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Abstract

:

With the development of cloud computing and communication technology, users can access the internet of things (IoT) services provided in various environments, including smart home, smart factory, and smart healthcare. However, a user is insecure various types of attacks, because sensitive information is often transmitted via an open channel. Therefore, secure authentication schemes are essential to provide IoT services for legal users. In 2019, Pelaez et al. presented a lightweight IoT-based authentication scheme in cloud computing environment. However, we prove that Pelaez et al.’s scheme cannot prevent various types of attacks such as impersonation, session key disclosure, and replay attacks and cannot provide mutual authentication and anonymity. In this paper, we present a secure and lightweight three-factor authentication scheme for IoT in cloud computing environment to resolve these security problems. The proposed scheme can withstand various attacks and provide secure mutual authentication and anonymity by utilizing secret parameters and biometric. We also show that our scheme achieves secure mutual authentication using Burrows–Abadi–Needham logic analysis. Furthermore, we demonstrate that our scheme resists replay and man-in-the-middle attacks usingthe automated validation of internet security protocols and applications (AVISPA) simulation tool. Finally, we compare the performance and the security features of the proposed scheme with some existing schemes. Consequently, we provide better safety and efficiency than related schemes and the proposed scheme is suitable for practical IoT-based cloud computing environment.
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1. Introduction


With the recent advances in wireless sensor networks and embedded technologies, internet of things (IoT) connects objects and shares various useful data with internet through resource-constrained devices to provide convenient services for users such as smart home, healthcare, vehicle to everything and smart gird. However, a single server environment also is inefficient for IoT because an ocean of data is generated by resource-constrained devices such as microsensor, RFID tag and smart cards.



Cloud computing is a distributed computing mechanism for a large-scale data and allows sharing resources among all of the servers and users. The cloud computing provides five essential characteristics: on-demand self-services, ubiquitous network access, rapid elasticity, measured service and resource pooling [1,2]. On-demand self-service handles cloud services without human interaction and ubiquitous network access controls access service using standard protocols. Rapid elasticity and measured service optimize the resource usage. Resource pooling provides cloud service using homogeneous infrastructure among service users. The cloud computing deals with an ocean of data generated by devices and sensors and provides data managing service for users through these essential characteristics.



However, these services are vulnerable to potential attacks by malicious adversaries because they are provided through an open channel, including sensitive data of legitimate user about location, health, payment, etc. Therefore, a secure and efficient authentication for IoT environment has become essential security requirements to provide useful services to user.



In 1981, Lamport [3] proposed one factor user authentication scheme using passwords to ensure user’s privacy. However, security of the password based authentication scheme is easily broken because its security only relies on the passwords. In 2002, Chien et al. proposed two factor authentication scheme to overcome this security flaw using password and smart cards. However, their scheme is vulnerable to smart card stolen attack as the data stored in smart cards can be extracted by power analysis attacks [4]. When a malicious adversary obtains smart cards and password, they can perform various attacks such as impersonation, replay and insider attacks. To overcome the above-mentioned security weaknesses, three-factor authentication schemes have been proposed [5,6,7]. Biometrics (e.g., face, retina, fingerprint, iris, etc.) have several important characteristics: they cannot be lost or forgotten; they are hard to forge, copy, share or distribute; and they are difficult to guess.



In 2019, Pelaez et al. [8] demonstrated that the previous scheme is vulnerable to insider, off-line guessing and disclosure attacks and proposed enhanced IoT-based authentication scheme in cloud computing environment. This paper demonstrates that Pelaez et al.’s scheme does not withstand impersonation, session key disclosure and replay attacks. We also show that their scheme does not achieve secure mutual authentication and anonymity. Moreover, we propose a secure and lightweight three-factor authentication scheme for IoT in cloud computing environment to resolve these security weaknesses, considering computational costs.



1.1. Adversary Model


We present the Dolev–Yao (DY) model [9] to evaluate security of ours and previous schemes, which is widely accepted as security threat model. The detailed description of the DY model is as below:




	
A malicious adversary can modify, intercept, delete or insert the transmitted messages via an open channel. A malicious adversary can obtain or steal the smart card of legitimate user and can extract the data stored in the smart card by using power-analysis [4].



	
A malicious adversary can perform various attacks such as man-in-the-middle (MITM), replay, impersonation, and session key disclosure attack [10,11].









1.2. Our Contributions


Our contributions in this paper are as follows.




	
We demonstrate that Pelaez et al.’s scheme is not secure against various attacks such as impersonation, session key disclosure and replay attacks and does not achieve secure mutual authentication and anonymity.



	
We propose a secure and lightweight three-factor authentication scheme for IoT in cloud computing environment to address the security shortcomings of Pelaez et al.’s scheme. The proposed scheme withstands impersonation, session key disclosure, and replay attacks and achieve secure mutual authentication and anonymity. Moreover, the proposed scheme is more efficient than Pelaez et al.’s scheme because it utilizes only bitwise exclusive or (XOR) and hash operations.



	
We prove that the proposed scheme provides secure mutual authentication using the Burrows–Abadi–Needham (BAN) logic [12] and perform an informal security analysis to prove that our scheme is secure against various attacks such as MITM, impersonation, replay and session key disclosure attacks. Furthermore, we compare the security properties and performance of proposed protocol with other related schemes.



	
We perform a formal security analysis using the automated validation of internet security protocols and applications (AVISPA) simulation tool to prove that the proposed protocol resists the MITM and replay attacks.









1.3. Organization


We introduce the related works and review Pelaez et al.’s scheme in Section 2 and Section 3. In Section 4 and Section 5, we cryptanalyze Pelaez et al.’s scheme and propose a lightweight IoT-based three-factor authentication scheme in cloud computing environment to enhance the security shortcomings of Pelaez et al.’s scheme. Section 6 and Section 7 prove the security of proposed scheme and present the simulation analysis using AVISPA. In Section 8, we compare the security properties and performances of proposed protocol with other related schemes. Finally, Section 9 concludes the paper.





2. Related Works


In last few decades, numerous authentication and key agreement schemes have been proposed to ensure privacy of user, considering resource-constrained environments such as wireless sensor networks, global mobility networks and vehicular networks [3,13,14,15,16,17,18,19]. In 1981, Lamport [3] firstly proposed a lightweight password based user authentication scheme to provide secure communication. However, Lamport’s scheme has low security level because its security only relies on passwords. In 2002, Chien et al. [13] presented a two-factor user authentication protocol using smart card and password to resolve this problem. Unfortunately, the two-factor authentication schemes using password and smart cards cannot ensure user’s privacy [13,14,15,16,17,18,19], when the data stored in token (e.g., smart card, mobile device, etc.) are compromised.



