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Abstract: We present in this paper a structural health monitoring study of the Egyptian lighthouse
of Rethymnon in Crete, Greece. Using structural vibration data collected on a limited number of
sensors during a 3-month period, we illustrate the potential of the stretching method for monitoring
variations in the natural frequencies of the structure. The stretching method compares two signals,
the current that refers to the actual state of the structure, with the reference one that characterizes
the structure at a reference healthy condition. For the structure under study, an 8-day time interval
is used for the reference quantity while the current quantity is computed using a time window of
24 h. Our results indicate that frequency shifts of 1% can be detected with high accuracy allowing for
early damage assessment. We also provide a simple numerical model that is calibrated to match the
natural frequencies estimated using the stretching method. The model is used to produce possible
damage scenarios that correspond to 1% shift in the first natural frequencies. Although simple in
nature, this model seems to deliver a realistic response of the structure. This is shown by comparing
the response at the top of the structure to the actual measurement during a small earthquake. This is
a preliminary study indicating the potential of the stretching method for structural health monitoring
of historical monuments. The results are very promising. Further analysis is necessary requiring the
deployment of the instrumentation (possibly with additional instruments) for a longer period of time.

Keywords: SHM; stretching method; model updating

1. Introduction

This work takes place in the general framework of structural health monitoring (SHM) of historic
monuments [1–4]. Ideally, the monitoring system should provide a quick assessment of the state of the
structure without requiring a long training period while using only a limited number of instruments
and computational resources. Several vibration-based output only modal identification techniques
are available in the literature for this purpose (see for example [5–7] and references therein). Since the
estimated modal frequencies depend highly on changing environmental conditions (such as the
temperature, and the wind direction/strength), the use of statistical methods is necessary so as to
remove this dependance and provide reliable indicators of structural damage [8–15]. We also refer
to [16] for a review on data normalization procedures for addressing the issue of separating structural
changes of interest from operational and environmental variations. These statistical techniques,
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however, often require heavy computations and a long training period, of the order of one year, before
the monitoring system can be operational [11]. To address this problem, we have introduced in [17]
the Stretching Method (SM) which, in the context of SHM, allows the estimation of small shifts in the
natural frequencies of a structure in a simple and efficient way without requiring a long training period.

The stretching method has been successfully used to detect and monitor changes in the substratum
of the earth [18]. To do so, SM compares two waveforms, the current and the reference one, both
obtained by cross-correlating ambient noise recordings. These two waveforms characterize the current
and reference state of the substratum (e.g., the velocity with which waves propagate in the Earth) [19,20].
The difference between the two waveforms is the time-window over which the cross-correlations are
averaged. A large time window is required to build the reference waveform, while a smaller one is used
to obtain the current waveform. SM determines the amount of stretching that the current waveform
needs so as to maximize its correlation with the reference waveform. This stretching corresponds to a
relative change in the velocity with which waves propagate in the substratum.

The application of the stretching method in the structural health monitoring context was
considered in [17]. There, SM was adequately modified so as to detect and monitor changes in
the natural frequencies of a structure. In contrast to seismology, the cross-correlations instead of being
compared in the time domain, they are processed in the frequency domain using the Fourier transform.
In the SHM context, we can interpret the time-window over which the reference cross-correlation is
computed as the training period of the method which is typically 7–9 days while the time needed to
compute the current waveform determines the damage warning time shown to be 12–24 h [17].

In this paper we apply this SM-based methodology on output only vibration data collected on
the Egyptian lighthouse located at the port of Rethymnon on the island of Crete in Greece. SM is
successfully used to identify the natural frequencies of the structure related to flexural bending modes.
However, due to lack of sufficient data, other modes such as axial or torsional, while shown to be
present in the signals, were not vigorously identified. Based on a 2-hour time averaging period for the
current quantity, we carry out an analysis of the fluctuations for the first two natural frequencies of
the structure. Our analysis indicates strong dependence on temperature and also on wind direction.
The fluctuations in the natural frequencies are reduced by increasing the time-averaging window over
which the current waveform is computed. A time window of 24-hours seems to provide sufficiently
accurate estimates of artificially imposed frequency shifts. This is determined with a sensitivity
analysis that allows us to estimate with what accuracy different levels of frequency shifts in the
natural frequencies can be detected. This analysis shows in particular that our methodology can be
safely used for recovering frequency shifts as small as 1% when using 1-day intervals for averaging
cross-correlations to compute the current quantity.

