle sensing sensor of the incoming sound signal. To estimate the incident angle of sound, it was
assumed that the distance to the sound source is much larger than the interval of the microphones such
that incoming sound waves can be considered as coming in parallel, This assumption is reasonable
because the interval of the microphones of our system was only 5.7 cm; while, the typical distance
to the inter-floor noise source will be at least more than 10 times of the interval of the microphones.
The direction angle, θ, to the sound source in Figure 5 can be calculated by the following equation:

θ = cos−1
(
τdelay·vs

dmics

)
. (6)

The TDOA of a microphone pair can be derived from the cross-correlation matrix of samples
acquired from each microphone. Generally, the cross-correlation is a measure of similarity of two signals
as a function of the displacement of one relative to the other. In the time series analysis, a cross-correlation
is often used for estimating the time delay between two signals [24]. The cross-correlation of two
sound signals acquired from each microphone i and j is expressed as:

Corri, j[τ] =
N−1∑
n=0

xi[n]x j[n− τ], (7)
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where xi[n] is the signal captured by microphone i. In digital signal processing, the cross-correlation is
often calculated in the frequency domain. The major advantage of calculating the cross-correlation in
the frequency domain is the reduction in the computation cost due to the use of a fast Fourier transform
(FFT). In the frequency domain, cross-correlation is calculated as:

Corri, j[τ] = FT−1
[
FT∗

[
xi]·FT[x j

]]
, (8)

where FT[ ] and FT−1[ ] is the Fourier Transform and the inverse Fourier Transform, respectively.
FT∗[ ] denotes the complex conjugate of the Fourier Transform. The maximum of the cross-correlation
function indicates the point where the signals are best aligned, and the argument of the maximum refers
to the delay between the two signals. The delay of arrival between the two signals from microphone i
and j is derived as:

τdelay = argmax
t

(
Corri, j[t]

)
. (9)

We should note that the above result is the delay in a sample if the cross-correlation is computed
in a sample domain. To convert the delay in a sample to delay in time, the division of the delay in
sample by sampling frequency of the system is required.
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3.2.2. Microphone Array Structure

The localization system is roughly divided into two parts. The first part is obtaining the TDOA
from the microphone pairs, and the second part is identifying the direction angles from the estimated
TDOA. In our localization system, a three-dimensional direction of the sound source is expressed as
two angular components: azimuth and elevation. Figure 6 illustrates the two output angles in local
Cartesian coordinate of our system.
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There is a total of six microphones on the hardware system, and only five are used in the
proposed microphone array structure. Figure 7 depicts the microphone array structure of our system.
A total of five microphones on the sensor board are used to identify the noise source direction in
a three-dimensional space. In Figure 7b, the microphones that are connected by a common line formed
one microphone pair. Three microphone pairs are used to estimate the TDOAs of the input noise signal.
Microphone pair 1 (Mic 1 and 2) and 2 (Mic 3 and 4) are used to estimate the azimuth and elevation.
Microphone pair 3 (Mic 4 and 5) is used to remove ambiguity of the z-axis (decision of z > 0 or z < 0)
when the elevation is estimated.
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3.2.3. Estimation of Azimuth and Elevation

The angles of the noise source direction vector with respect to the x, y, and z axes in a local
Cartesian coordinate is exhibited in Figure 8. The α, β, and γ are the direction angles of the noise
source vector regarding the x, y, and z axes, respectively. The ϕ and θ denote the azimuth and elevation,
respectively. Our goal is to identify the azimuth ϕ and elevation θ from the direction angles α and β.
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From the TDOA estimated from each microphone pair, the value of α and β are calculated by:

α = cos−1
(

TDOAmic1,2·vs

dmics

)
, (10)

α = cos−1
(

TDOAmic1,2·vs

dmics

)
. (11)

Following the relationship between the direction cosines of the noise direction vector holds:

cos2 α+ cos2 β+ cos2 γ = 1. (12)

The relationship between the elevation θ and z-axis direction angle γ is:

θ = 90◦ − γ. (13)

We can derive an expression for the elevation from above the two equations:

θ = 90◦ − cos−1 (
√

1− cos2 α− cos2 β). (14)

For azimuth, the tangent of azimuth is expressed as:

tanϕ =
b
a
=

cos β
cosα

. (15)

We can derive an expression for azimuth as:

ϕ = tan−1(
cos β
cosα

). (16)