Later, several authentication and key agreement schemes for IoT have been presented in various fields [20,21,22]. However, these environments are not suitable for IoT because it cannot handle a large number of data. In 2019, Zhou et al. [23] presented a lightweight IoT-based authentication scheme in cloud computing environment to overcome this issue. Zhou et al. claimed that their scheme can prevent various attacks such as insider, forgery and tracking attacks and provide secure mutual authentication and session key security. However, in 2019, Pelaez et al. [8] pointed out that Zhou et al.’s scheme [23] cannot withstand insider, off-line guessing and session key disclosure attacks and provide secure mutual authentication. To resolve these security problems, Pelaez et al. [8] presented a lightweight IoT-based authentication scheme in cloud computing environment. They also claimed that their scheme is secure against off-line password guessing, insider, impersonation and replay attacks.




3. Review of Pelaez et al.’s Scheme


We briefly review Pelaez et al.’s IoT based authentication scheme in cloud computing environment. Their scheme comprises of three processes: registration, authentication, and password change. These processes are presented as below (for details, see [8]).



3.1. User Registration Process


In Pelaez et al.’s scheme, a new user Ui is registered from control server CS via a secure channel. Figure 1 shows the user registration process of Pelaez et al.’s scheme. In Figure 1, Ui sends the registration request to CS and then CS issues the smart cards.




3.2. Cloud Server Registration Process


In Pelaez et al.’s scheme, a cloud server Sj is registered from control server CS via a secure channel. Figure 2 shows the cloud server registration process of the Pelaez et al.’s scheme. In Figure 2, Sj sends the registration request to CS and then CS sends parameters B2 and B3 to Sj.




3.3. Login Process


When Ui wants to access the service, Ui firstly sends login request message to Sj. In Figure 3, Ui sends login request messages {TUnew,D1,PIDi,D2} to Sj, and then Sj sends the messages {TUnew,D1,PIDi,D2,TSnew,D3,PSIDj,D4,D5} to CS in order to check validation of Ui.




3.4. Authentication Process


After finishing the login process, Ui, Sj and CS perform mutual authentication with each entity, and then Ui and Sj can share the session key SKU−S. Figure 4 shows the authentication process of the Pelaez et al.’s scheme.





4. Cryptanalysis of Pelaez et al.’s Scheme


In this section, we demonstrate that Pelaez et al.’s scheme does not resist replay, session key disclosure and impersonation attacks and show that their scheme does not achieve secure mutual authentication and anonymity.



4.1. Impersonation Attack


The impersonation attack is that a malicious adversary try to impersonate as a legitimate user. When a malicious adversary UMA may attempt to impersonate a legal user, UMA can easily generate the login request message of Ui. According to Section 1.1, UMA can obtain smart card of Ui and can extract the data {PIDi,C2,C3,C4,h(nU)} stored in smart card. Furthermore, UMA intercepts the message transmitted via an open channel. Finally, UMA performs the impersonation attack as below:




	Step 1:

	
A malicious adversary UMA can compute real identity IDi=C2⊕D1 of legitimate user Ui and h(nUnew)=D2⊕C3⊕h(TMAnew||IDi). Then, UMA generates timestamp TMAnew and random nonce nMAnew, computes D2MA=C3⊕h(TMAnew||IDi)⊕h(nMAnew), and sends {TMAnew,D1,PIDi,D2MA} to the Sj.




	Step 2:

	
Upon getting the message from UMA, the Sj generates random nonces TSnew and nSnew and computes D3=B2⊕SIDj, D4=B3⊕h(TSnew||SIDj)⊕h(nSnew) and D5=h(PIDi||TMAnew||SIDj||PSIDj||TSnew). Then, the Sj sends {TMAnew,D1,PIDi,D2MA,TSnew,D3,PSIDj,D4,D5} to the CS.




	Step 3:

	
Upon getting the message from Sj, the CS computes C2∗=h(PIDi∗||h(IDCS||x)||h(IDCS||y))∗⊕h(IDCS||x)⊕h(IDCS||y), IDi∗=h(PIDi∗||h(IDCS||x)||h(IDCS||y))∗⊕h(IDCS||x)⊕h(IDCS||y)⊕D1 and C1∗=h(IDi∗||PIDi). Then, the CS checks whether C1∗=?C1. If it is valid, the CS authenticates UMA. Then, the CS computes h(nMAnew)∗=h(IDi∗||PIDi∗||h(IDCS||x)||h(IDCS||y))∗⊕PIDi∗⊕h(x||y)⊕h(TMAnew||IDi∗)∗⊕D2. After that, the CS computes SIDj∗=h(PSIDj∗||h(IDCS||z)||h(IDCS||y))∗⊕h(IDCS||z)⊕h(IDCS||y)⊕D3 and B1∗=h(SIDj∗||PSIDj∗). Then, the CS checks whether B1∗=?B1. If it is valid, the CS authenticate Sj. After that, the CS recovers h(nSnew)∗=h(SIDj∗||PSIDj∗||h(IDCS||z)||h(IDCS||y))∗⊕PSIDj∗⊕h(z||y)⊕h(TSnew||SIDj∗)⊕D4. Then, the CS computes D5∗=h(PIDi∗||TMAnew||SIDj∗||PSIDj∗||TSnew)∗ and checks whether D5∗=?D5. If it is valid, the CS have evidence of the connection attempt between UMA and Sj. To key agreement and mutual authentication, the CS generates a random nonce nCSnew and computes the session key SKMA−S=h(h(nMAnew)⊕h(nSnew)⊕h(nCSnew||TCSnew)). Then, the CS computes D6=B2⊕h(TSnew||SIDj)⊕TCSnew, D7MA=h(nCSnew||TCSnew)⊕h(SIDj||TCSnew)⊕h(nMAnew), D8MA=C2⊕h(TMAnew||IDi)⊕TCSnew, D9=h(nCSnew||TCSnew)⊕h(IDi||TCSnew)⊕h(nSnew), D10MA=ESK(h(nCSnew)⊕h(SIDj||PSIDj||B2)) and D11MA=ESK(h(nCSnew)⊕h(IDi||PIDi||C2)). Finally, the CS sends {D6,D7MA,D10MA,D8MA,D9,D11MA} to the Sj.




	Step 4:

	
Upon getting the message from CS, the Sj computes TCSnew∗=B2⊕h(TSnew||SIDj)⊕D6, h(nCSnew||TCSnew)∗⊕h(nMAnew)∗=h(SIDj||Tcsnew)⊕D7MA, SKU−S∗=h(h(nMAnew)∗⊕h(nSnew)⊕h(nCSnew||TCSnew)∗) and decrypts DSK∗(D10MA)=h(nCSnew)⊕h(SIDj||PSIDj||B2)=h(nCSnew)∗. After that, the Sj sends {D6,D7MA,D10MA,D8MA,D9,D11MA} to the UMA.




