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Abstract: In this research, the novel metaheuristic algorithm Harris hawks optimization (HHO) is
applied to landslide susceptibility analysis in Western Iran. To this end, the HHO is synthesized
with an artificial neural network (ANN) to optimize its performance. A spatial database comprising
208 historical landslides, as well as 14 landslide conditioning factors—elevation, slope aspect, plan
curvature, profile curvature, soil type, lithology, distance to the river, distance to the road, distance to
the fault, land cover, slope degree, stream power index (SPI), topographic wetness index (TWI), and
rainfall—is prepared to develop the ANN and HHO–ANN predictive tools. Mean square error and
mean absolute error criteria are defined to measure the performance error of the models, and area
under the receiving operating characteristic curve (AUROC) is used to evaluate the accuracy of the
generated susceptibility maps. The findings showed that the HHO algorithm effectively improved
the performance of ANN in both recognizing (AUROCANN = 0.731 and AUROCHHO–ANN = 0.777)
and predicting (AUROCANN = 0.720 and AUROCHHO–ANN = 0.773) the landslide pattern.

Keywords: landslide susceptibility mapping; GIS; artificial neural network; Harris hawks optimization

1. Introduction

Landslides are defined as gravity-triggered downward mass movements which can result from
anthropogenic and natural activities [1,2]. They are considered as one of the most devastating
environmental threats and have cause huge physical and financial damage worldwide [3]. In Iran,
landslide hazard is responsible for the loss of around 187 lives [4]. Due to geographical conditions, the
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west of Iran is known as a landslide-prone area. In the last few decades, the Seimareh landslide which
occurred in 1998, has recorded the largest debris flow [5]. Hence, being able to reliably predict the
landslide susceptibility of such areas can be effective in dealing with this natural hazard [6].

Landslide susceptibility maps the spatial occurrence likelihood of the landslide when a number of
geoenvironmental factors are involved [7]. During recent years, various landslide predictive models
have been developed to explore the relationship between the landslide and its conditioning (geological,
topographical, and other geoenvironmental) factors. Generally, these methods can be grouped into
three major classes, namely, physical strategies, expert system, and data mining techniques [8]. Among
those, the third group approaches, which are based on statistical methods and machine learning
strategies, are known as the most efficient landslide predictive models [9]. Many studies have produced
the landslide susceptibility map of different study areas using statistical and multicriteria decision
methods [10–13]. More recently, capable intelligent tools like artificial neural network (ANN), support
vector machine (SVM), and adaptive neuro-fuzzy inference system (ANFIS) have been successfully
used for modeling the landslide susceptibility [14–20]. Pham et al. [21] assessed the efficiency of three
machine learning tools, namely functional tree (FT), multilayer perceptron (MLP), and naïve Bayes
(NB) for producing the landslide susceptibility map of the Uttarakhand Area, India. According to their
findings, the MLP (85% accuracy) presented the most accurate prediction of landslide compared to
FT (84.9% accuracy) and NB (83.8% accuracy. Moreover, in a comparative study, Bui et al. [22] used
SVM, MLP, radial basis function neural networks (RBF), logistic model trees (LMT), and kernel logistic
regression (KLR) for analyzing the landslide susceptibility in Son La hydropower basin of Vietnam.
They showed that the MLP (90.2% accuracy) outperformed SVM, KLR, RBF, and LMT with 88.7%,
87.9%, 87.1%, and 86.1% accuracy, respectively.

Moreover, many scholars have used various hybrid metaheuristic algorithms for the prevailing
computational drawbacks (e.g., local minimum and dimension dangers [23]) of the mentioned
intelligent models [24–31]. In this regard, Moayedi et al. [32] applied particle swarm optimization
(PSO) to an MLP neural network for landslide susceptibility modeling in the Kermanshah Province,
Iran. It was shown that the PSO decreases the performance error of the MLP and the PSO–ANN
achieves a more accurate susceptibility map. Likewise, Nguyen et al. [33] showed the applicability of
artificial bee colony (ABC) and PSO metaheuristic techniques in optimizing the ANN for landslide
susceptibility mapping in Golestan Province, Iran. Regarding the obtained area under the curves
(AUCs) of 76.60%, 85.70%, and 80.30%, respectively for the ANN, PSO–ANN, and ABC–ANN, they
concluded that the mentioned algorithms are capable enough to improve the ANN.

