

 sensors-19-03598

sensors-19-03598

Sensors 2019, 19(16), 3598; doi:10.3390/s19163598

Article

A Secure Lightweight Three-Factor Authentication Scheme for IoT in Cloud Computing Environment

SungJin Yu[image: Orcid], KiSung Park and YoungHo Park *[image: Orcid]

School of Electronics Engineering, Kyungpook National University, Daegu 41566, Korea

*

Correspondence: parkyh@knu.ac.kr; Tel.: +82-53-950-7842

Received: 1 July 2019 / Accepted: 16 August 2019 / Published: 19 August 2019

Abstract

:

With the development of cloud computing and communication technology, users can access the internet of things (IoT) services provided in various environments, including smart home, smart factory, and smart healthcare. However, a user is insecure various types of attacks, because sensitive information is often transmitted via an open channel. Therefore, secure authentication schemes are essential to provide IoT services for legal users. In 2019, Pelaez et al. presented a lightweight IoT-based authentication scheme in cloud computing environment. However, we prove that Pelaez et al.’s scheme cannot prevent various types of attacks such as impersonation, session key disclosure, and replay attacks and cannot provide mutual authentication and anonymity. In this paper, we present a secure and lightweight three-factor authentication scheme for IoT in cloud computing environment to resolve these security problems. The proposed scheme can withstand various attacks and provide secure mutual authentication and anonymity by utilizing secret parameters and biometric. We also show that our scheme achieves secure mutual authentication using Burrows–Abadi–Needham logic analysis. Furthermore, we demonstrate that our scheme resists replay and man-in-the-middle attacks usingthe automated validation of internet security protocols and applications (AVISPA) simulation tool. Finally, we compare the performance and the security features of the proposed scheme with some existing schemes. Consequently, we provide better safety and efficiency than related schemes and the proposed scheme is suitable for practical IoT-based cloud computing environment.

Keywords:

authentication; cloud computing; internet of things; formal security analysis; Burrows–Abadi–Needham logic; AVISPA

1. Introduction

With the recent advances in wireless sensor networks and embedded technologies, internet of things (IoT) connects objects and shares various useful data with internet through resource-constrained devices to provide convenient services for users such as smart home, healthcare, vehicle to everything and smart gird. However, a single server environment also is inefficient for IoT because an ocean of data is generated by resource-constrained devices such as microsensor, RFID tag and smart cards.

Cloud computing is a distributed computing mechanism for a large-scale data and allows sharing resources among all of the servers and users. The cloud computing provides five essential characteristics: on-demand self-services, ubiquitous network access, rapid elasticity, measured service and resource pooling [1,2]. On-demand self-service handles cloud services without human interaction and ubiquitous network access controls access service using standard protocols. Rapid elasticity and measured service optimize the resource usage. Resource pooling provides cloud service using homogeneous infrastructure among service users. The cloud computing deals with an ocean of data generated by devices and sensors and provides data managing service for users through these essential characteristics.

However, these services are vulnerable to potential attacks by malicious adversaries because they are provided through an open channel, including sensitive data of legitimate user about location, health, payment, etc. Therefore, a secure and efficient authentication for IoT environment has become essential security requirements to provide useful services to user.

In 1981, Lamport [3] proposed one factor user authentication scheme using passwords to ensure user’s privacy. However, security of the password based authentication scheme is easily broken because its security only relies on the passwords. In 2002, Chien et al. proposed two factor authentication scheme to overcome this security flaw using password and smart cards. However, their scheme is vulnerable to smart card stolen attack as the data stored in smart cards can be extracted by power analysis attacks [4]. When a malicious adversary obtains smart cards and password, they can perform various attacks such as impersonation, replay and insider attacks. To overcome the above-mentioned security weaknesses, three-factor authentication schemes have been proposed [5,6,7]. Biometrics (e.g., face, retina, fingerprint, iris, etc.) have several important characteristics: they cannot be lost or forgotten; they are hard to forge, copy, share or distribute; and they are difficult to guess.

In 2019, Pelaez et al. [8] demonstrated that the previous scheme is vulnerable to insider, off-line guessing and disclosure attacks and proposed enhanced IoT-based authentication scheme in cloud computing environment. This paper demonstrates that Pelaez et al.’s scheme does not withstand impersonation, session key disclosure and replay attacks. We also show that their scheme does not achieve secure mutual authentication and anonymity. Moreover, we propose a secure and lightweight three-factor authentication scheme for IoT in cloud computing environment to resolve these security weaknesses, considering computational costs.

1.1. Adversary Model

We present the Dolev–Yao (DY) model [9] to evaluate security of ours and previous schemes, which is widely accepted as security threat model. The detailed description of the DY model is as below:

	
A malicious adversary can modify, intercept, delete or insert the transmitted messages via an open channel. A malicious adversary can obtain or steal the smart card of legitimate user and can extract the data stored in the smart card by using power-analysis [4].

	
A malicious adversary can perform various attacks such as man-in-the-middle (MITM), replay, impersonation, and session key disclosure attack [10,11].

1.2. Our Contributions

Our contributions in this paper are as follows.

	
We demonstrate that Pelaez et al.’s scheme is not secure against various attacks such as impersonation, session key disclosure and replay attacks and does not achieve secure mutual authentication and anonymity.

	
We propose a secure and lightweight three-factor authentication scheme for IoT in cloud computing environment to address the security shortcomings of Pelaez et al.’s scheme. The proposed scheme withstands impersonation, session key disclosure, and replay attacks and achieve secure mutual authentication and anonymity. Moreover, the proposed scheme is more efficient than Pelaez et al.’s scheme because it utilizes only bitwise exclusive or (XOR) and hash operations.

	
We prove that the proposed scheme provides secure mutual authentication using the Burrows–Abadi–Needham (BAN) logic [12] and perform an informal security analysis to prove that our scheme is secure against various attacks such as MITM, impersonation, replay and session key disclosure attacks. Furthermore, we compare the security properties and performance of proposed protocol with other related schemes.

	
We perform a formal security analysis using the automated validation of internet security protocols and applications (AVISPA) simulation tool to prove that the proposed protocol resists the MITM and replay attacks.

1.3. Organization

We introduce the related works and review Pelaez et al.’s scheme in Section 2 and Section 3. In Section 4 and Section 5, we cryptanalyze Pelaez et al.’s scheme and propose a lightweight IoT-based three-factor authentication scheme in cloud computing environment to enhance the security shortcomings of Pelaez et al.’s scheme. Section 6 and Section 7 prove the security of proposed scheme and present the simulation analysis using AVISPA. In Section 8, we compare the security properties and performances of proposed protocol with other related schemes. Finally, Section 9 concludes the paper.

2. Related Works

In last few decades, numerous authentication and key agreement schemes have been proposed to ensure privacy of user, considering resource-constrained environments such as wireless sensor networks, global mobility networks and vehicular networks [3,13,14,15,16,17,18,19]. In 1981, Lamport [3] firstly proposed a lightweight password based user authentication scheme to provide secure communication. However, Lamport’s scheme has low security level because its security only relies on passwords. In 2002, Chien et al. [13] presented a two-factor user authentication protocol using smart card and password to resolve this problem. Unfortunately, the two-factor authentication schemes using password and smart cards cannot ensure user’s privacy [13,14,15,16,17,18,19], when the data stored in token (e.g., smart card, mobile device, etc.) are compromised.

Later, several authentication and key agreement schemes for IoT have been presented in various fields [20,21,22]. However, these environments are not suitable for IoT because it cannot handle a large number of data. In 2019, Zhou et al. [23] presented a lightweight IoT-based authentication scheme in cloud computing environment to overcome this issue. Zhou et al. claimed that their scheme can prevent various attacks such as insider, forgery and tracking attacks and provide secure mutual authentication and session key security. However, in 2019, Pelaez et al. [8] pointed out that Zhou et al.’s scheme [23] cannot withstand insider, off-line guessing and session key disclosure attacks and provide secure mutual authentication. To resolve these security problems, Pelaez et al. [8] presented a lightweight IoT-based authentication scheme in cloud computing environment. They also claimed that their scheme is secure against off-line password guessing, insider, impersonation and replay attacks.

3. Review of Pelaez et al.’s Scheme

We briefly review Pelaez et al.’s IoT based authentication scheme in cloud computing environment. Their scheme comprises of three processes: registration, authentication, and password change. These processes are presented as below (for details, see [8]).

3.1. User Registration Process

In Pelaez et al.’s scheme, a new user Ui is registered from control server CS via a secure channel. Figure 1 shows the user registration process of Pelaez et al.’s scheme. In Figure 1, Ui sends the registration request to CS and then CS issues the smart cards.

3.2. Cloud Server Registration Process

In Pelaez et al.’s scheme, a cloud server Sj is registered from control server CS via a secure channel. Figure 2 shows the cloud server registration process of the Pelaez et al.’s scheme. In Figure 2, Sj sends the registration request to CS and then CS sends parameters B2 and B3 to Sj.

3.3. Login Process

When Ui wants to access the service, Ui firstly sends login request message to Sj. In Figure 3, Ui sends login request messages {TUnew,D1,PIDi,D2} to Sj, and then Sj sends the messages {TUnew,D1,PIDi,D2,TSnew,D3,PSIDj,D4,D5} to CS in order to check validation of Ui.

3.4. Authentication Process

After finishing the login process, Ui, Sj and CS perform mutual authentication with each entity, and then Ui and Sj can share the session key SKU−S. Figure 4 shows the authentication process of the Pelaez et al.’s scheme.

4. Cryptanalysis of Pelaez et al.’s Scheme

In this section, we demonstrate that Pelaez et al.’s scheme does not resist replay, session key disclosure and impersonation attacks and show that their scheme does not achieve secure mutual authentication and anonymity.