	Step 5:

	
Upon getting the messages from Sj, the UMA computes TCSnew∗=C2⊕h(TMAnew||IDi)⊕D8MA, h(nCSnew||TCSnew)∗⊕h(nSnew)∗=h(IDi||TCSnew)⊕D9, SKMA−S∗=h(h(nUnew)⊕h(nSnew)∗⊕h(nCSnew||TCSnew)∗) and decrypts DSK∗(D11MA)=h(nCSnew)⊕h(IDi||PIDi||C2)=h(nCSnew)∗. For mutual authentication with Sj, the UMA computes M9MA={ESK(h(nCSnew||serverValue(challenge)))} and sends M9MA to the Sj.




	Step 6:

	
Upon getting the messages from UMA, the Sj computes DSK(M9MA)=h(nCSnew)∗||serverValue(challenge)) and checks whether h(nCSnew)∗=?h(nCSnew). Finally, the Sj computes M10MA={ESK(serverValue(h(nCSnew)||TCSnew))} and sends M10MA to the UMA.




	Step 7:

	
Upon getting the messages from Sj, the UMA computes DSK(M10MA) = serverValue(h(nCSnew)||TCSnew)=h(nCSnew||TCSnew)∗ and checks whether h(nCSnew||TCSnew)∗=?h(nCSnew||TCSnew).









UMA can successfully generates the login request message and session key between UMA and Sj. As a result, we show that Pelaez et al.’s scheme cannot withstand impersonation attack.




4.2. Session Key Disclosure Attack


The session key disclosure attack is that a malicious adversary can obtain the session key between Ui and Sj. Pelaez et al. claimed that their scheme can ensure security of session key because a malicious adversary cannot obtain random nonce nUnew, nSnew, nCSnew and current timestamp TCSnew. However, according to Section 1.1, a malicious adversary UMA can extract the data {PIDi,C2,C3,C4,h(nU)} stored in the smart card and can obtain the transmitted messages D1,D2,TUnew,D8,D9 via an open channel. Therefore, a malicious adversary UMA can easily compute session key SKU−S∗=h(h(nUnew)∗⊕h(nSnew)⊕h(nCSnew||TCSnew)∗).




4.3. Replay Attack


Replay attack is that a malicious adversary try to obtain sensitive messages of user using the messages transmitted in previous and current session. Pelaez et al. claimed that their scheme can resist replay attack because a malicious adversary UMA cannot obtain random nonce and timestamp. However, UMA can calculate the random nonce and timestamp of legitimate user correctly. According to 4.1, UMA also impersonates a legitimate user Ui. Therefore, UMA can obtain nUnew, nSnew and nCSnew and timestamp TUnew,TSnew and TCSnew. As a result, Pelaez et al.’s scheme does not withstand replay attack.




4.4. Mutual Authentication


Pelaez et al claimed that their protocol allows secure mutual authentication among the user Ui, the cloud server Sj, and the control server CS. However, according to Section 3.1, their protocol does not withstand to impersonation attack, as a malicious adversary UMA can successfully generate authentication request message D2=C3⊕h(TUnew||IDi)⊕h(nUnew). Therefore, Pelaez et al.’s scheme does not achieve secure mutual authentication.




4.5. Anonymity


Pelaez et al claimed that a malicious adversary UMA cannot obtain the real identity IDi of legitimate user. However, according to Section 1.1, a malicious adversary UMA can extract the secret parameter C2 stored in the smart card and can intercept the transmitted message D1 via an open channel. UMA can also compute IDi=C2⊕D1 and easily obtain real identity of legitimate user Ui. Therefore, Pelaez et al.’s scheme does not guarantee anonymity.





5. Proposed Scheme


In this section, we propose a secure and lightweight three-factor authentication scheme for IoT in cloud computing environment to enhance security drawbacks of Pelaez et al.’s scheme. The proposed scheme consists of three processes: registration, login and authentication, and password change. The details of each process are presented below.



5.1. User Registration Process


A new user Ui who requests the use of the IoT services must register with control server CS. Figure 5 shows the user registration process of proposed scheme and the detailed processes are as below.




	Step 1:

	
The Ui selects IDi and PWi and imprints biometric BIOi. After that, Ui computes ⟨Ri,Pi⟩=Gen(BIOi), RPWi=h(PWi||Ri) and sends messages {IDi,RPWi} to control server CS via a secure channel.




	Step 2:

	
After getting the messages from Ui, the CS generates a random nonce S1 and computes RIDi=h(IDi||h(S1||KS)), Xi=h(RIDi||KS||S1), Ai=Xi⊕h(RIDi||RPWi), and Bi=h(Xi||RPWi). Then, the CS stores {S1}, {Ai,Bi} in a database and smart card, respectively. The CS sends {RIDi} and issues smart card to Ui via a secure channel.




	Step 3:

	
After getting the message and smart card from CS, the Ui computes Qi=h(IDi||PWi||Ri)⊕RIDi and stores {Qi} in a smart card SC.










5.2. Cloud Server Registration Process


A cloud server Sj must register with the control server CS to provide IoT service to the users. Figure 6 shows the cloud server registration process of proposed scheme and the detailed processes are as below.




	Step 1:

	
The cloud server Sj selects SIDj and generates a random nonce rj. After that, the Sj sends messages {SIDj,rj} to the CS via a secure channel.




	Step 2:

	
After getting the messages, the CS generates a random nonce S2 and computes RSIDj=h(SIDj||rj||KS) and SIj=h(RSIDj||h(S2||KS)). Then, the CS stores {S2} in a database and sends messages {RSIDj,SIj} to the Sj via a secure channel.




	Step 3:

	
After getting the messages, the Sj stores {RSIDj,SIj} in a database.










5.3. Login and Authentication Process


A user Ui who requests access to IoT service must send a login request message to the CS. Figure 7 shows the login and authentication process of the proposed scheme. The detailed process is as below.




	Step 1:

	
The Ui inputs IDi, PWi and imprints biometric BIDi. Then, the Ui calculates Ri=Rep(BIOi,Pi), RIDi=h(IDi||PWi||Ri)⊕Qi, RPWi=h(PWi||Ri), Xi=Ai⊕h(RIDi||RPWi) and Bi∗=h(Xi||RPWi). The Ui checks whether Bi∗=?Bi. If it is correct, the Ui generates a random nonce RUi. After that, the Ui computes M1=RUi⊕Xi, CIDi=IDi⊕h(Xi||RUi) and M2=h(IDi||Xi||RUi) and sends login request messages {M1,M2,CIDi,RIDi} to the Sj via an open channel.




	Step 2:

	
Upon getting the messages from the Ui, the Sj generates a random nonce RSj and computes D1=SIj⊕RSj, CSIDj=SIDj⊕h(SIj||RSj) and D2=h(SIDj||SIj||RSj). Then, the Sj sends the messages {M1,M2,CIDi,RIDi,D1,D2,CSIDj,RSIDj} to the CS via an open channel.