We also propose a simple model that is calibrated to match the estimated natural frequencies
using model updating techniques. Generally speaking, a mathematical or numerical model may be
used to simulate the behaviour and response under certain excitation of a structure. This model is
often built using the finite element method. In practice, however, several properties of the real system
are unknown or uncertain (i.e., material and geometric properties, boundary conditions, excitation),
for which, inevitably, conjectures have to be made. Moreover, due to lack of knowledge or other
restrictions, often simplifying modeling assumptions regarding the structure are required or implicitly
made [21]. Due to these uncertainties, it is often better to define a simple initial model amenable to
easy and efficient modifications. Furthermore, a simple surrogate model with a limited number of
degrees of freedom is more appropriate to be used for possible near real time results as an output of
some simulation that could be executed to embedded systems (e.g., microprocessor).

Here, we use a simple model that consists of two independent cantilever beam systems.
The first refers to the east–west and the second to the south–north directions. Using model updating
techniques [22] we seek to estimate elasticity (Young’ modulus) and inertia (mass density) distribution
over the length of the beams so as to match the model’s eigenfrequencies to the estimated natural
frequencies of the structure. The calibrated model, although very simple, matches (relatively well) the
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response of the structure to a small earthquake. This calibrated model is also used to provide possible
damage scenarios associated with specific measured shifts.

The remainder of the paper is structured as follows. In Section 2, we present a brief review of
the stretching method and explain how it can be used for operational modal analysis. Then, the
application of the method and the analysis of the data collected on the Rethymnon lighthouse is carried
out in Section 3. Section 4 is concerned with the model updating technique and Section 5 contains our
conclusions.

2. Methodology Review: the Stretching Method

The Stretching Method (SM) is widely used in passive imaging applications mostly related to
Geophysics [23–25]. The key idea of the method is to estimate how much we need to stretch a signal,
referred to as current, so as to maximize its correlation coefficient with another signal, the reference.
In Geophysics, the signals on which SM is applied are time domain cross correlations of seismic
noise recordings. The reference signal characterizes the medium with no variations while the current
characterizes the medium in its present condition. The difference between the two signals is the time
interval over which the cross-correlations are averaged. Longer time intervals are required to obtain
the reference quantity while for the current signal, the cross-correlations are averaged over a small
time window. The resulting stretching parameter corresponds to the relative velocity change dv/v of
the medium. Recently, SM was successfully used in the context of Structural Health Monitoring (SHM).
The methodology is briefly explained below, for more details we refer the interested reader to [17].

Let uk(t, xl) and um(t, xn) be the recordings of the acceleration due to random excitations in the
k-th and m-th directions at locations xl and xn, respectively. Combination of direction and location
defines a specific degree of freedom, ui(t) = uk(t, xl) and uj(t) = um(t, xn). We use these recordings
to compute the empirical cross-correlation function over the time interval [0, T],

Ci,j
T (τ) =

1
T

∫ T

0
ui(t)uj(t + τ)dt, (1)

with τ denoting the lag-time. The cross-correlation function CT is a self averaging quantity, which
means that it is independent of the random excitation, provided that the averaging time window is
large enough. More precisely, it can be shown that CT converges to the average quantity Cav,

Ci,j
T (τ)

T→∞−→ Ci,j
av(τ), (2)

where the average is defined with respect to the realizations of the random excitations

Ci,j
av(τ) =

〈
Ci,j

T (τ)
〉

. (3)

In the SHM context, SM is not applied directly to the time domain cross-correlations but rather
to their Fourier transforms. Assuming that the excitations behave like random white noise and
the structure is a linear and time invariant system, the elements of the cross-correlation matrix in
the frequency domain correspond to power spectral densities. In this case, the resulting stretching
parameter corresponds to the relative change dν/ν in the natural frequencies of the structure. More
precisely, we form the matrix

[A#(ν)]i,j = A#
i,j(ν), # = r, c

where A#
i,j(ν) is the Fourier transform of the reference (# = r) or current (# = c) empirical

cross-correlation (1) computed for sensors i and j, 1 ≤ i, j ≤ n, where n denotes the number of
the available (measured) degrees of freedom,

A#
i,j(ν) =

∫
Ci,j

T (τ)eı2πτνdτ. (4)
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The matrix A#(ν) is symmetric so it admits a symmetric singular value decomposition (SVD) of
the form,

A#(ν) = U#(ν)Σ#(ν)U
#,T(ν). (5)

The matrix Σ#(ν) is a real diagonal matrix with the singular values σ#
1 (ν), . . . σ#

n(ν) placed on
the diagonal while the columns u#

1(ν), . . . , u#
n(ν) of the matrix U#(ν) are the corresponding singular

vectors. Here U
#,T denotes the transpose of the matrix U

#
. The frequencies at which the first singular

value admits peaks correspond to the natural frequencies of the structure while the first singular vector
at the corresponding frequency is identified as the modal shape associated to this natural frequency
(see Section 10.3.3 of [26]).