4.1. Impersonation Attack

The impersonation attack is that a malicious adversary try to impersonate as a legitimate user. When a malicious adversary UMA may attempt to impersonate a legal user, UMA can easily generate the login request message of Ui. According to Section 1.1, UMA can obtain smart card of Ui and can extract the data {PIDi,C2,C3,C4,h(nU)} stored in smart card. Furthermore, UMA intercepts the message transmitted via an open channel. Finally, UMA performs the impersonation attack as below:

	Step 1:

	
A malicious adversary UMA can compute real identity IDi=C2⊕D1 of legitimate user Ui and h(nUnew)=D2⊕C3⊕h(TMAnew||IDi). Then, UMA generates timestamp TMAnew and random nonce nMAnew, computes D2MA=C3⊕h(TMAnew||IDi)⊕h(nMAnew), and sends {TMAnew,D1,PIDi,D2MA} to the Sj.

	Step 2:

	
Upon getting the message from UMA, the Sj generates random nonces TSnew and nSnew and computes D3=B2⊕SIDj, D4=B3⊕h(TSnew||SIDj)⊕h(nSnew) and D5=h(PIDi||TMAnew||SIDj||PSIDj||TSnew). Then, the Sj sends {TMAnew,D1,PIDi,D2MA,TSnew,D3,PSIDj,D4,D5} to the CS.

	Step 3:

	
Upon getting the message from Sj, the CS computes C2∗=h(PIDi∗||h(IDCS||x)||h(IDCS||y))∗⊕h(IDCS||x)⊕h(IDCS||y), IDi∗=h(PIDi∗||h(IDCS||x)||h(IDCS||y))∗⊕h(IDCS||x)⊕h(IDCS||y)⊕D1 and C1∗=h(IDi∗||PIDi). Then, the CS checks whether C1∗=?C1. If it is valid, the CS authenticates UMA. Then, the CS computes h(nMAnew)∗=h(IDi∗||PIDi∗||h(IDCS||x)||h(IDCS||y))∗⊕PIDi∗⊕h(x||y)⊕h(TMAnew||IDi∗)∗⊕D2. After that, the CS computes SIDj∗=h(PSIDj∗||h(IDCS||z)||h(IDCS||y))∗⊕h(IDCS||z)⊕h(IDCS||y)⊕D3 and B1∗=h(SIDj∗||PSIDj∗). Then, the CS checks whether B1∗=?B1. If it is valid, the CS authenticate Sj. After that, the CS recovers h(nSnew)∗=h(SIDj∗||PSIDj∗||h(IDCS||z)||h(IDCS||y))∗⊕PSIDj∗⊕h(z||y)⊕h(TSnew||SIDj∗)⊕D4. Then, the CS computes D5∗=h(PIDi∗||TMAnew||SIDj∗||PSIDj∗||TSnew)∗ and checks whether D5∗=?D5. If it is valid, the CS have evidence of the connection attempt between UMA and Sj. To key agreement and mutual authentication, the CS generates a random nonce nCSnew and computes the session key SKMA−S=h(h(nMAnew)⊕h(nSnew)⊕h(nCSnew||TCSnew)). Then, the CS computes D6=B2⊕h(TSnew||SIDj)⊕TCSnew, D7MA=h(nCSnew||TCSnew)⊕h(SIDj||TCSnew)⊕h(nMAnew), D8MA=C2⊕h(TMAnew||IDi)⊕TCSnew, D9=h(nCSnew||TCSnew)⊕h(IDi||TCSnew)⊕h(nSnew), D10MA=ESK(h(nCSnew)⊕h(SIDj||PSIDj||B2)) and D11MA=ESK(h(nCSnew)⊕h(IDi||PIDi||C2)). Finally, the CS sends {D6,D7MA,D10MA,D8MA,D9,D11MA} to the Sj.

	Step 4:

	
Upon getting the message from CS, the Sj computes TCSnew∗=B2⊕h(TSnew||SIDj)⊕D6, h(nCSnew||TCSnew)∗⊕h(nMAnew)∗=h(SIDj||Tcsnew)⊕D7MA, SKU−S∗=h(h(nMAnew)∗⊕h(nSnew)⊕h(nCSnew||TCSnew)∗) and decrypts DSK∗(D10MA)=h(nCSnew)⊕h(SIDj||PSIDj||B2)=h(nCSnew)∗. After that, the Sj sends {D6,D7MA,D10MA,D8MA,D9,D11MA} to the UMA.

	Step 5:

	
Upon getting the messages from Sj, the UMA computes TCSnew∗=C2⊕h(TMAnew||IDi)⊕D8MA, h(nCSnew||TCSnew)∗⊕h(nSnew)∗=h(IDi||TCSnew)⊕D9, SKMA−S∗=h(h(nUnew)⊕h(nSnew)∗⊕h(nCSnew||TCSnew)∗) and decrypts DSK∗(D11MA)=h(nCSnew)⊕h(IDi||PIDi||C2)=h(nCSnew)∗. For mutual authentication with Sj, the UMA computes M9MA={ESK(h(nCSnew||serverValue(challenge)))} and sends M9MA to the Sj.

	Step 6:

	
Upon getting the messages from UMA, the Sj computes DSK(M9MA)=h(nCSnew)∗||serverValue(challenge)) and checks whether h(nCSnew)∗=?h(nCSnew). Finally, the Sj computes M10MA={ESK(serverValue(h(nCSnew)||TCSnew))} and sends M10MA to the UMA.

	Step 7:

	
Upon getting the messages from Sj, the UMA computes DSK(M10MA) = serverValue(h(nCSnew)||TCSnew)=h(nCSnew||TCSnew)∗ and checks whether h(nCSnew||TCSnew)∗=?h(nCSnew||TCSnew).

UMA can successfully generates the login request message and session key between UMA and Sj. As a result, we show that Pelaez et al.’s scheme cannot withstand impersonation attack.

4.2. Session Key Disclosure Attack

The session key disclosure attack is that a malicious adversary can obtain the session key between Ui and Sj. Pelaez et al. claimed that their scheme can ensure security of session key because a malicious adversary cannot obtain random nonce nUnew, nSnew, nCSnew and current timestamp TCSnew. However, according to Section 1.1, a malicious adversary UMA can extract the data {PIDi,C2,C3,C4,h(nU)} stored in the smart card and can obtain the transmitted messages D1,D2,TUnew,D8,D9 via an open channel. Therefore, a malicious adversary UMA can easily compute session key SKU−S∗=h(h(nUnew)∗⊕h(nSnew)⊕h(nCSnew||TCSnew)∗).

4.3. Replay Attack

Replay attack is that a malicious adversary try to obtain sensitive messages of user using the messages transmitted in previous and current session. Pelaez et al. claimed that their scheme can resist replay attack because a malicious adversary UMA cannot obtain random nonce and timestamp. However, UMA can calculate the random nonce and timestamp of legitimate user correctly. According to 4.1, UMA also impersonates a legitimate user Ui. Therefore, UMA can obtain nUnew, nSnew and nCSnew and timestamp TUnew,TSnew and TCSnew. As a result, Pelaez et al.’s scheme does not withstand replay attack.

4.4. Mutual Authentication

Pelaez et al claimed that their protocol allows secure mutual authentication among the user Ui, the cloud server Sj, and the control server CS. However, according to Section 3.1, their protocol does not withstand to impersonation attack, as a malicious adversary UMA can successfully generate authentication request message D2=C3⊕h(TUnew||IDi)⊕h(nUnew). Therefore, Pelaez et al.’s scheme does not achieve secure mutual authentication.

4.5. Anonymity

Pelaez et al claimed that a malicious adversary UMA cannot obtain the real identity IDi of legitimate user. However, according to Section 1.1, a malicious adversary UMA can extract the secret parameter C2 stored in the smart card and can intercept the transmitted message D1 via an open channel. UMA can also compute IDi=C2⊕D1 and easily obtain real identity of legitimate user Ui. Therefore, Pelaez et al.’s scheme does not guarantee anonymity.

5. Proposed Scheme

In this section, we propose a secure and lightweight three-factor authentication scheme for IoT in cloud computing environment to enhance security drawbacks of Pelaez et al.’s scheme. The proposed scheme consists of three processes: registration, login and authentication, and password change. The details of each process are presented below.

5.1. User Registration Process

A new user Ui who requests the use of the IoT services must register with control server CS. Figure 5 shows the user registration process of proposed scheme and the detailed processes are as below.

	Step 1:

	
The Ui selects IDi and PWi and imprints biometric BIOi. After that, Ui computes ⟨Ri,Pi⟩=Gen(BIOi), RPWi=h(PWi||Ri) and sends messages {IDi,RPWi} to control server CS via a secure channel.

	Step 2:

	
After getting the messages from Ui, the CS generates a random nonce S1 and computes RIDi=h(IDi||h(S1||KS)), Xi=h(RIDi||KS||S1), Ai=Xi⊕h(RIDi||RPWi), and Bi=h(Xi||RPWi). Then, the CS stores {S1}, {Ai,Bi} in a database and smart card, respectively. The CS sends {RIDi} and issues smart card to Ui via a secure channel.

	Step 3:

	
After getting the message and smart card from CS, the Ui computes Qi=h(IDi||PWi||Ri)⊕RIDi and stores {Qi} in a smart card SC.

5.2. Cloud Server Registration Process

A cloud server Sj must register with the control server CS to provide IoT service to the users. Figure 6 shows the cloud server registration process of proposed scheme and the detailed processes are as below.

	Step 1:

	
The cloud server Sj selects SIDj and generates a random nonce rj. After that, the Sj sends messages {SIDj,rj} to the CS via a secure channel.

	Step 2:

	
After getting the messages, the CS generates a random nonce S2 and computes RSIDj=h(SIDj||rj||KS) and SIj=h(RSIDj||h(S2||KS)). Then, the CS stores {S2} in a database and sends messages {RSIDj,SIj} to the Sj via a secure channel.

	Step 3:

	
After getting the messages, the Sj stores {RSIDj,SIj} in a database.

5.3. Login and Authentication Process

A user Ui who requests access to IoT service must send a login request message to the CS. Figure 7 shows the login and authentication process of the proposed scheme. The detailed process is as below.