This study employs a novel hybrid optimization technique, namely Harris hawks optimization
(HHO) algorithm, for finding the most appropriate computational parameters of the ANN for
susceptibility assessment of a landslide-prone area in the west of Iran. This technique has not been
previously used for this purpose. In this sense, the accuracy of the landslide susceptibility maps
produced by the optimized and non-optimized ANNs are compared in various ways to evaluate the
effect of the HHO algorithm.

2. Study Area

The study area is located in the southern part of the Kurdistan Province, west of Iran (Figure 1).
Geographically, it lies between the longitude 46◦00’ to 47◦20’ E, and the latitude 34◦45’ to 35◦48’ N,
covering roughly 7811 km2. It also contains the three cities Marivan, Sanandaj, and Kamyaran. Due
to the proximity to the Zagros Mountains, Kurdistan is a mountainous region. Two distinct climates
can be found in this area, including semi-arid with cold winters and temperate climate, affecting the
mountainous regions and high plains, respectively [34]. Dry farming and irrigated agriculture play
a significant role in the economy of the people living in this area [35]. Moreover, the altitude varies
approximately from 750 to 3100, where more than 80% of the area is above 1500 m.s.l. The terrain slope
ranges from 0 to 60◦, where more than 55% are classified as gentle slopes (i.e., lower than 15◦). Also,
the land is mainly covered by good ranges. Geologically, among the diverse kinds of lithological units,
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the so-called category “dark grey argillaceous shale” is the most common representing around 18% of
the bedrock area.
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3. Data Preparation and Spatial Relationship between the Landslide and Related Factors

As is known, providing a valid dataset is a crucial step of using artificial intelligence tools [9].
The spatial database of this research comprises a landslide inventory map as the target, and fourteen
landslide conditioning factors as the input variables, namely elevation, slope aspect, plan curvature,
profile curvature, soil type, lithology, distance to the river, distance to the road, distance to the fault, land
cover, slope degree, stream power index (SPI), topographic wetness index (TWI), and rainfall. Notably,
plan curvature and profile curvature are topographical attributes which contribute to the convergence
(or divergence) of the flowing water and the velocity change of the flowing mass, respectively [36–38].
A total of 208 historical landslides were identified, and the same number of the non-landslide points
were randomly produced over the study area.

All layers were created from basic sources (e.g., satellite imagery and vector data) and processed
in geographic information system (GIS) with a pixel size of 10 m × 10 m [34,39]. In the following,
frequency ratio (FR) theory is used to evaluate the spatial relationship between the landslide and each
subclass of the conditioning factors. In this sense, the higher values indicate a greater correlation
between the landslide and the proposed subclass [40]. Equation (1) expresses the FR formulation:

FR =
Nlandslide
Ndomain

, (1)

where Nlandslide and Ndomain respectively stand for the percentage of the landslides found in the
proposed subclass and the percentage of the terrain it covers. Figure 2 illustrates the classification of
the considered conditioning factors as well as the calculated FR. Also, the description of the geological
units is presented in Table 1. As is seen, the largest FRs are obtained for (a) 1000–1500 m for elevation,
(b) North (0–22.5◦) for slope aspect, (c) “Concave” for plan curvature, (d) (0.001 − 1.1576 × 1010) for
profile curvature, (e) “Inceptisols” for soil type, (f) 100–200 m for distance to the river, (g) 200–300 m for
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distance to the road, (h) 300–400 m for distance to the fault, (i) “Agriculture” for land cover, (j) 10–15◦

for slope, (k) 85 × 105–23 × 106 for SPI, (l) −9.38 to −7.40 for TWI, (m) 500–600 mm for rainfall, and (n)
“Jugr” for lithology. Note that explaining the pattern of the obtained FRs requires exact analysis of the
conditioning factors, like importance evaluation, which is not the aim of this paper.
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Figure 2. The calculated frequency ratio(FR) for (a) elevation, (b) slope aspect, (c) plan curvature,
(d) profile curvature, (e) soil type, (f) distance to river, (g) distance to road, (h) distance to fault, (i) land
cover, (j) slope degree, (k) SPI, (l) TWI, and (m) rainfall.
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Table 1. Description of the lithology units.