If only two microphone pairs are used to identify the elevation, the ambiguity between the z > 0
plane and z < 0 plane exits. To enable a full 3D space localization, one additional microphone pair
along the z-axis is used. The sign of the TDOA of microphone pair 3 determines where the noise source
is located, either the z > 0 space or z < 0 space. Considering this issue, the expression of elevation is
modified as:

θ = sgn(TDOAmic4,5)
[
90◦ − cos−1 (

√
1− cos2 α− cos2 β)

]
. (17)

3.3. Classification of Noise Types

The procedure for classifying the noise type is basically the same as the procedure explained
in Section 2. The first requirement is to extract the meaningful audio features from the audio data.
This part is essential because the raw audio data contains a great deal of redundant information.
There are several features used in sound classification or recognition. Among those, the most popular
and widely used audio feature is the Mel Frequency Cepstral Coefficients (MFCC).

The MFCCs refer the coefficients of the MFC (Mel-frequency cepstrum), and the MFC is
a representation of the short-term power spectrum of a sound on the Mel scale. The Mel scale,
whose name comes from the word melody, is a perceptual scale of pitches judged by listeners to be
equal in distance from one another. As a human’s perceptions of pitch intervals are more sensitive in
the low frequency region, the Mel scale is a non-linear function in frequency representation. A formula
to convert f (Hz) into the m (Mel scale) is:

m = 2595 log10 (1 +
f

700
) = 1127 ln (1 +

f
700

). (18)
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Figure 9 displays the flow chart for extracting the MFCCs from audio data. Prior to the MFCC
extraction, an audio clip was divided into short-time frames. The typical frame length was usually
from 10 to 30 ms with a 50% overlap between the adjacent frames.
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After framing, a window function was applied to each frame. A popular choice for a window
function is the Hamming window. The Hamming window is defined as:

w[n] = 0.54− 0.46 cos
( 2πn

N − 1

)
, (19)

where N is the window length. After windowing, a FFT was conducted on each frame. The next step
was to apply the triangular filters onto the Mel-scale. Each filter in the filter bank had a triangular form
and an amplitude of 1 at the center frequency. The intervals between the center frequencies of each
filter was set to be equal in the Mel-scale. The final step was to do a discrete cosine transform (DCT)
after taking the logarithm of the filtered spectral magnitudes. As a result, the MFCCs from each filter
were obtained. Only the first 12~13 MFCCs were chosen because the higher indexed MFCCs usually
did not contain useful information for sound classification.

3.3.1. Training Dataset

For training purposes, the public audio dataset named ESC-50 was used [36]. ESC-50 contains
2000 annotated audio clips for environmental sound classification. The dataset is composed of 50
classes of various environmental sounds and each class consists of 40 audio clips. Each audio clip is 5 s
long and the sampling rate is 44.1 kHz.

Among the 50 classes, seven classes were chosen that are common types of inter-floor noise in
an apartment house. Those classes are (1) footsteps, (2) door knock, (3) dog barking, (4) baby crying,
(5) clock alarm, (6) vacuum cleaner, and (7) washing machine. According to the legal standard in
Table 1, footsteps and door knock are noises occurring from direct impact, while the rest of the classes
are classified as noise delivered through air.

Table 1. Classification accuracy of the test set.

Class Accuracy (%)

Clock alarm 40
Crying baby 100
Dog barking 80
Door knock 80
Footsteps 80

Vacuum cleaner 70
Washing machine 80

Average 75.7
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3.3.2. Training Process

The feature extraction process of one audio clip is illustrated in Figure 10. First, the original
audio clip was divided into 20 ms-long sub-frames with 50% overlap. A total of 499 short frames were
obtained from one 5 s-long audio clip.

Generally, the MFCCs feature is a typically used audio classification. However direct impact,
such as hammering and children leaping, needed to be detected. Therefore, a combination of the
MFCCs and zero-crossing rate is used in our classification system. The zero-crossing rate is the rate of
sign-changes along a time signal as its name states. It is known to be a powerful feature in classifying
percussive sounds [37]. Just like the MFCCs, audio data is divided into short-time frames prior to
feature extraction. For each divided frame, the zero-crossing rate is computed. The zero-crossing rate
of the digital audio signal x[t] is calculated as following equation:

ZCR(x[t]) =
1

2(N − 1)

N−1∑
i=1

{
sgn(x[i]) − sgn(x[i− 1])

}
(20)

These two features are extracted from each frame. For MFCCs, 13 MFCCs were chosen and the
remainder were discarded.Sensors 2019, 19, x FOR PEER REVIEW 11 of 18 
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Figure 10. Feature extraction from one audio clip.