	Step 1:

	
The Ui inputs IDi, PWi and imprints biometric BIDi. Then, the Ui calculates Ri=Rep(BIOi,Pi), RIDi=h(IDi||PWi||Ri)⊕Qi, RPWi=h(PWi||Ri), Xi=Ai⊕h(RIDi||RPWi) and Bi∗=h(Xi||RPWi). The Ui checks whether Bi∗=?Bi. If it is correct, the Ui generates a random nonce RUi. After that, the Ui computes M1=RUi⊕Xi, CIDi=IDi⊕h(Xi||RUi) and M2=h(IDi||Xi||RUi) and sends login request messages {M1,M2,CIDi,RIDi} to the Sj via an open channel.

	Step 2:

	
Upon getting the messages from the Ui, the Sj generates a random nonce RSj and computes D1=SIj⊕RSj, CSIDj=SIDj⊕h(SIj||RSj) and D2=h(SIDj||SIj||RSj). Then, the Sj sends the messages {M1,M2,CIDi,RIDi,D1,D2,CSIDj,RSIDj} to the CS via an open channel.

	Step 3:

	
Upon getting the messages from the Sj, the CS computes Xi=h(RIDi||KS||S1), RUi=M1⊕Xi, IDi=CIDi⊕h(Xi||RUi), and M2∗=h(IDi||Xi||RUi) and checks whether M2∗=?M2. If it is correct, the CS computes SIj=h(RSIDj||h(S2||KS)), RSj=h(D1)⊕SIj, SIDj=CSIDj⊕h(SIj||RSj), and D2∗=h(SIDj||SIj||RSj) and checks whether D2∗=?D2. If it is valid, the CS computes M3=RSj⊕h(IDi||RUi), D3=RUi⊕h(SIDj||RSj) and QCS=h(RUi||RSj||SIj). Then, the CS updates RIDi to RIDinew and replaces {RIDi} with {RIDinew}. Finally, the CS sends messages {M3,D3,QCS} to the Sj.

	Step 4:

	
Upon getting the messages from the CS, the Sj computes RUi=D3⊕h(SIDj||RSj) and QCS∗=h(RUi||RSj||SIj) and checks whether QCS∗=?QCS. If it is valid, the Sj computes SKi=h(RUi||RSj) and QCU=h(RUi||RSj||SKi) and sends messages {M3,QCU} to the Ui.

	Step 5:

	
Upon getting the messages from the Sj, the Ui computes RSj=M3⊕h(IDi||RUi), SKi=h(RUi||RSj) and QCU∗=h(RUi||RSj||SKi) and checks whether QCU∗=?QCU. If it is correct, the Ui computes RIDinew=h(RIDi||h(RUi||RSj)) and RIDi to RIDinew. After that, the smart card updates Ainew=Xi⊕h(RIDinew||RPWi) and Qinew=h(IDi||PWi||Ri)⊕RIDinew and replaces {Ai,Qi} with {Ainew,Qinew}. As a result, the Ui, Sj and CS achieve the mutual authentication successfully.

5.4. Password Change Process

When Ui wants to update his/her password, the Ui can freely update their password in the proposed scheme. Figure 8 shows the password change process of the proposed scheme. The detailed process is as below.

	Step 1:

	
The Ui chooses IDi∗, PWi∗ and imprints biometrics BIOi∗. Then, the Ui calculates ⟨Ri,Pi⟩=Gen(BIOi∗), RPWi∗=h(PWMU||Ri) and sends {IDMU∗,RPWi∗} to the smart card SC.

	Step 2:

	
After getting the message from Ui, the SC computes Xi∗=Ai∗⊕h(IDi∗||RPWi∗) and Bi∗=h(Xi∗||RPWi∗) and checks whether Bi∗=?Bi. If it is equal, the SC sends the authentication message to the Ui.

	Step 3:

	
Upon getting the message from the SC, the Ui inputs a new password PWinew and imprints a new biometrics BIOinew. Ui computes ⟨Rinew,Pinew⟩=Gen(BIOinew), RPWinew=h(PWinew||Rinew) and sends {RPWinew} to the SC.

	Step 4:

	
Upon getting the message from the Ui, the SC computes Ainew=Xi∗⊕h(IDi∗||RPWinew), Binew=h(Xi∗||RPWinew) and replaces {Ai,Bi} with {Ainew,Binew}.

6. Security Analysis

To assess secure mutual authentication of the proposed scheme, we utilize the BAN logic, which is widely accepted formal security model. Furthermore, we perform an informal security analysis to assess the safety of proposed scheme against various types of attacks.

6.1. Informal Security Analysis

The security of the proposed scheme is accessed utilizing an informal security analysis. Our scheme can withstand against various types of attacks, including impersonation, replay, session key disclosure attacks, and allows secure mutual authentication and anonymity.

6.1.1. Impersonation Attack

When a malicious adversary UMA may attempt to impersonate a legitimate user, UMA must generate a login request message M2=h(IDi||Xi||RUi) correctly. However, UMA cannot compute it because UMA cannot obtain Ui’s random nonce RUi, real identity IDi, and secret parameter Xi. Therefore, our scheme is secure against the impersonation attack because UMA cannot calculate a login request message successfully.

6.1.2. Replay Attack

If a malicious adversary UMA may attempt to impersonate legal user by resending messages transmitted in a previous session, UMA cannot utilize the previous messages because the CS checks whether M2∗=?M2 and D2∗=?D2, respectively. Furthermore, our scheme can withstand replay attack by using dynamic random nonce RUi and RSj that are changed every session. Therefore, our scheme protects against replay attack.

6.1.3. Session Key Disclosure Attack

In our scheme, a malicious adversary UMA cannot compute session key SKi because UMA cannot obtain random nonce RUi and RSj. In addition, UMA cannot obtain random nonce RUi and RSj without secret parameter Xi and SIj. Consequently, our scheme withstands the session key disclosure attack.

6.1.4. Smart card Stolen Attack

According to Section 1.1, we suppose that a UMA can obtain a smart card and extract the data {Ai,Bi,Qi} stored in the smart card. However, the UMA cannot obtain sensitive information IDi and PWi of legitimate user because the data stored in the smart card are protected Ai=Xi⊕h(RIDi||RPWi), Bi=h(Xi||RPWi) and Qi=h(IDi||PWi||Ri)⊕RIDi by using a hash function and XOR operation.

6.1.5. Mutual Authentication

In our scheme, after getting the request message {M1,M2,CIDi,RIDi} from the Ui, the control server CS checks whether M2∗=?M2. If it is correct, CS authenticates Ui. After getting the messages {D1,D2,CSIDj,RSIDj} from cloud server Sj, the CS checks whether D2∗=?D2. If it is equal, CS authenticates Sj. After getting the messages {M3,D3,QCS} from the CS, the Sj checks whether QCS∗=?QCS. If it is correct, Sj authenticates CS. After getting the messages {QCU} from the Sj, the Ui checks whether QCU∗=?QCU. Finally, the Ui authenticates Sj. As a result, our scheme achieve secure mutual authentication among Ui, Sj, and CS because a malicious adversary UMA does not know secret parameters Xi and SIj.

6.1.6. Anonymity

A malicious adversary UMA cannot obtain the real identity IDi of legitimate user because it is masked by using hash function and XOR operation such as CIDi=IDi⊕h(Xi||RUi). In addition, the UMA cannot obtain secret parameter Xi and random nonce RUi. Consequently, our scheme provides anonymity.

6.2. Security Features

We shows the better security levels achieved by the proposed scheme compared with some existing schemes [8,23,24,25]. The existing schemes are insecure against various attacks, including impersonation, session key disclosure smart card stolen, and replay attacks and cannot provide mutual authentication and anonymity. Table 1 shows the analysis results of the security features.

6.3. BAN Logic Based Authentication Proof

We performed security analysis utilizing the BAN logic to demonstrate the secure mutual authentication of the proposed scheme. We present the BAN logic notations in Table 2. Furthermore, we define the rules, the goals, the idealized form, and the assumptions for BAN logic analysis. We prove that the proposed scheme provides secure mutual authentication among Ui, Sj and CS.

6.3.1. BAN Logic Rules

The rules of BAN logic are as below.

	
Message meaning rule:

A|≡A↔KB,A⊲XKA≡B∼X

	
Nonce verification rule:

A≡#(X),A≡B|∼XA≡B≡X

	
Jurisdiction rule:

A≡B⟹X,A≡B≡XA|≡X

	
Freshness rule:

A|≡#(X)A|≡#X,Y

	
Belief rule:

A|≡X,YA|≡X.

6.3.2. Goals

To assess the BAN logic proof, we present the goals of the proposed scheme as below.

	Goal 1:

	
Ui∣≡(Ui⟷SKSj)

	Goal 2:

	
Sj∣≡(Ui⟷SKSj)

	Goal 3:

	
Ui∣≡Sj∣≡(Ui⟷SKSj)

	Goal 4:

	
Sj∣≡Ui∣≡(Ui⟷SKSj)

6.3.3. Idealized Forms

To assess the BAN logic proof, we define the assumptions of the proposed scheme as below.

	Msg1:

	
Ui→Sj: (RIDi,IDi,RUi)Xi

	Msg2:

	
Sj→CS: (RIDi,IDi,RUi,RSIDj,SIDj,RSj)SIj

	Msg3:

	
CS→Sj: (IDi,SIDj,RUi,RSj)SIj

	Msg4:

	
Sj→Ui: (IDi,RUi,RSj,(Ui⟷SKSj))Xi

6.3.4. Assumptions

We present the initial assumptions to assess the BAN logic proof.

	A1:

	
Sj∣≡(Ui⟷XiSj)

	A2:

	
Sj∣≡#(RUi)

	A3:

	
CS∣≡(CS⟷SIjSj)

	A4:

	
CS∣≡#(RSj)

	A5:

	
Sj∣≡(CS⟷SIjSj)

	A6:

	
FA∣≡#(RSj)

	A7:

	
Ui∣≡(Ui⟷XiSj)

	A8:

	
Ui∣≡#(RSj)

	A9:

	
Ui∣≡Sj⇒(Ui⟷SKSj)

	A10:

	
Sj∣≡Ui⇒(Ui⟷SKSj)

6.3.5. Proof Using BAN Logic

The proof then proceeds as below.