To monitor variations in the natural frequencies with the SM method we maximize the
correlation coefficient

Cs(∆ν) =

∫ ν2
ν1

σc
1(ν + ∆ν)σr

1(ν)dν√∫ ν2
ν1
(σc

1(ν + ∆ν))2dν
∫ ν2

ν1
(σr

1(ν))
2dν

, (6)

where σr
1 and σc

1 are the reference and current largest singular values of the matrices Ar and Ac

respectively. The interval over which the optimization is performed is centered around each of the
detected natural frequencies of the structure. The discretization is adaptively refined during the
optimization process so as to provide an efficient solution. The result of this procedure provides a
value for ∆ν for each current quantity. Tracking the changes ∆ν over time could help us detect potential
structural damage [26].

3. Application to the Rethymnon Egyptian Lighthouse

In this section we apply the stretching method to structural vibration data of the Rethymnon
lighthouse.

3.1. Structural Elements of the Lighthouse

The Egyptian lighthouse of Rethymnon is a masonry building constructed in 1838 while still Crete
(Greece) was an Ottoman province under Egyptian control. The lighthouse came under the supervision
of the French Lighthouse Company in 1864. It was operating until 1962. In 1930, for strengthening
purposes, concrete reinforcement was used, as it may also be seen in the photo of Figure 1.

Figure 1. An older shot of the Egyptian lighthouse of Rethymno.
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Elements of the geometric properties of the lighthouse have been adopted from data of an older
rehabilitation study (1973, Lampakis, Civil Engineer), shown in Figure 2.

(a) Cutting section. (b) Elevation.

(c) Ground plan. (d) Brim floor plan.
Figure 2. Sketches of an older rehabilitation study.

Based on this study, and using a preliminary simplified model, we initially assume a length
L = 15.6 m and consider the lighthouse as a hollow cylinder of constant cross section having internal
radius ri = 1.2 m and external re = 1.8 m. The material is assumed homogeneous with a modulus of
Elasticity E = 5 GPa and mass density ρ = 2.5 tn/m3. These values belong in a range typical for masonry



Sensors 2019, 19, 3599 6 of 18

of historical buildings and give a good agreement between the model predicted eigenfrequencies
(Section 3.3.1) and those estimated from the measurements (see Section 3.3.2). In Section 4.1.1, we use a
heterogeneous cantilever beam model and estimate the distribution of its elasticity modulus and mass
density by minimizing the misfit between the model predicted and the measured eigenfrequencies.

3.2. Instrument Placement

The deployment of the accelerographic instruments started in May 2017, after the Rethymno
Ephorate of Antiquities expressed interest within the frame of the EU H-2020 STORM project. NOAIG
installed two digital three-component accelerographs of CMG-5TDE type (Guralp Systems Ltd, 24 bit
at 200 s/s, continuous local recording, time-stamped via GPS) at the top and the basement of the
lighthouse. Care was taken for the installations to have the same orientation and to be at the same
vertical axis of the lighthouse, in order to minimize possible effects from the directivity of the ground
motion energy propagation and from the rotation of the body of the lighthouse.

The two instruments were recording acceleration in three directions (North, East and vertical) for
a period of three months in separate 2-hour long files. We have a total of n = 6 degrees of freedom
recorded corresponding to three directions at the top and three directions at the bottom of the lighthouse.
Although the two instruments were vertically aligned, since the diameter of the lighthouse is changing
with height, the alignment is not perfect.

In addition, we included in our study meteorological data (temperature, wind speed and wind
direction), which were kindly offered by the Institute for Environmental Research and Sustainable
Development of the National Observatory of Athens, that has developed and operates a network of
automated weather stations to monitor weather conditions in Greece. Data were acquired from the
weather station permanently deployed at the Municipal Enterprise of Water and Sewerage Supplies
of Rethymno. The station is situated close to the coast and the Lighthouse under investigation.
The meteorological station includes a Davis Instruments, type: Vantage Pro2 Wired Fan-Aspirated,
weather monitoring instrument. Further detailed information on the station configuration and the
produced data, as well as the NOA meteo network can be viewed in [27,28].