As a result, the 499 × 14 feature table was obtained from one audio clip (size of 1 × 220,500).
This result is a 97% reduction of the data size. Since the zero-crossing rate and MFCCs are not on the
same scale, they needed to be normalized, which was conducted by subtracting the mean and dividing
by the standard deviation of each column of the feature table. After the feature extraction, a classifier
was trained with the obtained features. A k-NN classifier [38] with k = 5 was used in the proposed
system. As its name states, the k-NN algorithm identifies the k nearest neighbor data from the input
data in the feature space. The output class was determined as the most common class type among its k
nearest neighbor data.

4. Experimental Results

4.1. Measurement of Noise Level

To evaluate the accuracy of the noise level, the SPL value obtained from the proposed system was
compared with a commercial SPL meter (DT-8852) [39] as a reference. Figure 11 shows an experimental
environment for performance evaluation. The DT-8852 has an error of ±1.4 dB(A). Experiments were
performed in an anechoic chamber. A Bluetooth speaker was used to generate sound signals, and the
distance between the speaker and noise monitoring devices was set to 1.2 m. Pure-tone sinusoidal
sound waves with frequencies that ranged from 500 to 8000 Hz were used since the frequency range
of commercial SPL meters is usually up to 8000 Hz. The experimental environment in the anechoic
chamber and reference SPL meter were used in the experiment.

The measurement error was calculated by subtracting the reference SPL from measured SPL.
A total of 16 sound signals with different frequencies were used in the experiment. The frequency
intervals of each sound signal was 500 Hz. Figure 12 shows the measurement error of the proposed
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system compared to the reference SPL meter. The maximum deviation from the reference value did
not exceed 2 dB(A) with the exception of the signal at 6500 Hz. To illustrate the system accuracy in one
value, the RMS error from each result was computed. The resulting RMS error in the experiment is
1.29 dB(A).
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4.2. Localization of Noise Source

The accuracy of the estimated azimuth and elevation from the proposed system was evaluated
in the experiment. The experiment was performed in a reverberant room to provide more realistic
conditions of an apartment building environment. A 1 kHz pure-tone sound wave was used as a noise
signal. The distance between the speaker and our system in the experiment was set to 50 cm.

In the experiment regarding the estimation of azimuth, the noise source (speaker) was placed at
each azimuth from 0◦ to 345◦. Each test angle was 15◦ apart from each other, so the experiment was
performed for 14 different azimuth values. The elevation was set to 0◦ in the experiment. Figure 13
shows the result of the predicted versus actual azimuth values. The dashed blue line is the ground
truth value and blue dots indicate the estimated azimuth values from the system.
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Similar to the SPL error in the previous experiment, the measurement error of the azimuth
prediction is calculated as the difference between the predicted and actual azimuth values. Figure 14
illustrates the distribution of the estimation error at each azimuth value.
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Figure 14. Estimation errors of azimuth for different positions.

The most deviations occurred in the ±5◦ range from the ground truth. The RMS error of the
predicted azimuth value was computed, and the resulting RMS error in the experiment was 3.28◦.

In the experiment regarding the estimation of elevation, the noise source (speaker) was placed
at each elevation value from −90◦ to 90◦. Each test angle was 15◦ apart from each other. Figure 15
shows the predicted azimuth values for each of the actual azimuth values. The dashed line indicates
the ground truth and the blue dot is the predicted elevation for each position. Figure 16 illustrates
the distribution of the estimation error at each elevation position. The accuracy of the estimated
elevation is lower compared to the azimuth estimation. This outcome is due to the system not using
the information from the microphone pair along the z-axis in the estimation process. The angular
error is calculated as the difference of the predicted and actual angles. The resulting RMS error of the
elevation estimation is 5.71◦.
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4.3. Classification of Noise Type

We used seven classes of the ESC-50 dataset for the noise type classification. As earlier mentioned,
the selected seven classes were a clock alarm, crying baby, dog barking, door knock, footsteps, washing
machine, and vacuum cleaner. They undergo the proposed hardware system to extract exact features.
Audio clips in the ESC-50 dataset were used as the training set in our classification system. Two kinds
of features (MFCCs and zero-crossing rate) were extracted from each audio clip, of which formed
a feature space. The type of inter-floor noise of the test audio clip was determined using k-NN classifier
(k = 5).