	Step 3:

	
Upon getting the messages from the Sj, the CS computes Xi=h(RIDi||KS||S1), RUi=M1⊕Xi, IDi=CIDi⊕h(Xi||RUi), and M2∗=h(IDi||Xi||RUi) and checks whether M2∗=?M2. If it is correct, the CS computes SIj=h(RSIDj||h(S2||KS)), RSj=h(D1)⊕SIj, SIDj=CSIDj⊕h(SIj||RSj), and D2∗=h(SIDj||SIj||RSj) and checks whether D2∗=?D2. If it is valid, the CS computes M3=RSj⊕h(IDi||RUi), D3=RUi⊕h(SIDj||RSj) and QCS=h(RUi||RSj||SIj). Then, the CS updates RIDi to RIDinew and replaces {RIDi} with {RIDinew}. Finally, the CS sends messages {M3,D3,QCS} to the Sj.




	Step 4:

	
Upon getting the messages from the CS, the Sj computes RUi=D3⊕h(SIDj||RSj) and QCS∗=h(RUi||RSj||SIj) and checks whether QCS∗=?QCS. If it is valid, the Sj computes SKi=h(RUi||RSj) and QCU=h(RUi||RSj||SKi) and sends messages {M3,QCU} to the Ui.




	Step 5:

	
Upon getting the messages from the Sj, the Ui computes RSj=M3⊕h(IDi||RUi), SKi=h(RUi||RSj) and QCU∗=h(RUi||RSj||SKi) and checks whether QCU∗=?QCU. If it is correct, the Ui computes RIDinew=h(RIDi||h(RUi||RSj)) and RIDi to RIDinew. After that, the smart card updates Ainew=Xi⊕h(RIDinew||RPWi) and Qinew=h(IDi||PWi||Ri)⊕RIDinew and replaces {Ai,Qi} with {Ainew,Qinew}. As a result, the Ui, Sj and CS achieve the mutual authentication successfully.










5.4. Password Change Process


When Ui wants to update his/her password, the Ui can freely update their password in the proposed scheme. Figure 8 shows the password change process of the proposed scheme. The detailed process is as below.




	Step 1:

	
The Ui chooses IDi∗, PWi∗ and imprints biometrics BIOi∗. Then, the Ui calculates ⟨Ri,Pi⟩=Gen(BIOi∗), RPWi∗=h(PWMU||Ri) and sends {IDMU∗,RPWi∗} to the smart card SC.




	Step 2:

	
After getting the message from Ui, the SC computes Xi∗=Ai∗⊕h(IDi∗||RPWi∗) and Bi∗=h(Xi∗||RPWi∗) and checks whether Bi∗=?Bi. If it is equal, the SC sends the authentication message to the Ui.




	Step 3:

	
Upon getting the message from the SC, the Ui inputs a new password PWinew and imprints a new biometrics BIOinew. Ui computes ⟨Rinew,Pinew⟩=Gen(BIOinew), RPWinew=h(PWinew||Rinew) and sends {RPWinew} to the SC.




	Step 4:

	
Upon getting the message from the Ui, the SC computes Ainew=Xi∗⊕h(IDi∗||RPWinew), Binew=h(Xi∗||RPWinew) and replaces {Ai,Bi} with {Ainew,Binew}.











6. Security Analysis


To assess secure mutual authentication of the proposed scheme, we utilize the BAN logic, which is widely accepted formal security model. Furthermore, we perform an informal security analysis to assess the safety of proposed scheme against various types of attacks.



6.1. Informal Security Analysis


The security of the proposed scheme is accessed utilizing an informal security analysis. Our scheme can withstand against various types of attacks, including impersonation, replay, session key disclosure attacks, and allows secure mutual authentication and anonymity.



6.1.1. Impersonation Attack


When a malicious adversary UMA may attempt to impersonate a legitimate user, UMA must generate a login request message M2=h(IDi||Xi||RUi) correctly. However, UMA cannot compute it because UMA cannot obtain Ui’s random nonce RUi, real identity IDi, and secret parameter Xi. Therefore, our scheme is secure against the impersonation attack because UMA cannot calculate a login request message successfully.




6.1.2. Replay Attack


If a malicious adversary UMA may attempt to impersonate legal user by resending messages transmitted in a previous session, UMA cannot utilize the previous messages because the CS checks whether M2∗=?M2 and D2∗=?D2, respectively. Furthermore, our scheme can withstand replay attack by using dynamic random nonce RUi and RSj that are changed every session. Therefore, our scheme protects against replay attack.




6.1.3. Session Key Disclosure Attack


In our scheme, a malicious adversary UMA cannot compute session key SKi because UMA cannot obtain random nonce RUi and RSj. In addition, UMA cannot obtain random nonce RUi and RSj without secret parameter Xi and SIj. Consequently, our scheme withstands the session key disclosure attack.




6.1.4. Smart card Stolen Attack


According to Section 1.1, we suppose that a UMA can obtain a smart card and extract the data {Ai,Bi,Qi} stored in the smart card. However, the UMA cannot obtain sensitive information IDi and PWi of legitimate user because the data stored in the smart card are protected Ai=Xi⊕h(RIDi||RPWi), Bi=h(Xi||RPWi) and Qi=h(IDi||PWi||Ri)⊕RIDi by using a hash function and XOR operation.




6.1.5. Mutual Authentication


In our scheme, after getting the request message {M1,M2,CIDi,RIDi} from the Ui, the control server CS checks whether M2∗=?M2. If it is correct, CS authenticates Ui. After getting the messages {D1,D2,CSIDj,RSIDj} from cloud server Sj, the CS checks whether D2∗=?D2. If it is equal, CS authenticates Sj. After getting the messages {M3,D3,QCS} from the CS, the Sj checks whether QCS∗=?QCS. If it is correct, Sj authenticates CS. After getting the messages {QCU} from the Sj, the Ui checks whether QCU∗=?QCU. Finally, the Ui authenticates Sj. As a result, our scheme achieve secure mutual authentication among Ui, Sj, and CS because a malicious adversary UMA does not know secret parameters Xi and SIj.




6.1.6. Anonymity


A malicious adversary UMA cannot obtain the real identity IDi of legitimate user because it is masked by using hash function and XOR operation such as CIDi=IDi⊕h(Xi||RUi). In addition, the UMA cannot obtain secret parameter Xi and random nonce RUi. Consequently, our scheme provides anonymity.





6.2. Security Features


We shows the better security levels achieved by the proposed scheme compared with some existing schemes [8,23,24,25]. The existing schemes are insecure against various attacks, including impersonation, session key disclosure smart card stolen, and replay attacks and cannot provide mutual authentication and anonymity. Table 1 shows the analysis results of the security features.




6.3. BAN Logic Based Authentication Proof


We performed security analysis utilizing the BAN logic to demonstrate the secure mutual authentication of the proposed scheme. We present the BAN logic notations in Table 2. Furthermore, we define the rules, the goals, the idealized form, and the assumptions for BAN logic analysis. We prove that the proposed scheme provides secure mutual authentication among Ui, Sj and CS.



6.3.1. BAN Logic Rules


The rules of BAN logic are as below.