	Step 1:

	
According to Msg1, we could get

(S1):Sj⊲(RIDi,IDi,RUi)Xi

	Step 2:

	
Using the message meaning rule with S1 and A1, we get

(S2):Sj∣≡Ui∣∼(RIDi,IDi,RUi)Xi

	Step 3:

	
From the freshness rule with S2 and A2, we obtain

(S3):Sj∣≡#(RIDi,IDi,RUi)Xi

	Step 4:

	
Using the nonce verification with S2 and S3, we get

(S4):Sj∣≡Ui∣≡(RIDi,IDi,RUi)Xi

	Step 5:

	
From the belief rule with S4, we obtain

(S5):Sj∣≡Ui∣≡(RUi)Xi

	Step 6:

	
According to Msg2, we could get

(S6):CS⊲(RIDi,IDi,RUi,RSIDj,SIDj,RSj)SIj

	Step 7:

	
Using the message meaning rule with S6 and A3, we get

(S7):CS∣≡Sj∣∼(RIDi,IDi,RUi,RSIDj,SIDj,RSj)SIj

	Step 8:

	
From the freshness rule with S7 and A4, we obtain

(S8):CS∣≡#(RIDi,IDi,RUi,RSIDj,SIDj,RSj)SIj

	Step 9:

	
Using the nonce verification rule with S7 and S8, we get

(S9):CS∣≡Sj∣≡(RIDi,IDi,RUi,RSIDj,SIDj,RSj)SIj

	Step 10:

	
According to Msg3, we could get

(S10):Sj⊲(IDi,SIDj,RUi,RSj)SIj

	Step 11:

	
Using the message meaning rule with S10 and A5, we get

(S11):Sj∣≡CS∣∼(IDi,SIDj,RUi,RSj)SIj

	Step 12:

	
From the freshness rule with S11 and A6, we obtain

(S12):Sj∣≡#(IDi,SIDj,RUi,RSj)SIj

	Step 13:

	
Using the nonce verification rule with S11 and S12, we get

(S13):Sj∣≡CS∣≡(IDi,SIDj,RUi,RSj)SIj

	Step 14:

	
According to Msg4, we could get

(S14):Ui⊲(IDi,RUi,RSj,(Ui⟷SKSj))Xi

	Step 15:

	
Using the message meaning rule with S14 and A7, we get

(S15):Ui∣≡Sj∣∼(IDi,RUi,RSj,(Ui⟷SKSj))Xi

	Step 16:

	
From the freshness rule with S15 and A8, we obtain

(S16):Ui∣≡#(IDi,RUi,RSj,(Ui⟷SKSj))Xi

	Step 17:

	
Using the nonce verification with S15 and S16, we get

(S17):Ui∣≡Sj∣≡(IDi,RUi,RSj,(Ui⟷SKSj))Xi

	Step 18:

	
From the belief rule with S17, we obtain

(S18):Ui∣≡Sj∣≡(Ui⟷SKSj)(Goal3)

	Step 19:

	
Using the jurisdiction rule with S18 and A9, we get

(S19):Ui∣≡(Ui⟷SKSj)(Goal1)

	Step 20:

	
Because of SK=h(RUi||RSj), from the S5, S9, S13 and S17 we could get

(S20):Sj∣≡Ui∣≡(Ui⟷SKSj)(Goal4)

	Step 21:

	
Using the jurisdiction rule with S19 and A10, we obtain

(S21):Sj∣≡(Ui⟷SKSj)(Goal2)

Referring to Goals 1–4, we show that proposed scheme achieves secure mutual authentication among Ui, Sj and CS.

7. Simulation for Security Verification with the AVISPA tool

We performed a formal security verification of the proposed scheme utilizing AVISPA simulation tool [26,27] to evaluate the safety of the authentication protocol against MITM and replay attacks, which is widely accepted for formal security analysis [28,29,30,31]. To perform AVISPA simulation tool, the environment and the session of security protocol must be implemented using the High Level Protocols Specification Language (HLPSL).

7.1. HLPSL Specifications

We considered three basic roles: user Ui, cloud server Sj, and control server CS. Then, we present session and environment utilizing HLPSL in Figure 9, which contains the security goals. The role specifications of Ui, Sj, and CS are as shown in Figure 10, Figure 11 and Figure 12.

The Ui receives the initial message and updates the updates the state value from 0 to 1. The Ui then sends the registration request messages {IDi,RPWi} to the CS via a secure channel and receives {RIDi,Smartcard} from the CS. The Ui updates the state value from 1 to 2. In the login and authentication phase, the Ui declares witness(UA,CS,ua_sn_rui,RUi′) from the Sj, and then updates the state value from 2 to 3. Finally, the Ui receives the authentication messages {M3,QCU} from the Sj. The Ui checks whether QCU∗=?QCU. If it is valid, the Ui authenticates the Sj successfully. The role specification for Sj is similarly defined.

7.2. AVISPA Simulation Result

We show the AVISPA results to verify the safety of the proposed scheme using OFMC and CL-AtSe. The OFMC checks whether the proposed scheme is safe from MITM attack. In addition, the CL-AtSe demonstrates the safety of the protocol against replay attack. Consequently, Figure 13 shows that the proposed scheme is secure against MITM and replay attacks though AVISPA simulation.

8. Performance Analysis

We compared the computation cost, communication cost and security features of the proposed scheme with some existing schemes [8,23,24,25]. We show that the proposed scheme provides better efficiency and security features.

8.1. Computation Cost

We compared the computation overheads of the proposed scheme with some existing schemes [8,23,24,25]. To analyze of computation cost, we estimated using the following parameters. Table 3 shows the analysis results of computation cost and the detailed total cost are as below.

The total computation cost for the proposed scheme and Pelaez et al.’s scheme are 34Th and 48Th + 8Ts, respectively. We provide better efficiency than some existing schemes because the proposed scheme uses only hash and XOR operations. Therefore, our scheme is secure and efficient for practical IoT-based cloud computing environment.

	
Th denotes the time for the hash function (Case 1 ≈0.00517 ms [23] and Case 2 ≈0.0000328 ms [32]).

	
Ts denotes the time for the symmetric key cryptography operation using AES algorithm (case 1 ≈0.02148 ms [23] and Case 2 ≈0.0214385 ms [32]).

	
The XOR operation was not included because it is negligible compared to the other operations.

8.2. Communication Cost

We compared the communication overhead of the proposed scheme with some existing schemes [8,23,24,25]. In authentication phase of the proposed scheme, the transmitted messages {M1,M2,CIDi,RIDi}, {M1,M2,CIDi,RIDi,D1,D2,CSIDj,RSIDj}, {M3,D3,QCS} and {M3,QCU} require (128 + 128 + 128 + 128 = 512 bits), (128 + 128 + 128 + 128 + 128 + 128 + 128 + 128 = 1024 bits), (128 + 128 + 128 = 384 bits), and (128 + 128 = 256 bits), respectively. Table 4 shows the analysis results of communication cost. Consequently, the proposed scheme is thus more efficient than other related schemes [8,23,24,25] because the total communications cost are 2176 bits (Case 1) and 4352 bits (Case 2).

	
Case 1 defines that the pseudo-identity, random nonce, timestamp, identity, password, and hash function are 128 bits, respectively.

	
Case 2 defines that the pseudo-identity, random nonce, timestamp, identity, password, and hash function are 256 bits, respectively.

	
The block length for symmetric encryption is 128 bits.

9. Conclusions

This paper shows that Pelaez et al.’s scheme does not defend various attacks such as impersonation, session key disclosure and replay attacks. Furthermore, we show that Pelaez et al.’s scheme cannot allow mutual authentication and anonymity. We propose a secure and lightweight three-factor authentication scheme for IoT in cloud computing environment to enhance the security drawbacks of Pelaez et al.’s scheme. Our scheme can withstand various types of attacks, including impersonation, session key disclosure and replay attacks, and can provide mutual authentication and anonymity. Then, we demonstrate that our scheme allows secure mutual authentication among Ui, Sj, and CS utilizing BAN logic analysis. We also performed a formal security verification analysis of the proposed scheme utilizing the AVISPA simulation tool. In addition, we compared the security features and performance of the proposed scheme with some existing schemes. We show that our scheme provides better safety and efficiency than related schemes. Therefore, our scheme can be suitable for practical IoT-based cloud computing environment because it is more secure and lightweight than the previous schemes.

Author Contributions

Conceptualization, S.Y.; software, S.Y. and K.P.; validation, K.P.; formal analysis, K.P.; writing—original draft preparation, S.Y.; writing—review and editing, K.P. and Y.P.; supervision, Y.P.

Funding

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning under Grant 2017R1A2B1002147 and in part by the BK21 Plus project funded by the Ministry of Education, Korea under Grant 21A20131600011.

Conflicts of Interest

The authors declare no conflict of interest.

References

	

Effectively and Securely Using the Cloud Computing Paradigm (v0.25). Available online: http://csrc.nist.gov/groups/SNS/cloud-computing (accessed on 5 August 2019).