3.3. Modal Recognition

Using the limited number of sensors, that is two tri-axial (3D) sensors, it is possible to estimate
the natural frequencies (eigenfrequencies) of the structure while for the corresponding eigenfunctions
we only get a very crude estimate (i.e., their values at the two measurement locations).

3.3.1. Modal Recognition—Theoretical Expectations

Approximating the lighthouse tower as a cantilever beam of constant cross section and adopting
the Euler–Bernoulli assumptions, we may analytically express the respective eigensystem and obtain
an estimation for the eigenfrequencies and eigenfunctions pairs. We believe that according to the
instruments’ placement as described in Section 3.2, we could, with certainty, measure only flexural
due to bending modes. Other modes such as axial or torsional may also exist, however, due to lack of
sufficient data, we cannot safely confirm that.

The moment of inertia is taken to be I=π(r4
e − r4

i )/4 = 6.616 m4. The eigenfunctions corresponding
to flexural vibration of the cantilever beam are (see for example in [29]),

φn(x) = cosh λnx− cos (λnx) +
sinh (λnL)− sin (λnL)
cosh (λnL)− cos (λnL)

(sinh (λnx)− sin (λnx)) (7)

while, eigenfrequencies ωn are given as,

ωn = λ2
n

√
EI

mL4 (8)
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where, the first two coefficients λnL are given as 1.8751 and 4.6941, respectively. Furthermore,
m=ρA = 14.137 tn/m, the beam’s mass per length, and A=π(r2

e − r2
i ) = 5.655 m2, the cross section

area. The coefficient of flexural rigidity is EI = 33080970.64 kNm2. The first two flexural (angular)
eigenfrequencies ωn, corresponding eigenperiods Tn = 2π/ωn, and ordinary eigenfrequencies
νn = 1/Tn, are calculated as:

ω1 = 22.101rad/sec, T1 = 0.284sec, ν1 = 3.517Hz,

ω2 = 138.504rad/sec, T2 = 0.045sec, ν2 = 22.043Hz.

3.3.2. Modal Recognition—Signal Processing

To apply the SM method, we first compute the empirical cross-correlations according to Equation (1)
for all different pairs of measurements. The reference quantity is computed by averaging the recordings
over the first 8 days of acquisition. The current quantity will be computed either using a 2-hour interval
or a 24-hour interval. The idea is to use for the current quantity the smallest possible window that
guarantees detection of small shifts in ∆ν with high accuracy. This allows for assessing any structural
damage of the structure as soon as possible. As illustrated in Figure 4, ∆ν measurement has a large
variance due to temperature variations when a time-window of 2-hours for the current quantity is used.
To chose the adequate size of the time window for the current quantity, a sensitivity analysis is carried
out (results shown in Figures 7 and 8). This consists of artificially inserting a frequency shift in the
monitoring data and then trying to recover it using SM. Our analysis suggests that the 24-hour interval
is a good time window for detecting a frequency shift of 1% with high accuracy.

Then, the Fourier transform of the current and reference cross-correlations is computed and the
corresponding 6× 6 matrices are formed. Since the values of these matrices depend on the frequency,
their singular value decomposition, performed frequency by frequency, provides singular values that
are frequency dependent as well. Our analysis uses the first singular value of the corresponding matrix
as reference and current quantity in (6).

To estimate the modes of the structure under examination, we look at the first singular value of
the reference cross-correlation matrix as a function of frequency. The frequencies at which this function
admits peaks are identified as structural modes. By looking at the plot in Figure 3 (i.e., the first singular
value of the reference cross-correlation matrix as a function of frequency), we have identified the
eigenfrequencies given in Table 1. We do not have an interpretation for the modes 3–5. We believe
that they correspond to torsional and axial modes, however, not appropriately measured due to the
instruments’ placement.

(Hz)

Figure 3. The first singular value of the reference cross-correlation matrix (computed using the first 8
days of acquisition) as a function of frequency (in Hz), σr

1(ν) . The estimated values for the first seven
natural frequencies of the structure are given in Table 1.
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Table 1. The first seven eigenfrequencies estimated from the peaks of σr
1 (see Figure 3).