The accuracy of our trained model was evaluated first by performing a five-fold cross-validation.
The accuracy obtained by the cross-validation indicates how accurately a trained model performs in test
situations. The conceptual diagram of a five-fold cross-validation is shown in Figure 17. In a five-fold
cross-validation, the training set is randomly divided into five subsets. Of five subsets, one is used as
a test set, while the other subsets are used as training sets. Iteration is repeated until all of the subsets
are used once as a test set. Finally, cross-validation accuracy is obtained by averaging the accuracies
from all of the iteration processes.
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The classifier was trained in two different ways to see the effect of the zero-crossing rate as
a training feature. First the model was trained by using only MFCCs; then a second model was trained
by using both the MFCCs and zero-crossing rate. Figure 18 displays the cross-validation accuracy of
the trained model (MFCC only). The average cross-validation accuracy of the trained model is 73.6%.
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Figure 19 shows the cross-validation accuracy of the second model (MFCC + zero-crossing
rate). Among the seven classes, the sounds from direct impact, such as a door knock and footsteps,
had relatively low accuracy. The average accuracy of the five-fold cross-validation is 77.3%, which is
about 4% higher than the accuracy of the first model. This result demonstrates that the use of the
zero-crossing rate improves the accuracy of the classifier.

A test was conducted after training a classifier. As a test set, the sound samples of the seven classes
were primarily collected from YouTube. Then, the actual output sound underwent our hardware system
to contain hardware dependent features. For the clock alarm sound, due to the lack of appropriate
samples on YouTube, some were manually recorded. The collected sound clips were resized into 5 s
long clips using a software named Audacity [40]. As a result, 10 audio clips were prepared for each
class as a test set. Figure 20 shows the classification results of the test set. The numbers inside the
confusion matrix simply indicates the number of audio clips which belonged to a specific cell of the
confusion matrix.
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Among the 10 samples, more than seven samples are classified correctly, with the exception of the
clock alarm sound. The classification accuracy of the clock alarm sound is relatively low. This result
might be from the lack of variety among the training data for clock alarms. Most of the clock alarm
training data just contained a ‘beep’ sound; while the test data of clock alarms contained various kinds
of clock alarm signals. The accuracy in the classification indicates the rate of true predictions among all
of the samples. The accuracy of each class is given by:

Accuracy (%) =
Number of correctly predicted samples

Total number of samples
. (21)

Table 1 shows the classification accuracy of each class on a test set. Except clock alarm, the classes
have acceptable accuracy. The average classification accuracy on a test set is 75.7%, which is similar to
a five-fold cross-validation accuracy.

A limitation of the current classification system is the lack of training data. Our target classification
classes are inter-floor noises; while the training data used in this experiment is for general environmental
sound classification. For example, in the footsteps class, the training data contained not only indoor
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footsteps, but also footsteps in an outdoor environment, such as a gravelly field. Therefore, the dataset
is not optimized for the target purpose of our system. The accuracy of the system can improve further
if the training dataset from real inter-floor noise is used.

5. Conclusions

In this paper, an inter-floor noise sensing system which captured and displayed important
information regarding inter-floor noise was proposed. The proposed system measured the noise
level and estimated the direction of the noise source and type of noise. An embedded system with
a microphone array was used to capture the noise signal. The noise level measurement and localization
system were implemented on the sensor board. The classification system was implemented in a PC
due to the lack of computing memory of the sensor board.

Experiments were performed for each functional block to evaluate the accuracy of the proposed
system. The SPL measurement unit of the system was demonstrated to have a SPL RMS error of
1.29 dB(A). In the localization system, azimuth and elevation were estimated. The accuracy was
evaluated for both angles, and the results showed RMS errors of 3.3◦ and 5.7◦ for azimuth and elevation,
respectively. In the classification system, a public audio dataset was used as a training set. A five-fold
cross-validation of the trained model demonstrated an accuracy of 77.3%, and the test results of
the manually collected sound samples had an accuracy of 75.7%. To conclude, the proposed noise
sensing system had reliable accuracy for all three functional blocks. The detected information from
the proposed system are expected to be used as important reference data for any dispute cases due to
inter-floor noise.

Future studies should include further calibration with humidity, temperature, and altitude.
We should also improve classification performance by adopting other methods such as RNN, CNN,
or deep learning.
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