	

Grobauer, B.; Walloscheck, T.; Stocker, E. Understanding cloud computing vulnerabilities. IEEE Secur. Priv. 2011, 9, 50–57. [Google Scholar] [CrossRef]

	

Lamport, L. Password authentication with insecure communication. Commun. ACM 1981, 24, 770–772. [Google Scholar] [CrossRef]

	

Kocher, P.; Jaffe, J.; Jun, B. Differential power analysis. In Advances in Cryptology; Springer: Berlin, Germany, 1999; pp. 388–397. [Google Scholar]

	

Amin, R.; Islam, S.K.; Biswas, G.P.; Khan, M.K.; Leng, L.; Kumar, N. Design of an anonymity-preserving three-factor authenticated key exchange protocol for wireless sensor networks. Comput. Netw. 2016, 101, 42–62. [Google Scholar] [CrossRef]

	

Jiang, Q.; Zeadally, S.; Ma, J.; He, D. Lightweight three-factor authentication and key agreement protocol for internet-integrated wireless sensor networks. IEEE Access 2017, 5, 3376–3392. [Google Scholar] [CrossRef]

	

Li, X.; Niu, J.; Kumari, S.; Wu, F.; Choo, K.K.R. A robust biometrics based three-factor authentication scheme for global mobility networks in smart city. Future Gener. Comput. Syst. 2018, 83, 607–618. [Google Scholar] [CrossRef]

	

Pelaez, R.M.; Cruz, H.T.; Michel, J.R.; Garcia, V.; Mena, L.J.; Felix, V.G.; Brust, A.O. An enhanced lightweight IoT-based authentication scheme in cloud computing circumstances. Sensors 2019, 19, 2098. [Google Scholar] [CrossRef] [PubMed]

	

Dolev, D.; Yao, A.C. On the security of public key protocols. IEEE Trans. Inf. Theory 1983, 29, 198–208. [Google Scholar] [CrossRef]

	

Park, Y.; Park, K.; Park, Y. Secure user authentication scheme with novel server mutual verification for multiserver environments. J. Commun. Syst. 2019, 32, 1–17. [Google Scholar] [CrossRef]

	

Park, K.; Park, Y.; Das, A.K.; Yu, S.; Lee, J.; Park, Y.H. A dynamic privacy-preserving key management protocol for V2G in social internet of things. IEEE Access 2019, 7, 76812–76832. [Google Scholar] [CrossRef]

	

Burrows, M.; Abadi, M.; Needham, R. A logic of authentication. ACM Trans. Comput. Syst. 1990, 8, 18–36. [Google Scholar] [CrossRef]

	

Chien, H.Y.; Jan, J.; Tseng, Y.M. An efficient and practical solution to remote authentication: Smart card. Comput. Secur. 2002, 21, 372–375. [Google Scholar] [CrossRef]

	

Zhu, J.; Ma, J. A new authentication scheme with anonymity for wireless environments. IEEE Trans. Cons. Elec. 2004, 50, 231–235. [Google Scholar]

	

Lee, Y.; Kim, S.; Won, D. Enhancement of two-factor authenticated key exchange protocols in public wireless LANs. Comput. Electr. Eng. 2010, 36, 213–223. [Google Scholar] [CrossRef]

	

Kim, J.; Lee, D.; Jeon, D.; Lee, Y.; Won, D. Security anaylsis and improvements two-factor mutual authentication with key agreement in wireless sensor networks. Sensors 2014, 14, 6443–6462. [Google Scholar] [CrossRef] [PubMed]

	

Wang, D.; Wang, P. On the anonymity of two-factor authentication schemes for wireless sensor networks. Comput. Netw. 2014, 73, 41–57. [Google Scholar] [CrossRef]

	

Wang, D.; Li, W.; Wang, P. Measuring two-factor authentication schemes for real-time data access in industrial wireless sensor networks. IEEE Trans. Indust. Inform. 2018, 14, 4081–4092. [Google Scholar] [CrossRef]

	

Wong, K.H.; Zheng, Y.; Cao, J.; Wang, S. A dynamic user authentication scheme for wireless sensor networks. IEEE Inter. Conf. Sensor Netw. Ubiq. Trustworthy Comp. 2006, 1, 1–8. [Google Scholar]

	

Li, X.; Peng, J.; Niu, J.; Wu, F.; Liao, J.; Choo, K.K.R. A robust and energy efficient authentication protocol for industrial internet of things. IEEE Internet Things J. 2018, 5, 1606–1615. [Google Scholar] [CrossRef]

	

Li, X.; Niu, J.; Kumari, S.; Wu, F.; Sangaiah, A.; Choo, K.K.R. A three-factor anonymous authentication scheme for wireless sensor networks in internet of things environments. J. Netw. Comp. Appl. 2018, 103, 194–204. [Google Scholar] [CrossRef]

	

Lee, J.; Yu, S.; Park, K.; Park, Y.; Park, Y. Secure three-factor authentication protocol for multi-gateway IoT environments. Sensors 2019, 19, 2358. [Google Scholar] [CrossRef]

	

Zhou, L.; Li, X.; Yeh, K.H.; Su, C.; Chiu, W. Lightweight IoT-based authentication scheme in cloud computing circumstance. Future Gener. Comput. Syst. 2019, 91, 244–251. [Google Scholar] [CrossRef]

	

Xue, K.; Hong, P.; Ma, C.A. A lightweight dynamic pseudonym identity based authentication and key agreement protocol without verification tables for multi-server architecture. J. Comput. Syst. Sci. 2014, 80, 195–206. [Google Scholar] [CrossRef]

	

Amin, R.; Kumar, N.; Biswas, G.P.; Iqbal, R.; Chang, V. A lightweight authentication protocol for IoT-enabled devices in distributed cloud computing environment. Future Gener. Comput. Syst. 2018, 78, 1005–1019. [Google Scholar] [CrossRef]

	

AVISPA. Automated Validation of Internet Security Protocols and Applications. Available online: http://www.avispa-project.org/ (accessed on 6 May 2019).

	

SPAN: A Security Protocol Animator for AVISPA. Available online: http://www.avispa-project.org/ (accessed on 6 May 2019).

	

Park, K.; Park, Y.; Park, Y.; Reddy, A.G.; Das, A.K. Provably secure and efficient authentication protocol for roaming service in global mobility networks. IEEE Access 2017, 5, 25110–25125. [Google Scholar] [CrossRef]

	

Park, K.; Park, Y.; Park, Y.; Das, A.K. 2PAKEP: Provably secure and efficient two-party authenticated key exchange protocol for mobile environment. IEEE Access 2018, 6, 30225–30241. [Google Scholar] [CrossRef]

	

Yu, S.; Lee, J.; Lee, K.; Park, K.; Park, Y. Secure authentication protocol for wireless sensor networks in vehicular communications. Sensors 2018, 18, 3191. [Google Scholar] [CrossRef] [PubMed]

	

Park, Y.; Park, Y. Three-factor user authentication and key agreement using elliptic curve cryptosystem in wireless sensor networks. Sensors 2016, 16, 2123. [Google Scholar] [CrossRef] [PubMed]

	

Wu, F.; Xu, L.; Kumari, S.; Li, X.; Shen, J.; Choo, K.K.R.; Wazid, M.; Das, A.K. An efficient authentication and key agreement scheme for multi-gateway wireless sensor networks in IoT deployment. J. Netw. Comput. Appl. 2017, 89, 72–85. [Google Scholar] [CrossRef]

[image: Sensors 19 03598 g001 550]

Figure 1. User registration process of the Pelaez et al.’s scheme [8].

Figure 1. User registration process of the Pelaez et al.’s scheme [8].

[image: Sensors 19 03598 g001]

[image: Sensors 19 03598 g002 550]

Figure 2. Cloud server registration process of the Pelaez et al.’s scheme [8].

Figure 2. Cloud server registration process of the Pelaez et al.’s scheme [8].

[image: Sensors 19 03598 g002]

[image: Sensors 19 03598 g003 550]

Figure 3. Login process of the Pelaez et al.’s scheme [8].

Figure 3. Login process of the Pelaez et al.’s scheme [8].

[image: Sensors 19 03598 g003]

[image: Sensors 19 03598 g004 550]

Figure 4. Authentication process of the Pelaez et al.’s scheme [8].

Figure 4. Authentication process of the Pelaez et al.’s scheme [8].

[image: Sensors 19 03598 g004]

[image: Sensors 19 03598 g005 550]

Figure 5. User registration process of the proposed scheme.

Figure 5. User registration process of the proposed scheme.

[image: Sensors 19 03598 g005]

[image: Sensors 19 03598 g006 550]

Figure 6. Cloud server registration process of the proposed scheme.

Figure 6. Cloud server registration process of the proposed scheme.

[image: Sensors 19 03598 g006]

[image: Sensors 19 03598 g007 550]

Figure 7. Login and authentication process of the proposed scheme.

Figure 7. Login and authentication process of the proposed scheme.

[image: Sensors 19 03598 g007]

[image: Sensors 19 03598 g008 550]

Figure 8. Password change process of the proposed scheme.

Figure 8. Password change process of the proposed scheme.

[image: Sensors 19 03598 g008]

[image: Sensors 19 03598 g009 550]

Figure 9. Role for environment and session in HLPSL.

Figure 9. Role for environment and session in HLPSL.

[image: Sensors 19 03598 g009]

[image: Sensors 19 03598 g010 550]

Figure 10. Role specification for user Ui.

Figure 10. Role specification for user Ui.

[image: Sensors 19 03598 g010]

[image: Sensors 19 03598 g011 550]

Figure 11. Role specification for cloud server Sj.

Figure 11. Role specification for cloud server Sj.

[image: Sensors 19 03598 g011]

[image: Sensors 19 03598 g012 550]

Figure 12. Role specification for control server CS.

Figure 12. Role specification for control server CS.

[image: Sensors 19 03598 g012]

[image: Sensors 19 03598 g013 550]

Figure 13. Analysis of AVISPA simulation using OFMC and CL-AtSe.

Figure 13. Analysis of AVISPA simulation using OFMC and CL-AtSe.

[image: Sensors 19 03598 g013]

[image: Table]

Table 1. Security features comparison.

Table 1. Security features comparison.

	Security Features
	Xue et al. [24]
	Amin et al. [25]
	Zhou et al. [23]
	Pelaez et al. [8]
	Ours

	Impersonation attack
	×
	×
	×
	×
	∘

	Smart card stolen attack
	×
	×
	∘
	×
	∘

	Session key disclosure attack
	×
	∘
	×
	×
	∘

	Replay attack
	∘
	∘
	×
	×
	∘

	Anonymity
	×
	∘
	∘
	×
	∘

	Mutual authentication
	×
	∘
	×
	×
	∘

∘, preserves the security features; ×, does not preserve the security features;

[image: Table]

Table 2. Notations for BAN logic.

Table 2. Notations for BAN logic.

	Notation
	Description

	A|≡X
	Abelieves statement X

	#X
	Statement X is fresh

	A⊲X
	Asees statement X

	A|∼X
	A once said X

	A⇒X
	A has got jurisdiction of X

	<X>Y
	X is combined with Y

	{X}K
	X is encrypted under key K

	A↔KB
	A and B may use shared key K to communicate

	SK
	Session key used in the current session

[image: Table]

Table 3. A comparative summary: computation costs.