	
Message meaning rule:


A|≡A↔KB,A⊲XKA≡B∼X











	
Nonce verification rule:


A≡#(X),A≡B|∼XA≡B≡X











	
Jurisdiction rule:


A≡B⟹X,A≡B≡XA|≡X











	
Freshness rule:


A|≡#(X)A|≡#X,Y











	
Belief rule:


A|≡X,YA|≡X.

















6.3.2. Goals


To assess the BAN logic proof, we present the goals of the proposed scheme as below.




	Goal 1:

	
Ui∣≡(Ui⟷SKSj)




	Goal 2:

	
Sj∣≡(Ui⟷SKSj)




	Goal 3:

	
Ui∣≡Sj∣≡(Ui⟷SKSj)




	Goal 4:

	
Sj∣≡Ui∣≡(Ui⟷SKSj)










6.3.3. Idealized Forms


To assess the BAN logic proof, we define the assumptions of the proposed scheme as below.




	Msg1:

	
Ui→Sj: (RIDi,IDi,RUi)Xi




	Msg2:

	
Sj→CS: (RIDi,IDi,RUi,RSIDj,SIDj,RSj)SIj




	Msg3:

	
CS→Sj: (IDi,SIDj,RUi,RSj)SIj




	Msg4:

	
Sj→Ui: (IDi,RUi,RSj,(Ui⟷SKSj))Xi










6.3.4. Assumptions


We present the initial assumptions to assess the BAN logic proof.




	A1:

	
Sj∣≡(Ui⟷XiSj)




	A2:

	
Sj∣≡#(RUi)




	A3:

	
CS∣≡(CS⟷SIjSj)




	A4:

	
CS∣≡#(RSj)




	A5:

	
Sj∣≡(CS⟷SIjSj)




	A6:

	
FA∣≡#(RSj)




	A7:

	
Ui∣≡(Ui⟷XiSj)




	A8:

	
Ui∣≡#(RSj)




	A9:

	
Ui∣≡Sj⇒(Ui⟷SKSj)




	A10:

	
Sj∣≡Ui⇒(Ui⟷SKSj)










6.3.5. Proof Using BAN Logic


The proof then proceeds as below.




	Step 1:

	
According to Msg1, we could get


(S1):Sj⊲(RIDi,IDi,RUi)Xi












	Step 2:

	
Using the message meaning rule with S1 and A1, we get


(S2):Sj∣≡Ui∣∼(RIDi,IDi,RUi)Xi












	Step 3:

	
From the freshness rule with S2 and A2, we obtain


(S3):Sj∣≡#(RIDi,IDi,RUi)Xi












	Step 4:

	
Using the nonce verification with S2 and S3, we get


(S4):Sj∣≡Ui∣≡(RIDi,IDi,RUi)Xi












	Step 5:

	
From the belief rule with S4, we obtain


(S5):Sj∣≡Ui∣≡(RUi)Xi












	Step 6:

	
According to Msg2, we could get


(S6):CS⊲(RIDi,IDi,RUi,RSIDj,SIDj,RSj)SIj












	Step 7:

	
Using the message meaning rule with S6 and A3, we get


(S7):CS∣≡Sj∣∼(RIDi,IDi,RUi,RSIDj,SIDj,RSj)SIj












	Step 8:

	
From the freshness rule with S7 and A4, we obtain


(S8):CS∣≡#(RIDi,IDi,RUi,RSIDj,SIDj,RSj)SIj












	Step 9:

	
Using the nonce verification rule with S7 and S8, we get


(S9):CS∣≡Sj∣≡(RIDi,IDi,RUi,RSIDj,SIDj,RSj)SIj












	Step 10:

	
According to Msg3, we could get


(S10):Sj⊲(IDi,SIDj,RUi,RSj)SIj












	Step 11:

	
Using the message meaning rule with S10 and A5, we get


(S11):Sj∣≡CS∣∼(IDi,SIDj,RUi,RSj)SIj












	Step 12:

	
From the freshness rule with S11 and A6, we obtain


(S12):Sj∣≡#(IDi,SIDj,RUi,RSj)SIj












	Step 13:

	
Using the nonce verification rule with S11 and S12, we get


(S13):Sj∣≡CS∣≡(IDi,SIDj,RUi,RSj)SIj












	Step 14:

	
According to Msg4, we could get


(S14):Ui⊲(IDi,RUi,RSj,(Ui⟷SKSj))Xi












	Step 15:

	
Using the message meaning rule with S14 and A7, we get


(S15):Ui∣≡Sj∣∼(IDi,RUi,RSj,(Ui⟷SKSj))Xi












	Step 16:

	
From the freshness rule with S15 and A8, we obtain


(S16):Ui∣≡#(IDi,RUi,RSj,(Ui⟷SKSj))Xi












	Step 17:

	
Using the nonce verification with S15 and S16, we get


(S17):Ui∣≡Sj∣≡(IDi,RUi,RSj,(Ui⟷SKSj))Xi












	Step 18:

	
From the belief rule with S17, we obtain


(S18):Ui∣≡Sj∣≡(Ui⟷SKSj)(Goal3)












	Step 19:

	
Using the jurisdiction rule with S18 and A9, we get


(S19):Ui∣≡(Ui⟷SKSj)(Goal1)












	Step 20:

	
Because of SK=h(RUi||RSj), from the S5, S9, S13 and S17 we could get


(S20):Sj∣≡Ui∣≡(Ui⟷SKSj)(Goal4)












	Step 21:

	
Using the jurisdiction rule with S19 and A10, we obtain


(S21):Sj∣≡(Ui⟷SKSj)(Goal2)

















Referring to Goals 1–4, we show that proposed scheme achieves secure mutual authentication among Ui, Sj and CS.






7. Simulation for Security Verification with the AVISPA tool


We performed a formal security verification of the proposed scheme utilizing AVISPA simulation tool [26,27] to evaluate the safety of the authentication protocol against MITM and replay attacks, which is widely accepted for formal security analysis [28,29,30,31]. To perform AVISPA simulation tool, the environment and the session of security protocol must be implemented using the High Level Protocols Specification Language (HLPSL).



7.1. HLPSL Specifications


We considered three basic roles: user Ui, cloud server Sj, and control server CS. Then, we present session and environment utilizing HLPSL in Figure 9, which contains the security goals. The role specifications of Ui, Sj, and CS are as shown in Figure 10, Figure 11 and Figure 12.



The Ui receives the initial message and updates the updates the state value from 0 to 1. The Ui then sends the registration request messages {IDi,RPWi} to the CS via a secure channel and receives {RIDi,Smartcard} from the CS. The Ui updates the state value from 1 to 2. In the login and authentication phase, the Ui declares witness(UA,CS,ua_sn_rui,RUi′) from the Sj, and then updates the state value from 2 to 3. Finally, the Ui receives the authentication messages {M3,QCU} from the Sj. The Ui checks whether QCU∗=?QCU. If it is valid, the Ui authenticates the Sj successfully. The role specification for Sj is similarly defined.