Symbol Description Age Age Era FR

Qft1 High level piedmont fan and valley terrace deposits Quaternary Cenozoic 0.32
OMql Massive to thick-bedded reefal limestone Oligocene–Miocene Cenozoic 5.94
pCmt1 Medium grade, regional metamorphic rocks (Amphibolite Facies) Pre-Cambrian Proterozoic 0.00
Kav Andesitic volcanic Late Cretaceous Mesozoic 0.00
Kfsh Dark grey argillaceous shale Cretaceous Mesozoic 0.11
K1m Limestone, argillaceous limestone, tile red sandstone and gypsiferous marl Early Cretaceous Mesozoic 0.00
Plms Marl, shale, sandstone and conglomerate Pliocene Cenozoic 0.00
Klsm Marl, shale, sandy limestone and sandy dolomite Early Cretaceous Mesozoic 2.20
Qft2 Low level piedmont fan and valley terrace deposits Quaternary Cenozoic 0.45
E2l Nummulitic limestone Eocene Cenozoic 0.00
Klsol Grey thick-bedded to massive orbitolina limestone Early Cretaceous Mesozoic 0.95
K2av Andesitic volcanic Late Cretaceous Mesozoic 0.00
Murm Light red to brown marl and gypsiferous marl with sandstone intercalations Miocene Cenozoic 5.74
Pd Red sandstone and shale with subordinate sandy limestone (Dorud FM) Permian Paleozoic 0.84
Qal Stream channel, braided channel, and flood plain deposits Quaternary Cenozoic 0.00
PAgr Granite Paleocene–Eocene Cenozoic 0.00

TRKurl Purple and red thin-bedded radiolarian chert with intercalations of neritic and pelagic limestone
(Kerman and Neyzar radiolarites) Triassic–Cretaceous Mesozoic 0.00

Kussh Dark grey shale (Sanandaj shale) (Schist and phyllite) Late Cretaceous Mesozoic 1.24
Olc,s Conglomerate and sandstone Oligocene Cenozoic 6.83
Ebv Basaltic volcanic rocks Middle Eocene Cenozoic 3.75
Odi-gb Diorite to gabbro Oligocene Cenozoic 0.00
PeEf Flysch turbidite, sandstone and calcareous mudstone Paleocene–Eocene Cenozoic 1.83
Qcf Clay flat Quaternary Cenozoic 0.22
Kupl Globotruncana limestone Late Cretaceous Mesozoic 0.73
K2l1 Hyporite bearing limestone (Senonian) Late Cretaceous Mesozoic 0.00
KPef Thinly bedded sandstone and shale with siltstone, mudstone limestone and conglomerate Late Cretaceous–Paleocene Mesozoic–Cenozoic 0.98
TRKubl Kuhe Bistoon limestone Triassic–Cretaceous Mesozoic 0.85
Oat Andesitic tuff Oligocene Cenozoic 0.89
Pel Medium to thick-bedded limestone Paleocene–Eocene Cenozoic 2.30
TRJvm Meta-volcanics, phyllites, slate and meta- limestone Triassic–Jurassic Mesozoic 0.00
JKl Crystalized limestone and calc-schist Jurassic–Cretaceous Mesozoic 0.00
Kbv Basaltic volcanic Early Cretaceous Mesozoic 0.00
Jugr Upper Jurassic granite including Shir Kuh granite and Shah Kuh granite Late Jurassic Mesozoic 10.90
Ogb Gabbro Oligocene Cenozoic 0.34
OMrb Red beds composed of red conglomerate, sandstone, marl, gypsiferous marl and gypsum Oligocene–Miocene Cenozoic 0.71
pd2 Peridotite including harzburgite, dunite, lherzolite, and websterite Triassic–Cretaceous Mesozoic 1.02
E1f Silty shale, sandstone, marl, sandy limestone, limestone and conglomerate Early Eocene Cenozoic 0.88
db Diabase Late Cretaceous Mesozoic 0.00
sr Serpentinite Triassic–Cretaceous Mesozoic 0.00
E1l Nummulitic limestone Eocene Cenozoic 0.00
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4. Methodology

The overall steps carried out in this research are shown in Figure 3. After providing the
required landslide inventory map, as well as landslide conditioning layers, the marked landslides
are randomly divided into two separate parts, including 70% of whole data (146 landslides and 146
non-landslide points) for training the ANN and HHO–ANN models, and 30% of data (62 landslides
and 62 non-landslide points) for evaluating their efficiency in predicting future landslides in the
programming language of MATLAB 2014. The HHO is then coupled with ANN to optimize its
computational parameters. The landslide susceptibility maps are produced, and the accuracy of each
model is evaluated by three criteria, namely area under the receiving operating characteristic curve
(AUROC), mean square error (MSE), and mean absolute error (MAE). Equations (2) and (3). denote the
MSE and MAE in which N shows the number of involved samples, and Yiobserved and Yipredicted are the
desired and predicted values of landslide susceptibility, respectively.