Table 3. A comparative summary: computation costs.

	Schemes
	User
	Cloud Server
	Control Server
	Total
	Total Cost (Case 1)
	Total Cost (Case 2)

	Xue et al. [24]
	12Th
	6Th
	18Th
	36Th
	0.18612 ms
	0.0011808 ms

	Amin et al. [25]
	12Th
	4Th
	14Th
	30Th
	0.1551 ms
	0.000984 ms

	Zhou et al. [23]
	13Th
	7Th
	23Th
	43Th
	0.22231 ms
	0.0014104 ms

	Pelaez et al. [8]
	9Th+3Ts
	6Th+3Ts
	33Th+2Ts
	48Th+8Ts
	0.42 ms
	0.1730824 ms

	Ours
	12Th
	6Th
	16Th
	34Th
	0.17578 ms
	0.0011152 ms

Th, hash function; Ts, symmetric key cryptography operation using AES algorithm

[image: Table]

Table 4. A comparative summary: communication costs.

Table 4. A comparative summary: communication costs.

	Schemes
	Message Length
	Total Cost (Case 1)
	Total Cost (Case 2)

	Xue et al. [24]
	30
	3840 bits
	7680 bits

	Amin et al. [25]
	27
	3456 bits
	6912 bits

	Zhou et al. [23]
	34
	4352 bits
	8704 bits

	Pelaez et al. [8]
	34
	4352 bits
	8704 bits

	Ours
	25
	2176 bits
	4352 bits

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

media/file13.jpg
L)

s
e 10,

ooy
o
i i oo
T
)
b e
Ty

o M ey

S

e,y

e

Compae
s)
S0 -]

&y

R K
LT

T ks
S S es)
s 3

g
E R
TR

s 5]

o
S i)
' et o)
-
b3t

iy
SR, k)
el

Sy b ns)
B2 s 1)
b 0

o
SR

;- RS)

@
Criae i DL
R W)

media/file4.png
Cloud server (S;)

Control server (CS)

Selects T, ng
Computes
PSID]' = h(Tans)

{SID;, PSID;}

=3

{B2, B3}

&« ——

Stores { By, Bs } in a database

Generates secret key v, z

Computes

By = h(SIDj||PSID;)

By = h(PSID;||h(IDcs||z)|[h(IDcs|ly)) ® h(IDcsl|z) © h(IDcs||y)
By = h(SID;||PSID;|[h(IDcs||2) | [(IDcs|ly)) & PSID; & hz||y)
Stores Bq in a database

media/file18.png
role environment()

def=

constua, s, cs : agent,

skuacs, skscs: symmetric_key,

h: hash_func,

sidj,idi: text,

ua_cs rui, S €S rsj, Cs S (cs, s ua_qcu: protocol id,
spl, sp2, sp3, sp4, spS: protocol id

intruder knowledge = {ua.s,cs,sidj,idi,h}
composition

session(ua,s,cs, skuacs, skscs,h)/
\session(i,s,cs, skuacs,skscs, h)
/\session(ua,i,cs, skuacs,skscs,h)
/\session(ua,s,1, skuacs,skscs,h)

end role

goal

secrecy of spl, sp2, sp3, sp4, sp5
authentication_onua_cs_rui
authentication_ons_cs_rsj
authentication_oncs s qcs
authentication_ons ua_qcu

end goal

environment()

Role for the session

role session(UA, S, CS : agent, SKuacs, SKscs : symmetric_key,
H: hash_func)

def=

local SN1, SN2, SN3, RV1, RV2, RV3: channel(dy)
composition

user(UA, S, CS, SKuacs, H, SN1, RV1)

N server(UA, S, CS, SKscs, H, SN2, RV2)

/\ controlserver(UA, S, CS,SKuacs, SKscs, H, SN3, RV3)
end role

media/file21.jpg
TRRREE.

% Cloud Server

roleserver(UA, 5, CS - agen, SKscs : symmetic_key, H: hash_func, SND, RCV
chamel(dy))

Qi SID] R RSIDISjS1.S2.Ks: text.

RULMICIDI M2,RS] DI CSID]D2,M3,D3.Qes. SKi.Qu - txt

const sl $p2, 53, Sp4,5pS. ua_cs. i, 505 5, €55 65, wa_qeu: protocol_id
Staie =0

wansiion
ARCV(strs
ALRT = new() /S2mnew()
/| SND({SID] Rf}_SKscs)

/\RCV{H(SID] R Ks) HH(SIDI RY-Ks) HS2'Ks)}_SKses)

2. Sme
/U RCV(xor(RUIH(H(DL H(S 1"Ks)) Ks S19) HADE HHADE H(SI' K$) Ks S1) RU
)xor(IDi HCH(HADI HS1'K$) Ks 1) RUI) HODLH(SI'Ks)
State = 3 ARS]= new() \S2-new() /| RY = new()

70D = xor(H(H(SID] Rf-Ks) H(S2 K$) RSf)

1LCSIDY' = xor(SID} HOH(H(SID] RY-KS) H(S2 K3) RS})

71D2' = HSID] H(H(SID] RY.Ks) HISZ KS).RS)

1\ SND(xor(RUFH(H(DEH(SI' Ks)) Ks.S1%) H(IDL H(H(IDLH(S 1K) Ks S1°
)RUI) xor(IDi, H(H(H(IDL H(S 1K) Ks 1) RUIY) HADLH(SI'Ks) DID2 CSID
JLH(SID]R}.KS)

L Wiess(S.CS.5 s 15 RS])

3. St

/VRCV(xor(RS; H(IDi RUI).Aor(RUI,H(SID] RSJ) H(RUIRS].H(HISIDI R KS).

HS2 Ko =

State'= 4 A SKi = HRUIRS))
71Qau = HRUIRS].SKi)

A witness(S.UA s ua_qcuSKi)

7\ SND(or(RS}"H(IDI RU) Qeu)

A requesi(CS.5.65_5_qes RUS
endrole

media/file26.png
SUMMARY
SAFE
DETAILS
BOUNDED NUMBER OF SESSIONS
PROTOCOL
/home/span/span/testsuite/results/sj.if
GOAL
as_specified
BACKEND
OFMC
COMMENTS
STATISTICS
parseTime: 0.00s
searchTime: 7.92s
visitedNodes: 1040 nodes
depth: 9 plies

SUMMARY
SAFE
DETAILS
BOUNDED NUMBER_OF SESSIONS
TYPED MODEL
PROTOCOL
/home/span/span/testsuite/results/sj.if
GOAL
As Specified
BACKEND
CL-AtSe
STATISTICS
Analysed : O states
Reachable : O states
Translation: 0.08 seconds
Computation: 0.00 seconds

media/file3.jpg
‘Control server (C5]

(51D, pstD;)

Generates seret ey 2
Compues
By WSID D)
PSID (1D 2 IH(IDcs 1) & WD) WD)

B(SID,[PSID) (1D 2 H1Des 19) & PSID, & zly)
Stores By ina database

(B3

Stores (B B} ina database

media/file22.png
%%%%%%%%%%:%% Cloud Server

role server(UA, S, CS : agent, SKscs : symmetric_key, H: hash func, SND, RCV :
channel(dy))

played by S

def=

local State: nat,
IDi,PWi,Ri,Pi,RPWi RIDi,Xi,Ai,Bi,Qi,SIDj,Rj,RSID;j,SIj,S1,S2,Ks: text,
RUi,M1,CIDi,M2,RS;j,D1,CSIDj,D2,M3,D3,Qcs,SKi,Qcu : text

const spl, sp2, sp3, sp4, sp5, ua_cs rui, s ¢S 1sj,cs S (cs, s ua_qcu: protocol id

init State =0

transition

1. State = 0 A RCV(start) =>
State' := 1 ARj' :=new() \S2":=new()
/A SND({SIDj.Rj'} SKscs)
A RCV({H(SIDj.Rj' Ks). H(H(SIDj.Rj' Ks).H(S2' Ks))} SKscs)

2. State =2

A RCV(xor(RUi',H(H(IDi.H(S1' Ks)).Ks.S1"). HIDi.H(H(IDi.H(S1' Ks)).Ks.S1').RUi
".xor(IDi', HHHH(IDi.H(S1' Ks)).Ks.S1").RUi")).H(IDi.H(S1'.K5s))) =>

State' := 3 /A RSj"'=new() AS2":=new() A\ Rj' := new()

A D1' = xor(HH(SIDj.Rj'.Ks).H(S2' Ks)),RSj"

A\ CSIDj' := xor(SIDj,HH(H(SID].Rj' Ks).H(S2'.Ks)).RSj")

/A D2':= H(SIDj.H(H(SIDj.Rj'Ks).H(S2'.Ks)).RSj")

A\ SND(xor(RUi',HH(IDi.H(S1' Ks)).Ks.S1").H(IDi. HH(IDi.H(S1' Ks)) Ks.S1'
).RUi").xor(IDi',H(H(H(IDi.H(S1'.Ks)).Ks.S1').RUi")).HIDi.H(S1'.Ks)).D1'.D2".CSID
j.H(SIDj.Rj'.K5s))

N\ witness(S,CS,s cs_1sj,RSj")

3. State =3

A RCV(xor(RS;j' H(IDi.RU1")).xor(RUi',H(SIDj.RSj")).H(RUi'.RSj" " H(H(SIDj.Rj' K5s).
H(S2'Ks)))) =[>

State' := 4 /A SKi' := H(RUi'RSj")

A\ Qcu' ;= H(RUi'.RS;'.SKi")

A\ witness(S,UA,s ua_ qcu,SKi')

/A SND(xor(RSj',H(IDi.RU1")).Qcu'")

N request(CS,S,cs_s_qcs,RU1")
end role

media/file19.jpg
role user(UA, S, CS - agent, SKuacs : symmetri_key, H: hash_func, SND, RCV
channel(dy)
played by UA
dei=
Tocal Stae: nat,
DI PWi R, 18182 Ks:ext,