7.2. AVISPA Simulation Result


We show the AVISPA results to verify the safety of the proposed scheme using OFMC and CL-AtSe. The OFMC checks whether the proposed scheme is safe from MITM attack. In addition, the CL-AtSe demonstrates the safety of the protocol against replay attack. Consequently, Figure 13 shows that the proposed scheme is secure against MITM and replay attacks though AVISPA simulation.





8. Performance Analysis


We compared the computation cost, communication cost and security features of the proposed scheme with some existing schemes [8,23,24,25]. We show that the proposed scheme provides better efficiency and security features.



8.1. Computation Cost


We compared the computation overheads of the proposed scheme with some existing schemes [8,23,24,25]. To analyze of computation cost, we estimated using the following parameters. Table 3 shows the analysis results of computation cost and the detailed total cost are as below.



The total computation cost for the proposed scheme and Pelaez et al.’s scheme are 34Th and 48Th + 8Ts, respectively. We provide better efficiency than some existing schemes because the proposed scheme uses only hash and XOR operations. Therefore, our scheme is secure and efficient for practical IoT-based cloud computing environment.




	
Th denotes the time for the hash function (Case 1 ≈0.00517 ms [23] and Case 2 ≈0.0000328 ms [32]).



	
Ts denotes the time for the symmetric key cryptography operation using AES algorithm (case 1 ≈0.02148 ms [23] and Case 2 ≈0.0214385 ms [32]).



	
The XOR operation was not included because it is negligible compared to the other operations.









8.2. Communication Cost


We compared the communication overhead of the proposed scheme with some existing schemes [8,23,24,25]. In authentication phase of the proposed scheme, the transmitted messages {M1,M2,CIDi,RIDi}, {M1,M2,CIDi,RIDi,D1,D2,CSIDj,RSIDj}, {M3,D3,QCS} and {M3,QCU} require (128 + 128 + 128 + 128 = 512 bits), (128 + 128 + 128 + 128 + 128 + 128 + 128 + 128 = 1024 bits), (128 + 128 + 128 = 384 bits), and (128 + 128 = 256 bits), respectively. Table 4 shows the analysis results of communication cost. Consequently, the proposed scheme is thus more efficient than other related schemes [8,23,24,25] because the total communications cost are 2176 bits (Case 1) and 4352 bits (Case 2).




	
Case 1 defines that the pseudo-identity, random nonce, timestamp, identity, password, and hash function are 128 bits, respectively.



	
Case 2 defines that the pseudo-identity, random nonce, timestamp, identity, password, and hash function are 256 bits, respectively.



	
The block length for symmetric encryption is 128 bits.










9. Conclusions


This paper shows that Pelaez et al.’s scheme does not defend various attacks such as impersonation, session key disclosure and replay attacks. Furthermore, we show that Pelaez et al.’s scheme cannot allow mutual authentication and anonymity. We propose a secure and lightweight three-factor authentication scheme for IoT in cloud computing environment to enhance the security drawbacks of Pelaez et al.’s scheme. Our scheme can withstand various types of attacks, including impersonation, session key disclosure and replay attacks, and can provide mutual authentication and anonymity. Then, we demonstrate that our scheme allows secure mutual authentication among Ui, Sj, and CS utilizing BAN logic analysis. We also performed a formal security verification analysis of the proposed scheme utilizing the AVISPA simulation tool. In addition, we compared the security features and performance of the proposed scheme with some existing schemes. We show that our scheme provides better safety and efficiency than related schemes. Therefore, our scheme can be suitable for practical IoT-based cloud computing environment because it is more secure and lightweight than the previous schemes.
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Figure 1. User registration process of the Pelaez et al.’s scheme [8]. 
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Figure 2. Cloud server registration process of the Pelaez et al.’s scheme [8]. 
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Figure 3. Login process of the Pelaez et al.’s scheme [8]. 
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Figure 4. Authentication process of the Pelaez et al.’s scheme [8]. 
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Figure 5. User registration process of the proposed scheme. 
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Figure 6. Cloud server registration process of the proposed scheme. 
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Figure 7. Login and authentication process of the proposed scheme. 
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Figure 8. Password change process of the proposed scheme. 
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Figure 9. Role for environment and session in HLPSL. 
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Figure 10. Role specification for user Ui. 
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Figure 11. Role specification for cloud server Sj. 
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Figure 12. Role specification for control server CS. 
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Figure 13. Analysis of AVISPA simulation using OFMC and CL-AtSe. 
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Table 1. Security features comparison.
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	Security Features
	Xue et al. [24]
	Amin et al. [25]
	Zhou et al. [23]
	Pelaez et al. [8]
	Ours





	Impersonation attack
	×
	×
	×
	×
	∘



	Smart card stolen attack
	×
	×
	∘
	×
	∘



	Session key disclosure attack
	×
	∘
	×
	×
	∘



	Replay attack
	∘
	∘
	×
	×
	∘



	Anonymity
	×
	∘
	∘
	×
	∘



	Mutual authentication
	×
	∘
	×
	×
	∘







∘, preserves the security features; ×, does not preserve the security features;
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Table 2. Notations for BAN logic.
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	Notation
	Description





	A|≡X
	Abelieves statement X



	#X
	Statement X is fresh



	A⊲X
	Asees statement X



	A|∼X
	A once said X



	A⇒X
	A has got jurisdiction of X



	<X>Y
	X is combined with Y



	{X}K
	X is encrypted under key K



	A↔KB
	A and B may use shared key K to communicate



	SK
	Session key used in the current session
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Table 3. A comparative summary: computation costs.
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	Schemes
	User
	Cloud Server
	Control Server
	Total
	Total Cost (Case 1)
	Total Cost (Case 2)





	Xue et al. [24]
	12Th
	6Th
	18Th
	36Th
	0.18612 ms
	0.0011808 ms



	Amin et al. [25]
	12Th
	4Th
	14Th
	30Th
	0.1551 ms
	0.000984 ms



	Zhou et al. [23]
	13Th
	7Th
	23Th
	43Th
	0.22231 ms
	0.0014104 ms



	Pelaez et al. [8]
	9Th+3Ts
	6Th+3Ts
	33Th+2Ts
	48Th+8Ts
	0.42 ms
	0.1730824 ms



	Ours
	12Th
	6Th
	16Th
	34Th
	0.17578 ms
	0.0011152 ms







Th, hash function; Ts, symmetric key cryptography operation using AES algorithm
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Table 4. A comparative summary: communication costs.
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	Schemes
	Message Length
	Total Cost (Case 1)
	Total Cost (Case 2)





	Xue et al. [24]
	30
	3840 bits
	7680 bits



	Amin et al. [25]
	27
	3456 bits
	6912 bits



	Zhou et al. [23]
	34
	4352 bits
	8704 bits



	Pelaez et al. [8]
	34
	4352 bits
	8704 bits



	Ours
	25
	2176 bits
	4352 bits











© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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State'= 4 A SKi = HRUIRS))
71Qau = HRUIRS].SKi)