Global Index n ωn (rad/sec) νn (Hz) Type

1 24.453 3.860 flexural, east-west
2 25.792 4.105 flexural, north-south
3 78.163 12.440 (?)
4 83.290 13.256 (?)
5 86.953 13.839 (?)
6 131.061 20.859 flexural, east-west
7 133.141 21.190 flexural, north-south

3.3.3. Modal Recognition—Theoretical Modal Values vs Recovered Modes and Conclusions

By comparing the results of Sections 3.3.1 and 3.3.2, we observe that quite good agreement has been
obtained between theoretically expected, under certain rough approximations, and measured values
for flexural modes of the structure. There are three estimated eigenfrequencies in the neighbourhood of
13 Hz, which due to lack of sufficient data, could not be safely recognized and attributed with specific
physical meaning, while they seem to be related with torsional and axial response or other secondary
motion of non-structural components on which instruments are located.

3.4. ∆ν Measurements

We focus our attention now on the first two identified modes and look at their variations as a
function of time over the acquisition period. It is well known that the variations of ∆ν over time are
mainly driven by variations in temperature [30]. To examine if the same holds here, we compare
in Figure 4 the variations ∆ν for the first two modes with the temperature variations over the same
time period.
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Figure 4. Comparison between the ∆ν measurement and the temperature for the first (left) and second
(right) mode.

With a first look at the results (see Figure 4), we observe that the measurement that corresponds
to the first mode seems to be highly correlated with the temperature while the measurement of the
second mode is less correlated with the temperature. More precisely, the measurement seems to be
differently correlated at the very beginning and the very end of the measurement period in comparison
with the period in between.

The explanation of this behaviour relies on the source of the excitation for these two modes.
The two modes correspond to different flexural vibrations and, thus, each mode excitation is expected
to depend on the wind direction.
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In Figure 5, we plot the direction of the wind for two different time segments in the three month
acquisition period. On the left we have a few days with wind that varies widely in direction and thus
guarantees an excitation source for both modes measured in Figure 4. On the right we have a time
period with winds that barely vary in direction (mostly East–West winds) and thus do not provide
sufficient excitation for the second mode. Although the natural frequencies of the structure do not
depend on the wind direction our ability to measure them using vibration data does depend on it.
Indeed the SM assumes measurements due to white isotropic noise. If the noise is not isotropic, it
affects the ability of SM to recover the measurement for ∆ν. This explains why the second mode does
not correlate with the temperature in the same way as the first mode does during the periods that the
wind is mostly along a single direction.
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(Unix time)

(i
n

 C
e

lc
iu

s)

(Unix time)

Figure 5. The temperatures for two different days and the correlation with the wind direction.
The direction of the wind is represented by the different dot colors with blue to be a North–South
direction and with red a West–East direction. On the left we have a couple of days at the middle of the
measurement period and on the right a couple of days at the end of the measurement period.

To decrease the variations of ∆ν so as to be able to asses damage associated with frequency shifts
in the structural modes we propose to compute the current quantity using a time-window of 24-hours.
This significantly reduces the variations of ∆ν as can be seem in Figure 6.
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Figure 6. The estimated values for the first (right) and the second (left) eigenmode using for the current
quantity a time window of 2 h (blue dots) and 24 h (orange triangles). The reference quantity is the
same for both plots and is computed using the first 8 days of data.

To illustrate that SM can effectively allow us to detect small permanent shifts in the structural
modes that could be associated with a damage, we artificially insert a frequency shift in the monitoring
data and then try to recover it. Over the assumed period over which there is damage, we define the
modified singular values σ̃i(ν) as follows,

σ̃i(ν) = σi(ν + ∆ν), i = 1, . . . , 7 . (9)
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In Equation (9) we introduced a shift δν that corresponds to the small permanent shift associated to
the damaged state. Then we form the correlation matrix using Σ̃(ν) instead of Σ(ν) in Equation (5)
and apply the SM to this modified correlation matrix.

To determine with what accuracy we can detect different levels of frequency shifts in the natural
frequencies, we carry out a sensitivity analysis. This consists in manually imposing a frequency shift as
described above and then calculate the error of the SM method on recovering the imposed frequency
shift. We perform this analysis for frequency shifts from 0.1% to 1% using both 1-day and 1-week
measurements to define the current quantity. The results are illustrated in Figure 7, where we observe
that the estimation is good for both cases with relative errors below 10% . As expected, the accuracy
increases by increasing the time window used for the current quantity. Also, larger frequency shifts
can be determined with higher accuracy. Noting that a frequency shift of 1% can be recovered with a
relative error less than 4%, we deduce that we can trust our methodology for recovering frequency
shifts as small as 1% when using 1-day measurements as current quantity.