RULMILCIDiM2RS;.D1,CSID}.D2.M3,D3.Qes.SKi.Qcu - text

constspl. sp2. sp3. spd. pS, ua .. s .15 s,
init State
ransiion

S_qcs.s_ua_qeu: protocol_id

A% Regisiation phase

1. Stale =0/ RCVistart) =~
State':= 1 A Ri“=new()
1 RPWI = HEWiRT)

7\ SND(IDLRPWI}_SKuacs)
Asecret({IDi, PWi, Ri}. pl. (UA})

A% Recieve smartcard

2.Siate = 1 ARCV

({H(DIH(SI' Ks) xor(H(HIDL H(ST"Ks)) Ks S1) KDL HPWi.RiY) HH(H(D:
H(SI'K$) Ks.S1' HPWLRI))_SKuics)-I>

State =2 /\ Qi = xor(H(IDFPWi Ri) HIDLH(S I'Ks))
AYIR24%%% 6 Login & Authenication phase

or(IDIH(H(H(DLH(ST"Ks). Ks ST)RU)
71M2 5= H(DE HOIDLH(SIK$) Ks SI.RUD)
7\ SND(MI'M2CIDIHUDLH(SI"Ks))
7\ witness(UA,CS.a_¢s ruiRUY)
(1D RUI) H(RUY RS]. HRUERS))

7Ltequesi(UA.S:_ua ¢
endrole

media/file7.jpg

media/file10.png
User (U;)

Control server (CS)

Selects ID;, PW;
Imprints biometric BID;
Computes

<Ri/ Pi>=G€Tl(BIOi)
RPW; = h(PW;l|R;)

Computes
Qi = h(ID;||PWi[|R;) & RID;
Stores {Q;} in a smart card

JLHDi/ RPWZ}

-

{RID;, Smartcard}

é__

Generates a random nonce Sq
Computes

RID; = h(IDy|[h($1|Ks))

Xi = h(RID;||Kg]|51)

Ai = Xi . h(RIDi‘ ‘RPWZ')

B = h(Xi||[RPW])

Stores {51} in a database
Stores { A;, B;} in a smart card

media/file14.png
User (U;)

Cloud server (5))

Control server (CS)

Inputs ID; and PW;
Imprints biometrics BIO;

Bf = h(X;||[RPW;)
Checks whether Bf L B;
Generates a random nonce RU;
M =RU; @
CID; = 1D; @h(X [|RU;)
M; = h(ID/{|X;||RUy)
{M1, My, CID;,RID;}

{M3r QCU}

Computes

RS; = Mz & h(ID;||RU;)

SK; = h(RU;| \RS]-)

Qby = h(RU;||RS;[[SK;)
Checks whether QF; L Qcu
Updates RID; to RID}*¥
RID® = (RID Hh(RLI HRS))

Generates a random nonce RS]-

Computes
Dy = SI]- & RS]-

CSID; = SID; & h(SL||RS;)

D, = h(SID;||SL|RS))

{My, My, CID;, RID;, Dy, Dy, CSID;, RSID; }

Computes
RU; = D3 @h(SID HRS)
Qb = h(RU; HRS HSI)

{M3,D3,Qcs}

Checks whether O*Cs = QOcs

SK; = h(RU||RS;)
Qcu = h(RU;||RS;||SK;)

Comp utes
X; = h(RID;||Ks]|S1)
RLI M & X;

ID; = CID; @ h(X;||RU;)
M3 = h(ID;|| X;||RU;)
Checks whether M; 2 My
Computes

SI; = h(RSID;|[h(S2][Ks)
RS; =D1® S

SID; = CSID; @ h(SIj\ \RS]-)
D; = h(SID]-HSI]-HRS]-)
Checks whether D 2 Ds
Computes

Mz = RS; @ h(ID;]|RU;)

D3 =RU; & h(SID]-\ \RS]-)
Qcs = h(RU; HRS HSI)
Updates RID; to RID”””
RID}*® = h(RID; Hh(RLI HRS))

media/file11.jpg
Cloud server (5]

Control server (C5)

Selects SID;
Generates a random nonce r;

{s1D;,1;}

{RSID;, SI}}

Stores {RSID;, S1;} in a database

Generates a random nonce $
Computes.

RSID; = h(SID}|Irj||Kz)

51j = h(RSID; |[1(S2]Ks))
Stores {5} in a database

media/file6.png
User (U;) Cloud server (S]-)

Control server (CS) |

Inputs identity ID; and password PW;
Selects T{*%, nif®
computes
C; = h(ID}||PW; |[(ny))
Checks whether C; = Cy
D1 =Cy @ ID;
Dy =C3 h(TﬁewHIDi) S h(ﬂ’&ew)
(T/¥w, Dy, PID;, Dy}

Selects T&*Y, n¢®®
Computes
D3 =B, & SID]'
Dy = B33 h(TgewHSID]') S h(ngew)
Ds = h(PID;||T}*®||SID;|| PSID; || T2¢)
(T}, Dy, PID;, D, TEY, Dy, PSID;, Dy, Ds }

media/file15.jpg
User (U;)

Smart card (5C)

Inputs ID;, PW;
Imprints biomerics BIO}
Computes

(Ry, P)=Gen(BIO;)

RPW = h(PW;||R;)
{ID}, RPW;'}
{Authenticate)
Inputs a new password P/
Imprints a biometrics BIOY®
(RE, o) Gon BIOM
REWsa = (P Ay
(RPWI)

Computes
A7 & W(ID; RPW;)

Computes
A= X2 @ H(ID; [[RPW]*)
Biew (X [IRPW})

Replaces {;, B;} with { A7, Bew'}

nav.xhtml

 sensors-19-03598

 		
 sensors-19-03598

media/file16.png
User (U;)

Smart card (SC)

Inputs D7, PW/
Imprints biometrics BIO;
Computes

<Ri/ PZ>ZG€71(BIOZ*)
RPW? = 1(PW?||R;)

Inputs a new password PW/™®
Imprints a biometrics BIO}*"
(R}, P =Gen(BIO!™)
RPW*® = h(PW]**®||RI*v)

Computes

X! = A ® h(ID;||[RPW})
B, = h(X;[|RPW;)

B = B;

Computes

Al®Y = X¥ @ h(ID]||[RPW]")
B = h(X}||RPW!*")

Replaces {A;, B;} with { A7¢V, BI'*?}

media/file2.png
User (U;)

Control server (CS)

Inputs ID;, PW;
Selects Ty, ny;
Computes

PID; = h(Ty||ny)

{IDl/PIDl}

>

{C), G5}

&< ——

Computes
Cq = h(ID;|[PW;||h(ny))
Stores { PID;, Cy,C3, Cy4, h(ny;)} in a smart card

Generate secret key x,y

Computes

C1 = h(ID;||P1D;)

Co = h(PID;||h(IDcs||x)||h(IDcslly)) & h(IDcs||x) & h(IDcs|ly)
Cs = h(IDy||PID;||k(IDcs||x)||h(IDcs|ly)) © PID; @ h(x||y)
Stores Cq in a database

media/file20.png
%%0%%%%6%6%0%0%0%%% User

role user(UA, S, CS : agent, SKuacs : symmetric_key, H: hash_func, SND, RCV :
channel(dy))

played by UA

def=

local State: nat,
IDi,PWi,Ri,Pi, RPWi RIDi,Xi Ai,Bi,Qi,SIDj,Rj,RSID;j,SIj,S1,S2 Ks: text,
RUi,M1,CIDi,M2,RSj,D1,CSIDj,D2,M3,D3,Qcs,SKi,Qcu : text

const spl, sp2, sp3, sp4, sp5,ua_cs rui, s _cs rsj, cs_s qcs, S ua_qcu: protocol id
init State ;= 0
transition

%%%%%%%%%%%%Registration phase
1. State = 0 /A RCV(start) =>
State' := 1 A Ri":=new()
/AN RPWi' := H(PWi.Ri")
A SND({IDi.RPWi'} SKuacs)
A secret({IDi, PW1, Ri'}, spl, {UA})

%%%%%%% %% %% %R ecieve smartcard
2. State=1/ARCV

({H(IDi' H(S1' Ks)).xor(H(H(IDi.H(S1' Ks)).Ks.S1"),H(IDi. H(PWi.Ri'))). H(H(H(IDi.

H(S1'Ks)).Ks.S1").H(PWi.R1"))} SKuacs)=>
State' :=2 /A Qi' := xor(H(ID1'.PWi.Ri'"),H(ID1.H(S1' Ks)))
%%%%%%%%%%%%Login & Authentication phase
ARU1" :=new()
AMI" :=xor(RUi',HH(IDi.H(S1' Ks)).Ks.S1"))
A\ CIDi' := xor(IDi', HH(H(IDi.H(S1' Ks)).Ks.S1").RUi"))
A M2' = H(IDi.H(H(IDi.H(S1'Ks)).Ks.S1').RU{')
A SND(M1''M2'.CIDi' H(IDi.H(S1' Ks)))
A witness(UA,CS,ua_cs_rui,RU1")
3. State =2 /A RCV(xor(RSj' H(IDi.RUi")).HRUi'.RS;' H(RUi'RSj")) =>
State' := 3 A SKi' := H(RUi'.RSj")
A\ request(UA,S,s_ua_qcu,SKi")
end role

media/file23.jpg
P2

A% Control Server

role controlserve(UA, S, CS - agent, SKuacs, SKscs : symmeric_key, H: hash_fune,
SND, RCV - channeldy))

played_by CS
ael

Tocal Sat: nat,
1D PR P RPVi RIDS Xi.ALBi i SIDj Rj RSIDS.SIj S1.52.Ks:txt,
RULMI CIDIM2.RS;.DI CSID] 02 M3.D3,Qés SKi Qe - text

constspl. sp2,$p3, $p4. 95, s i 5 1515505, a e protocal_id

nitSuate =0

rnsion

1. State =0 /\ RCV(ISIDI Ry} SKscs) >
State’ = 1/ S2':= new() A RSIDJ = HISIDLRIKS)
7SI = HRSIDY.HS2.Ks)
7\ SND(RSIDI SIf}_SKscs)
Nsecrel({S2) sp3.CS))
1\ secrel({RSIDSIT) 5p4. (5.CS))
7 RCV(IDEH(PWi R