A witness(S.UA s ua_qcuSKi)

7\ SND(or(RS}"H(IDI RU) Qeu)

A requesi(CS.5.65_5_qes RUS
endrole
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%%%%%%%%%%:%% Cloud Server

role server(UA, S, CS : agent, SKscs : symmetric_key, H: hash func, SND, RCV :
channel(dy))

played by S

def=

local State: nat,
IDi,PWi,Ri,Pi,RPWi RIDi,Xi,Ai,Bi,Qi,SIDj,Rj,RSID;j,SIj,S1,S2,Ks: text,
RUi,M1,CIDi,M2,RS;j,D1,CSIDj,D2,M3,D3,Qcs,SKi,Qcu : text

const spl, sp2, sp3, sp4, sp5, ua_cs rui, s ¢S 1sj,cs S (cs, s ua_qcu: protocol id

init State =0

transition

1. State = 0 A RCV(start) =>
State' := 1 ARj' :=new() \S2":=new()
/A SND({SIDj.Rj'} SKscs)
A RCV({H(SIDj.Rj' Ks). H(H(SIDj.Rj' Ks).H(S2' Ks))} SKscs)

2. State =2

A RCV(xor(RUi',H(H(IDi.H(S1' Ks)).Ks.S1"). HIDi.H(H(IDi.H(S1' Ks)).Ks.S1').RUi
".xor(IDi', HHHH(IDi.H(S1' Ks)).Ks.S1").RUi")).H(IDi.H(S1'.K5s))) =>

State' := 3 /A RSj"'=new() AS2":=new() A\ Rj' := new()

A D1' = xor(HH(SIDj.Rj'.Ks).H(S2' Ks)),RSj"

A\ CSIDj' := xor(SIDj,HH(H(SID].Rj' Ks).H(S2'.Ks)).RSj")

/A D2':= H(SIDj.H(H(SIDj.Rj'Ks).H(S2'.Ks)).RSj")

A\ SND(xor(RUi',HH(IDi.H(S1' Ks)).Ks.S1").H(IDi. HH(IDi.H(S1' Ks)) Ks.S1'
).RUi").xor(IDi',H(H(H(IDi.H(S1'.Ks)).Ks.S1').RUi")).HIDi.H(S1'.Ks)).D1'.D2".CSID
j.H(SIDj.Rj'.K5s))

N\ witness(S,CS,s cs_1sj,RSj")

3. State =3

A RCV(xor(RS;j' H(IDi.RU1")).xor(RUi',H(SIDj.RSj")).H(RUi'.RSj" " H(H(SIDj.Rj' K5s).
H(S2'Ks)))) =[>

State' := 4 /A SKi' := H(RUi'RSj")

A\ Qcu' ;= H(RUi'.RS;'.SKi")

A\ witness(S,UA,s ua_ qcu,SKi')

/A SND(xor(RSj',H(IDi.RU1")).Qcu'")

N request(CS,S,cs_s_qcs,RU1")
end role
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endrole






media/file7.jpg





media/file10.png
User (U;)

Control server (CS)

Selects ID;, PW;
Imprints biometric BID;
Computes

<Ri/ Pi>=G€Tl(BIOi)
RPW; = h(PW;l|R;)

Computes
Qi = h(ID;||PWi[|R;) & RID;
Stores {Q;} in a smart card

JLHDi/ RPWZ}

-

{RID;, Smartcard}

é__

Generates a random nonce Sq
Computes

RID; = h(IDy|[h($1|Ks))

Xi = h(RID;||Kg]|51)

Ai = Xi . h(RIDi‘ ‘RPWZ')

B = h(Xi||[RPW])

Stores {51} in a database
Stores { A;, B;} in a smart card






media/file14.png
User (U;)

Cloud server (5))

Control server (CS)

Inputs ID; and PW;
Imprints biometrics BIO;

Bf = h(X;||[RPW;)
Checks whether Bf L B;
Generates a random nonce RU;
M =RU; @
CID; = 1D; @h(X [|RU;)
M; = h(ID/{|X;||RUy)
{M1, My, CID;,RID;}

{M3r QCU}

Computes

RS; = Mz & h(ID;||RU;)

SK; = h(RU;| \RS]-)

Qby = h(RU;||RS;[[SK;)
Checks whether QF; L Qcu
Updates RID; to RID}*¥
RID® = (RID Hh(RLI HRS ))

Generates a random nonce RS]-

Computes
Dy = SI]- & RS]-

CSID; = SID; & h(SL||RS;)

D, = h(SID;||SL|RS))

{My, My, CID;, RID;, Dy, Dy, CSID;, RSID; }

Computes
RU; = D3 @h(SID HRS )
Qb = h(RU; HRS HSI)

{M3,D3,Qcs}

Checks whether O*Cs = QOcs

SK; = h(RU||RS;)
Qcu = h(RU;||RS;||SK;)

Comp utes
X; = h(RID;||Ks]|S1)
RLI M & X;

ID; = CID; @ h(X;||RU;)
M3 = h(ID;|| X;||RU;)
Checks whether M; 2 My
Computes

SI; = h(RSID;|[h(S2][Ks)
RS; =D1® S

SID; = CSID; @ h(SIj\ \RS]-)
D; = h(SID]-HSI]-HRS]-)
Checks whether D 2 Ds
Computes

Mz = RS; @ h(ID;]|RU;)

D3 =RU; & h(SID]-\ \RS]-)
Qcs = h(RU; HRS HSI)
Updates RID; to RID”””
RID}*® = h(RID; Hh(RLI HRS ))






media/file11.jpg
Cloud server (5]

Control server (C5)

Selects SID;
Generates a random nonce r;

{s1D;,1;}

{RSID;, SI}}

Stores {RSID;, S1;} in a database

Generates a random nonce $
Computes.

RSID; = h(SID}|Irj||Kz)

51j = h(RSID; |[1(S2]Ks))
Stores {5} in a database






media/file6.png
User (U;) Cloud server (S ]-)

Control server (CS) |

Inputs identity ID; and password PW;
Selects T{*%, nif®
computes
C; = h(ID}||PW; |[(ny))
Checks whether C; = Cy
D1 =Cy @ ID;
Dy =C3 h(TﬁewHIDi) S h(ﬂ’&ew)
(T/¥w, Dy, PID;, Dy}

Selects T&*Y, n¢®®
Computes
D3 =B, & SID]'
Dy = B33 h(TgewHSID]') S h(ngew)
Ds = h(PID;||T}*®||SID;|| PSID; || T2¢)
(T}, Dy, PID;, D, TEY, Dy, PSID;, Dy, Ds }






media/file15.jpg
User (U;)

Smart card (5C)

Inputs ID;, PW;
Imprints biomerics BIO}
Computes

(Ry, P)=Gen(BIO; )