0.0 0.2 0.4 0.6 0.8 1.0
Relative frequency shift [%]
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Figure 7. Relative error on ∆ν when recovering frequency shifts from 0.1% to 1% using either 1 day
(orange) or 1 week (blue) as current quantity.

To visualize the performance of SM, we insert a 1% permanent frequency shift at the measurements
shown in Figure 6 and try to recover it. The results for the first mode are illustrated in Figure 8.
We observe a very good agreement between the estimated and the exact frequency shift indicating that
indeed SM can be used in SHM.

Time (Unix time)

M
e

a
su

re
m

e
n

t 
 (

in
 H

z
)

Figure 8. The estimation of first mode using a 24-hour time window for the current quantity and
imposing shift of 1%. With orange we plot the exact imposed shift and with green we plot the estimation
provided by the SM. We observe very good agreement.
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Using a simplified numerical model we will provide in the next section possible damage scenarios
that correspond to a frequency shift of 1%.

3.5. The Estimated Mode Shapes

Studying the modal values and their variations over time is not always enough for a complete
understanding of what the recovered modes actually represent. The whole picture comes from studying
the mode’s shape as well. Using the SVD (5) we compute the singular vector corresponding to the
largest singular value for the reference quantity at the identified structural frequencies reported on
Table 1. The results for the first four modal shapes are reported in Table 2 while the respective degrees
of freedom, are shown in Figure 9 together with a schematic illustration of the first two eigenmodes.

Table 2. Modal Shapes.

Direction/Position First Mode Second Mode Third Mode Forth Mode

East–West (EW)/bottom −0.0801644 −0.0248191 −0.352925 −0.334469
North–South (NS)/bottom −0.0566074 −0.0120627 −0.314454 −0.29505

Vertical (V)/bottom −0.00216538 −0.00592483 −0.0370501 −0.121381
East–West (EW)/top −0.887227 −0.473897 −0.788803 −0.771983

North–South (NS)/top −0.450108 −0.87642 −0.364553 −0.385618
Vertical (V)/top −0.024408 −0.0807035 −0.141706 −0.204166

Bottom
NS

EW

V

Top
NS

EW

V

First Second

Figure 9. Measured degrees of freedom and schematic illustration of the first two eigenmodes.

4. Model Recalibration

In this section we describe the approach we have adopted in order to define a simple yet satisfactory
model of the structure under consideration. Finite element simulation of a very similar lighthouse
structure in Chania, an almost 80 km neighbor city west of Rethymno, has been accomplished in
the past and presented in the literature [31]. The models used there were quite detailed ones with
3D simulations taking place. In the current work we have been experimenting with simpler and
more adaptive 1D models with which parametric studies could be easily accomplished, and advanced
techniques (minimization, transient analyses) could be more efficiently implemented. The objective
here is to construct such simple models having the necessary dynamic properties and still being able to
give results in near real time by simulations executed in embedded electronic devises. For that a Java
finite element library together with other necessary units (e.g., Apache Maths Common) have been
utilized in the development environment of SDE [32]. The simplest model that might be used for such
structures is a cantilever beam, dynamic properties of which, in terms of the eigensystem, have been
considered in Section 3.3.1. Here we use such a model in combination with the finite element method
and appropriate calibration.
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4.1. Modal Characteristics Consideration

Estimated mode shapes using the acquired data of lighthouse response (see Table 2) indicate the
possible coupling of bending to torsional modes. That was expected since cross section asymmetric
geometry and/or non-homogeneity of material distribution on the cross section imply coupling of
bending and torsional vibrations, since shear and mass center do not coincide over the height. More
generally, when geometric, shear and mass centers of the cross sections of a uniform beam do not
coincide then coupling of flexural, torsional (including possible warping) and tensional vibration
modes occurs [33]. Yet, that coupling might have mostly appeared because of sensors’ positioning.
Furthermore, as mentioned before in this work, due to lack of sufficient data, we do not consider
any possible torsional and/or tensional motion and we confine ourselves to the study of structure’s
bending as a cantilever beam system.

Therefore, we proceed by defining two independent cantilever beam systems, avoiding in such a
way the necessity of some 3D model of the beam. The first refers to the East–West and the second to
the South-North direction.

4.1.1. Model Calibration as A Minimization Problem

Here we present the model updating procedure. The parameters we search for are the elasticity
and inertia distribution over the length of the structure as represented by the elasticity modulus and
mass density. We have admitted the quite reasonable assumption of common distribution for both
elasticity and inertia.