/\SND({RIDI.ALBi)_SKuacs)
Hscrel({S1) $p5.(CS))

3.Sute=2

1 RCV(xor(RUEH(H(DLH(SI'Ks) K5 $1') HODEH(H(DLH(SI'Ks). Ks ST) RUG

) xor(IDI,H(HGH(IDL H(SI' Ks) Ks S1') RUP) HDL H(SI'Ks) xor(HH(SID] Ry

1K) H(S2'Ks)) RS H(SID] H(HISIDI Ry Ks) H(S2'Ks).RS]) xor(SID} HHH(SID

§RIKS) HIS2K) RS)) HISID) Ry Ks)

State = 3\ M3 2= or(RS].H(DLRUI))
71D = xorRULHSIDIRS])
11Qes' = H(RULRS] H(H(SID] R Ks) H(S2 Ks)
1 WRESS(CS .65 qes RUP)

1 SND(MS D3 Qes)

AreQuesUA.CS, u_es i RUS

eSS, 5_c5 5 RS])
androle

media/file5.jpg
- Cloud verver (5] Conirol server (51|
e ——
o 7,1
s
07)
Chockwhether 3 2.,
B ZE o o)
g
sz
B s,

i~ &y OMTEISID) 3 Hir™)
or < et i iy)

(T,0110, 0,127, 751,051

media/file24.png
%%%%0%6%%6%6%%%%% Control Server

role controlserver(UA, S, CS : agent, SKuacs, SKscs : symmetric_key, H: hash_func,
SND, RCV : channel(dy))

played by CS

def=

local State: nat,
IDi,PWi,Ri,Pi,RPWi RIDi,Xi,A1,Bi,Qi,SIDj,Rj,RSIDj,SIj,S1,S2 Ks: text,
RUi,M1,CIDi,M2,RSj,D1,CSIDj,D2,M3,D3,Qcs,SKi,Qcu : text

const spl, sp2, sp3, sp4, sp5,ua_cs_rui, S_cs_rsj, cs_s_qcs, s _ua_qcu : protocol id

init State :=0

transition

1. State =0 A RCV({SID;j.Rj'} SKscs) =>
State' := 1 /\ S2' := new() /\ RSIDj' := H(SIDj.R;j' Ks)

N\ SIj' = H(RSID;j'.H(S2' Ks))

A\ SND({RSIDj".SIj'} SKscs)

N\ secret({S2'},sp3,{CS})

N secret({RSIDj',SI'} ,sp4, {S,CS})
2. State = 1 ARCV({IDi.H(PWi.Ri")} SKuacs) =>
State' :=2 /\ S1":=new() /A RIDi' := H(IDi.H(S1' Ks))

A Xi' :=H(RIDi' Ks.S1"

N\ Ai' == xor(Xi',H(IDi.H(PWi.R1i')))

A Bi' = H(Xi'H(PWi.Ri")

N\ SND({RIDi'.Ai'.Bi'} SKuacs)

N\ secret({S1'},sp5,{CS})
3. State =2
A RCV(xor(RUi'HHIDi.H(S1' Ks)).Ks.S1").HIDi.HH(IDi.H(S1' Ks)).Ks.S1").RUi
".xor(IDi', HH(H(IDi.H(S1'Ks)).Ks.S1').RUi").HIDi.H(S1' Ks)).xor(H(H(SIDj.Rj'.
Ks).H(S2'Ks)),RSj").H(SIDj. H(H(SIDj.Rj' Ks).H(S2' Ks)).RS;j").xor(SIDj, HH(H(SID
J.Rj".Ks).H(S2' K5s)).RSj")).H(SIDj.Rj" Ks)) =>
State' := 3 /A M3' ;= xor(RSj" H(IDi.RU1"))

A D3" = xor(RUi' H(SIDj.RSj")

A Qcs' .= H(RUi'.RSj" H(H(SIDj.Rj'Ks).H(S2' Ks)))

A\ witness(CS,S,cs_s_qcs,RUi")

A SND(M3'.D3'.Qcs")

A request(UA,CS, ua_cs_rui,RU1")

A request(S,CS, s _cs_1s),RSj")
end role

media/file1.jpg
[ty Controlserver (CS1
Inputs 10,7V
Sckas Ty
Compy
PID; = h(Tul)
(0, Piny)
Generae secet ey 4
Computes
G =hD,P1D)
= HPIDJ (DS I(IDcslv) & H(IDesl1x) @ (1D ly)
= HUD,[PID, 1Dl {Dcsll) & PID, = hixly)
Stores Cy i dtabase
(e

Stores {PID), Co,Ca,Cy)} in smart card

media/file25.jpg
SUMMARY
SAFE
DETAILS
BOUNDED_NUMBER_OF_SESSIONS
PROTOCOL
/home/span/spantestsuite/results/sj if
GOAL
as_specified
BACKEND
OFMC
COMMENTS
STATISTICS
parseTime: 0.005
searchTime: 7.925
visitedNodes: 1040 nodes
depth: 9 plies

SUMMARY
SAFE
DETAILS
BOUNDED_NUMBER_OF_SESSIONS
TYPED_MODEL
PROTOCOL
/home/span/span/testsuite/results/s if
GOAL

As Specified
BACKEND

CL-Aise
STATISTICS

Analysed 0 states.

Reachable : 0 states

Translation: 0.08 seconds

Computation: 0.00 seconds

media/file12.png
Cloud server (S;)

Control server (CS)

Selects SI Dj
Generates a random nonce ri

{SID]',T]'}

-3

{RSIDj, SI;}

e__

Stores { RSIDj, S1;} in a database

Generates a random nonce S,
Computes

51 = h(RSID; | [1(5,]|Ks))
Stores {S; } in a database

media/file9.jpg
User (0;) Control server (C5)

Selects 1D, PW;
Imprints biometric BID;
Computes

(Ri, P))=Gen(BIO;)
RPW, = h(PW|[R;)

{ID;, RPW;}

Generates a random nonce Sy
Computes

RID; = h(ID;[1(S]|Ks))
h(RID;|IKs||51)

A; = X; & h(RID;|[RPW;)
B;= h(X|[RPW;)

Stores {51 in a database
Stores { A7, B;) in a smart card

{RID;, Smartcard}

Computes
Qi = h(ID;|[PW;||R;) & RID;
Stores {Q;} in a smart card

media/file0.png

media/file8.png
User (U;) Cloud server (5)) Control server (CS)
Computes
C; — h(PID||h(IDcs|)] [(IDcs|ly))* & h(IDcs||x) & h(IDcs|ly)
1D} = h(PID; ||(ID¢s|1)|[(I1Dcs|[v)* & h(IDcs|[x) & h(ID¢s) & Dy
Ci = h(ID}||PID;)
Checks whether C} z Cq
h(ggw)* — h(ID}||PIDY | [h(IDcs | |x) [(IDcs|ly))* & PID; & h(x|ly) & h(TyFw||ID;)* & D,
SID} = h(PSID|[h(IDcs|[2)|[1{TDcs|ly))* @ h(IDes|2) & k(IDcs ly) @ Ds
B = h(SID*HPSID*)
Checks whether B] =
h(nie) = h(SID*HPSID*HhUDcs\\Z)HhUDcsHy))* & PSID; @ h(z|ly) & h(TE||SID;) @ Dy
Di = h(PID*HT”E’”HSID*HPSID*\\T"ew)
Checks whether D 2 Ds
Generates a random nonce #’
Computes
Session key SKyy_s = h(h(n{f") @ h(ng™) @ h(nE || TEE))
D6 = Bz @h(Tg‘ewHSID]) T”fgw
Dg = CZEBh(T”ewHID)&
D9 — h<nnewH new) @h(ID H new) @h(new)
Dro = Egx(h(ns") ® h(SID;|| PSID;||By))
Dy = Esk(h(n{) @h(IDiHPIDiHCz))
{D6rD7r DlOrDSr D9rD11}
Computes

{Ds, D7, D1g, Dg, Do, D11 }

Computes
ngfﬂ* — C, @ h(T*||ID;) & Ds
WP T @)’ — WIDT) @ Dy
Dsx.(Dn) = h(”?;esw) @ h(I1D;||PID; HCZ) = h(”?;esw)
My = {Esx(h(ne||serverValue(challenge))

Mo = {Esg(serverValue(h (ngesw)HT”gw))}

computes
Dgg (Mo)=serverValue(h (ng%w)H THR) — (nliew || THew)*
Checks whether h(nf5" || TH®)* = h(nEP||TEEY)

g%w* =B, EBh(T"ewHSID]) @ Dg

h(ng || TE) @ h(nff®)* = h(SID;||TE™) & D7
SK* 75 — h(h(new) @h(glew) @h(nnewHTnew>)
Dsk«(D1o) = h(n{¥’) @ h(SID;||PSID;||By) = h(n{d")*

Computes

Dsg(Mo) = h(nf5)*||serverValue(challenge))
Checks whether 11(ng5")* ! = h(nfg")
Computes

Mo = {Esg(serverValue(h (ngesw)HT”gw))}

media/file17.jpg
e
der-
constua s, s :agen

wionment()

skuacs,skecs: symmelric_key,
i hash_fune,
il di et
s i, s 15, €55 qcs, a_qu: protocol_id,

5pL. 2,593, 5p4.$pS: protocol_id

intnuder kaowledge = fuascs i)
composion

session(uas s, skuaes, skscs)
essions s, skaaes skscs,)
Psession(ua s, skuaes skscs)
Psession(uas., suaesskses)

endrole

authenication_on cs_s_qcs.

environment)

Rolefor the session,

rolesession(UA, . CS agen, SKuacs, SKses symmetic_key,
H:ash_func)

a
Tocal SN, SN2, SN3, RVI, RV, RV3: chamneldy)
compasiion

user(UA, S, CS, SKuies, H, SN1, RV1)

AserverUA, S, €S, SKscs H, SN2 RV2)

A contolsever{UA. S, CS,SKiwcs, SKscs,H, SN3, RV3)
endole