MSE =
1
N

N∑
i=1

(
Yiobserved −Yipredicted

)2
(2)

MAE =
1
N

N∑
i=1

∣∣∣∣Yiobserved −Yipredicted

∣∣∣∣ (3)
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4.1. Artificial Neural Network

Inspired by the biological interaction in the neural systems, artificial neural network (ANN) was
first suggested by McCulloch and Pitts [41] as a predictive tool. It is constructed from some extremely
connected units which aim to discern the nonlinear relationship between external inputs [42]. The
main reason for selecting the ANN as the basic model of this study was its high capability in various
engineering simulations [43–47]. Figure 4 illustrates the structure of a commonly held type of neural
networks named multilayer perceptron (MLP). The learning process is carried out by assigning some
weights to each input vector. After producing the network response, the determined weights and
biases are adjusted to minimize the error. More specifically, when the output (Oz) is produced, χz is
computed as follows:

χz = Oz(1−Oz) (Oz − Tz), (4)

where Tz is the desired response for the output node z.
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Then, the parameter λs is calculated for each node of the middle layer as follows:

λs = Os(1−Os)
∑

z
χzWsz, (5)

in which Wsz represents the connecting weight between the neurons s and z.
Next, considering m as the learning rate (ranging from 0 to 1), two parameters below are calculated

to change the weights and biases in layer L:

∆W = −m χL LL−1, (6)

∆b = −m χL. (7)

Eventually, the new weights and biases are produced as follows:

Wnew = W + ∆W, (8)

bnew = b + ∆b. (9)
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4.2. Harris Hawks Optimization

Inspired by the chasing style and cooperative behavior of Harris’ hawks, the Harris hawks
optimization (HHO) technique was suggested by Heidari et al. [48]. Some of the hawks aim to surprise
the prey by swooping it from different paths. Note that they select the chase pattern based on the
flying pattern of the prey. HHO is a population-based search algorithm which draws on three major
steps which are explained as follows (see Figure 5):

(i) Exploration Phase

In this phase, it is determined to mathematically wait, search, and discover the desired hunt. The
iter + 1 (the Harris hawks position) is mathematically expressed as follows:

X(iter + 1)

=

{
Xrand(iter) − r1

∣∣∣Xrand(iter) − 2r2X(iter) i f q ≥ 0.5
(Xrabit(iter) −Xm(iter)) − r3(LB + r4(UB− LB)) i f q < 0.5

(10)
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where Xrabit stands for the rabbit position, iter denotes the present iteration, Xrand is the randomly
selected hawk among the available population, ri, I = 1, 2, 3, 4, q are random numbers ranging in [0, 1],
and Xm shows the average position for hawks and is computed as follows:

Xm(iter) =
1
N

N∑
i=1

Xi(iter), (11)

in which Xi shows the place of the hawks and N represents the hawk size.

(ii) Transition from Exploration to Exploitation

Considering T as the maximum size about the repetitions and E0 ∈ (−1, 1) as the initial energy
during each step, HHO calculates the escaping energy of rabbit (E) by Equation (12). Regarding this
value, exploration and exploitation may be changed.

E = 2E0(1−
iter
T

) (12)

In this sense, if |E| ≥ 1, the exploration phase gets started; otherwise, the neighborhood of the
solutions is aimed to be exploited.

(iii) Exploitation Phase

Depending on the residual energy of the prey, the hawks may consider a soft or hard besiege for
hunting it from different directions. A so-called parameter “r” is defined to measure the escaping
chance of the prey. Accordingly, r < 0.5 represents a successful escape. In addition, when |E| ≥ 0.5,
HHO takes soft surround and when |E| < 0.5, hard surround is applied. It is worth noting that even
if the prey is able to escape (i.e., |E| ≥ 0.5), its success also depends on r. The attack procedure is
influenced by the escaping and pursuing strategy of the prey and hawks, respectively. In this sense,
four major steps are considered which are broadly explained in the Appendix A [49].
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5. Results and Discussion

5.1. Model Implementation

As stated above, this study addresses novel optimization of the artificial neural network based
on the Harris hawks optimization technique for spatial prediction of a landslide. To this end, the
HHO is synthesized with a multilayer perceptron neural network for finding the most appropriate
computational parameters. More specifically, the ANN calculates the outputs by assigning some
weights and biases. For optimization purposes, the structure of the ANN is mathematically introduced
to the evolutionary algorithms. Here, the proposed HHO aims to find a solution containing the best
alternatives to the weights and biases of the unreinforced ANN. It is worth noting that based on the
authors’ experience as well as a trial and error process, the proposed ANN was constructed with five
hidden neurons. Also, “Tansig” was considered as their activation function. The proposed HHO–ANN
ensemble was performed within 1000 repetitions when the MSE was defined as the objective function
(OF). The model executed all 1000 iterations within 8370 s and reduced the OF from 0.238274922 to
0.196520013. However, the majority was decreased before the 750th try. Figure 6 shows the convergence
curve of the proposed HHO–ANN.
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Figure 6. The convergence cure of the applied HHO–ANN model.