The methodology we setup is a sensitivity-based element-by-element updating procedure [34].
We use some piecewise linear distribution ψs(x) as:

ψs(x) = (H[x− xs−1]− H[x− xs])
x− xs−1

∆x
+ (H[x− xs]− H[x− xs+1])

∆x− x− xs

∆x
, (10)

where x ∈ [0, L], ∆x=xs − xs−1 the length of each section and H(x) the Heaviside step function. Then,
both elasticity modulus and mass density distributions might be given as:

E(x) = E0

S

∑
s=1

asψs(x) and ρ(x) = ρ0

S

∑
s=1

asψs(x). (11)

Here, we assume ten sections of linear distribution of material properties defined by the
coefficients as which are actually the unknown variables of the minimization problem. Having
defined these coefficients as we also establish the material elasticity and inertia properties distribution.

The objective function f to be minimized over the S design variables as might be given as,

f (as) = (ν1(as)− ν̃1)
2 +

(
ν2(as)

ν1(as)
− r̃21

)2

(12)

accompanied by simple bound constraints on as. We take advantage of the powerful limited-memory
BFGS gradient algorithm [35]. The necessary derivative of the objective function f with respect to as is
given by,

∂ f
∂as

= 2(ν1 − ν̃1)
∂ν1

∂as
+

2
ν3

1
(r̃21ν1 − ν2)(ν2

∂ν1

∂as
− ν1

∂ν2

∂as
), (13)

where ∂νi
∂as

denote the sensitivity indexes for the eigenfrequencies. For the dependence of a given
eigenfrequency ωi=2πνi on design variable as we get the explicit form [26,36],

∂ωi
∂as

=
1

2ωim∗i
φT

i

(
∂K
∂as
−ω2

i
∂M
∂as

)
φi (14)



Sensors 2019, 19, 3599 13 of 18

where φi the i-th and m∗i the respective generalized mass for that mode given by the product φT
i Mφi.

Sensitivities of stiffness and mass matrices can be explicitly expressed on parameters such as the cross
section area A, moment of inertia J, elasticity modulus E and mass density ρ among others. Sensitivity
matrices with respect to such parameters are given in the literature (e.g., for the case of Euler-Bernoulli
beam [34]). However, as it can be seen in Equation (14), we need to compute the sensitivities ∂K

∂as
and

∂M
∂as

, of stiffness and mass matrix, respectively. Therefore, considering the chain rule, we get

∂ωi
∂αs

=
∂ωi
∂E

∂E
∂αs

+
∂ωi
∂ρ

∂ρ

∂αs

=
1

2ωim∗i
φT

i

(
∂K
∂E
−ω2

i
∂M
∂E

)
φi

∂E
∂as

+
1

2ωim∗i
φT

i

(
∂K
∂ρ
−ω2

i
∂M
∂ρ

)
φi

∂ρ

∂as
(15)

with the sensitivities of stiffness and mass matrices over elasticity modulus and mass density
parameters computed using the finite element method and ∂E

∂as
, ∂ρ

∂as
depending only on geometrical

features and being easily obtained from Equation (11).
We consider the two independent cantilever beams for the EW and SN directions respectively

defining the finite element model using two hundred elements of equal length, and we set
E0 = 5.31 GPa and ρ0 = 2.5 tn/m3. Using Table 1, the target values for the EW model are
ν̃1 = 3.860 Hz and r̃21 = 20.859/3.860. For the NS model these values are asked to be ν̃1 = 4.105 Hz and
r̃21 = 21.190/4.105, respectively. Results for the distribution of elasticity modulus and mass density for
both EW and SN models are shown in Figure 10, where we plot the coefficient over the length of the
structure with which we should multiply E0 and ρ0 in order to obtain the target values for each model.

Figure 10. Material properties (elasticity modulus, mass density) nondimensional distribution (vertical
axis) with the height (horizontal axis) of the lighthouse.