RPW = h(PW;||R;)
{ID}, RPW;'}
{Authenticate)
Inputs a new password P/
Imprints a biometrics BIOY®
(RE, o) Gon BIOM
REWsa = (P Ay
(RPWI)

Computes
A7 & W(ID; RPW; )

Computes
A= X2 @ H(ID; [[RPW]*)
Biew (X [IRPW})

Replaces {;, B;} with { A7, Bew'}






nav.xhtml


  sensors-19-03598


  
    		
      sensors-19-03598
    


  




  





media/file16.png
User (U;)

Smart card (SC)

Inputs D7, PW/
Imprints biometrics BIO;
Computes

<Ri/ PZ>ZG€71(BIOZ*)
RPW? = 1(PW?||R;)

Inputs a new password PW/™®
Imprints a biometrics BIO}*"
(R}, P =Gen(BIO!™)
RPW*® = h(PW]**®||RI*v)

Computes

X! = A ® h(ID;||[RPW})
B, = h(X;[|RPW;)

B = B;

Computes

Al®Y = X¥ @ h(ID]||[RPW]")
B = h(X}||RPW!*")

Replaces {A;, B;} with { A7¢V, BI'*?}






media/file2.png
User (U;)

Control server (CS)

Inputs ID;, PW;
Selects Ty, ny;
Computes

PID; = h(Ty||ny)

{IDl/PIDl}

>

{C), G5}

&< ——

Computes
Cq = h(ID;|[PW;||h(ny))
Stores { PID;, Cy,C3, Cy4, h(ny;)} in a smart card

Generate secret key x,y

Computes

C1 = h(ID;||P1D;)

Co = h(PID;||h(IDcs||x)||h(IDcslly)) & h(IDcs||x) & h(IDcs|ly)
Cs = h(IDy||PID;||k(IDcs||x)||h(IDcs|ly)) © PID; @ h(x||y)
Stores Cq in a database






media/file20.png
%%0%%%%6%6%0%0%0%%% User

role user(UA, S, CS : agent, SKuacs : symmetric_key, H: hash_func, SND, RCV :
channel(dy))

played by UA

def=

local State: nat,
IDi,PWi,Ri,Pi, RPWi RIDi,Xi Ai,Bi,Qi,SIDj,Rj,RSID;j,SIj,S1,S2 Ks: text,
RUi,M1,CIDi,M2,RSj,D1,CSIDj,D2,M3,D3,Qcs,SKi,Qcu : text

const spl, sp2, sp3, sp4, sp5,ua_cs rui, s _cs rsj, cs_s qcs, S ua_qcu: protocol id
init State ;= 0
transition

%%%%%%%%%%%%Registration phase
1. State = 0 /A RCV(start) =>
State' := 1 A Ri":=new()
/AN RPWi' := H(PWi.Ri")
A SND({IDi.RPWi'} SKuacs)
A secret({IDi, PW1, Ri'}, spl, {UA})

%%%%%%% %% %% %R ecieve smartcard
2. State=1/ARCV

({H(IDi' H(S1' Ks)).xor(H(H(IDi.H(S1' Ks)).Ks.S1"),H(IDi. H(PWi.Ri'))). H(H(H(IDi.

H(S1'Ks)).Ks.S1").H(PWi.R1"))} SKuacs)=>
State' :=2 /A Qi' := xor(H(ID1'.PWi.Ri'"),H(ID1.H(S1' Ks)))
%%%%%%%%%%%%Login & Authentication phase
ARU1" :=new()
AMI" :=xor(RUi',HH(IDi.H(S1' Ks)).Ks.S1"))
A\ CIDi' := xor(IDi', HH(H(IDi.H(S1' Ks)).Ks.S1").RUi"))
A M2' = H(IDi.H(H(IDi.H(S1'Ks)).Ks.S1').RU{')
A SND(M1''M2'.CIDi' H(IDi.H(S1' Ks)))
A witness(UA,CS,ua_cs_rui,RU1")
3. State =2 /A RCV(xor(RSj' H(IDi.RUi")).HRUi'.RS;' H(RUi'RSj")) =>
State' := 3 A SKi' := H(RUi'.RSj")
A\ request(UA,S,s_ua_qcu,SKi")
end role
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%%%%0%6%%6%6%%%%% Control Server

role controlserver(UA, S, CS : agent, SKuacs, SKscs : symmetric_key, H: hash_func,
SND, RCV : channel(dy))

played by CS

def=

local State: nat,
IDi,PWi,Ri,Pi,RPWi RIDi,Xi,A1,Bi,Qi,SIDj,Rj,RSIDj,SIj,S1,S2 Ks: text,
RUi,M1,CIDi,M2,RSj,D1,CSIDj,D2,M3,D3,Qcs,SKi,Qcu : text

const spl, sp2, sp3, sp4, sp5,ua_cs_rui, S_cs_rsj, cs_s_qcs, s _ua_qcu : protocol id

init State :=0

transition

1. State =0 A RCV({SID;j.Rj'} SKscs) =>
State' := 1 /\ S2' := new() /\ RSIDj' := H(SIDj.R;j' Ks)

N\ SIj' = H(RSID;j'.H(S2' Ks))

A\ SND({RSIDj".SIj'} SKscs)

N\ secret({S2'},sp3,{CS})

N secret({RSIDj',SI'} ,sp4, {S,CS})
2. State = 1 ARCV({IDi.H(PWi.Ri")} SKuacs) =>
State' :=2 /\ S1":=new() /A RIDi' := H(IDi.H(S1' Ks))

A Xi' :=H(RIDi' Ks.S1"

N\ Ai' == xor(Xi',H(IDi.H(PWi.R1i')))

A Bi' = H(Xi'H(PWi.Ri")

N\ SND({RIDi'.Ai'.Bi'} SKuacs)

N\ secret({S1'},sp5,{CS})
3. State =2
A RCV(xor(RUi'HHIDi.H(S1' Ks)).Ks.S1").HIDi.HH(IDi.H(S1' Ks)).Ks.S1").RUi
".xor(IDi', HH(H(IDi.H(S1'Ks)).Ks.S1').RUi").HIDi.H(S1' Ks)).xor(H(H(SIDj.Rj'.
Ks).H(S2'Ks)),RSj").H(SIDj. H(H(SIDj.Rj' Ks).H(S2' Ks)).RS;j").xor(SIDj, HH(H(SID
J.Rj".Ks).H(S2' K5s)).RSj")).H(SIDj.Rj" Ks)) =>
State' := 3 /A M3' ;= xor(RSj" H(IDi.RU1"))

A D3" = xor(RUi' H(SIDj.RSj")

A Qcs' .= H(RUi'.RSj" H(H(SIDj.Rj'Ks).H(S2' Ks)))

A\ witness(CS,S,cs_s_qcs,RUi")

A SND(M3'.D3'.Qcs")

A request(UA,CS, ua_cs_rui,RU1")

A request(S,CS, s _cs_1s),RSj")
end role
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