4.1.2. Possible Damage Profiles

As it has been shown in Section 3.4, the SM methodology is able to detect one percent variation
of the eigenfrequencies. Here we present some possible damage profiles corresponding to that level
of variation of eigenfrequencies. In order to do so we assume a variable damage profile of some
damage starting from the base of the lighthouse and possibly spreading towards the top. It is worth
mentioning that the case of localized severe damage to some restricted area near the base could occur
because of an earthquake, while a distributed over the length moderate damage could be the result of
some corrosion process (e.g., alveolization, the mechanical action of salt crystallization and action of
wind) [37]. To define the damage height we use the coefficient hd taking values from zero up to one
and corresponding to zero height, measuring from the base of the lighthouse, up to the total height of
it. For this damage area we define a second coefficient zd with which the moment of inertia for cross
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sections belonging to that damaged area is multiplied. This coefficient zd takes values from one which
stands for fully operating cross section up to zero which means totally damaged cross section. The use
of this damage variable is in accordance with instructions for moment of inertia reduction because
of structural strength deterioration due to cracking. We again solve a minimization problem where,
for some specific damage area height hd, we ask for the value of the damage variable zd such that the
variation of the first or second eigenfrequency is of a specific given level (e.g., 1%–2%). The results are
shown in Figure 11, where we present curves of constant frequency variance for one and two percent,
respectively. The horizontal axis stands for the length of the damaged area measured from the bottom
up to the total height. The vertical axis is the damage level of this area, represented by the coefficient
1− zd that takes values from 0 (fully operative) to one (totally damaged). We observe in Figure 11
that in order to have a frequency reduction of 1%, a damage level of 0.6 (corresponding to zd = 0.4) is
localized in a small area from the bottom, at about 0.5% of the total length. We also observe that to get
a frequency reduction of 2% for the same length of damaged area the respective damage level should
be higher, having a value at about 0.75, corresponding to damage variable zd = 0.25.

Figure 11. Combination of damage level z with damaged area length hdL, for variation of eigenfreqency
∆ν = 1% and 2%.

4.2. Time History Consideration

In this last section we try to further validate our model in the time domain taking advantage of a
small earthquake that occurred and recorded on June 21st, 2017. We plot in Figure 12 the recorded
acceleration integrated in time to get velocities and displacements. The East–West components are
shown on the left column while on the right are the North–South ones. It is observed in these plots that
spurious drifts have appeared in the integrated velocities and displacements time histories. Since they
have appeared in both the lower and upper levels of the structure’s measured response, we keep them
as they are for further analysis.

In the model, we impose the motion recorded at the lower level of the lighthouse shown in Figure 12
and compute the response at the top level which we further compare with the recorded motion on that
level of the lighthouse (see Figure 13). We consider both EW and SN models for which we impose the
recorded motion on the lower level. This position is at a height about 10% of the total length while
we refer to that as the bottom since it is assumed to be the level on the ground floor of the lighthouse.
We time integrate the equation of motion of the finite element system using the β-Newmark method.
The critical damping ratio ζ has been estimated to be around 3% using the half power method [29]. We
impose motion at the bottom as constraints through the consistent penalty method [38], for which both
acceleration and displacement time histories are needed to be given as input.
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Figure 12. From top to bottom, recorded acceleration integrated in time to give velocities and
displacements. On the left column East–West while on the right North–South components are plotted.

Figure 13. Cont.
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Figure 13. Response of top level acceleration for the East–West model (top plot) and for the North–South
(bottom plot), respectively. Both recorded motion (red) and computed by the model (blue) are presented.

In order to compare measured and computed (by the model) results of velocities and displacements
at the top of the structure, we proceed by eliminating the drifts. For that, we use a polynomial detrending
of the first and second order, for velocities and displacements, respectively. The response at the top of
the lighthouse, as computed by the simple (but calibrated) numerical model, is in quite good agreement
with the measured response of the structure (see Figures 13 and 14) especially for the North–South
component. Note, in particular, that there is an amplification factor of 10 between the bottom and the
top acceleration in the measurements, which is well captured by the model.

Figure 14. Response of top level velocities (top) and displacements (below) for the East–West model
(left) and for the North–South (right), respectively. Both recorded motion (red) and computed by the
model (blue) are presented.

5. Conclusions

The stretching method is a computationally efficient vibration-based technique that uses a very
limited number of sensors permanently installed on site to measure operational structural responses
for the purpose of damage detection. The preliminary study carried out in this paper on data collected
on the Egyptian lighthouse of Rethymnon illustrates the potential of using SM for structural health
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monitoring of historic monuments. Although our results are quite promising, further effort is needed
as regards to both the data acquisition and the model setup. In this study, our model is kept very
simple since we do not have so many data to exploit. Note that only two instruments were placed on
the lighthouse for a short period of 3 months. A more careful deployment of the instruments (so as to
be able to measure axial or torsional modes) on a permanent basis would allow us to carry a more in
depth study and illustrate effectively that SM allows for early warning of structural damage.
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