5.2. Landslide Susceptibility Mapping

Next, the landslide susceptibility map of the study area was generated by transferring the outputs
(i.e., the predicted values of landslide susceptibility index) of the ANN and HHO–ANN to the GIS
environment. As is known, there are various techniques for classifying the constructed maps, such as
natural break, equal interval, and quantile method. Out of those, equal interval is not practical as it
emphasizes one susceptibility class relative to others [50]. Also, the disadvantage of the quantile method
lies in placing widely differing values into the same class [51]. Regarding natural break, it reduces the
variance within classes and maximizes the variance between classes [52,53], and is the most commonly
used method for this aim [54–58]. Hence, using the “natural break” technique, the created maps were
classified into five susceptibility categories, namely “Very low”, “Low”, “Moderate”, “High”, and
“Very high”. These maps are presented in Figure 7 along with the corresponding histograms. The
resulted maps show a good approximation of the location of the marked landslide events. Also, it can
be seen that appreciable parts of the area in the West–North and South are found to be under the high
risk of landslide.
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5.3. Performance Assessment of the Models

Firstly, to measure the performance error of the used models, MSE and MAE error criteria were
employed. These values were calculated for both training and testing samples. In this regard, Figure 8
illustrates the comparison between the actual and predicted landslide susceptibility values, as well
as the histogram of the errors (i.e., the difference between the mentioned parameters). As is seen,
applying the HHO algorithm helped the ANN to have more accurate pattern recognition. Accordingly,
the training MSE declined from 0.20646 for the ANN to 0.19652 for the HHO–ANN. The decrease in the
calculated MAE (from 0.42006 to 0.39809) provides additional evidence for this claim. As for the testing
phase, the decrease of the MSE from 0.21235 to 0.19749 indicates the improvement of the generalization
power of the ANN, which results in a more reliable approximation of the unseen landslides. The
obtained MAE also attests this statement.
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The accuracy of the developed susceptibility maps was also evaluated by drawing the receiver
operating characteristic (ROC) curve of both training and testing predictions. The ROC curve plots
the specificity (i.e., the proportion of the non-landslide grid cells which are correctly labeled “stable”)
versus the sensitivity (i.e., the proportion of the landslide grid cells which are correctly labeled
“unstable” [59–61]. Beguería [61] stated that the area under the plotted ROC curves (AUROC) is a good
indicator of the accuracy of natural hazard modeling. It ranges from 0.5 to 1 directly proportional to
the prediction accuracy. Figure 9 displays the plotted ROC curves, as well as the computed AUROC
for both ANN and HHO–ANN models (Table 2). Based on this figure, both learning and prediction
accuracies of the typical ANN increased after incorporation with the HHO. Accordingly, the accuracy
of the training samples rose from 73.1% to 77.7%, and the accuracy of predicting unseen landslides
increased from 72.0% (SE = 0.046) to 77.3% (SE = 0.027). The pairwise comparison of the ROC curves
was also carried out using the method of Hanley and McNeil [62]. The obtained “significance level”
and “z statistic” were 0.1978 and 1.288, respectively.
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Table 2. The statistical analysis of the testing AUROC.

Methods Area Std. Error p Value Youden Index j Asymptotic 95% Confidence Interval

Lower Bound Upper Bound

ANN 0.720 0.046 <0.0001 0.3710 0.630 0.809
HHO–ANN 0.773 0.027 <0.0001 0.4247 0.720 0.826

The percentage of the area which is labeled by each one of the susceptibility classes is also
calculated. Based on the generated landslide susceptibility maps, both models have found more than
one-third of the studied area to be under the high risk of the landslide (i.e., “High” susceptibility
category). Also, more than 20% of the area was classified as “Very high” susceptibility. All in all, the
ANN and HHO–ANN classified around 57% (i.e., 4474.50 km2) and 54% (i.e., 4210.50 km2) of the area
as regions with “High” and “Very high” susceptibility. More details of this analysis are presented in
Table 3.
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Table 3. The ratio and area of each susceptibility class.

Susceptibility Class ANN HHO–ANN

Ratio (%) Area (km2) Ratio (%) Area (km2)

Very low 5.12 400.15 5.19 405.59
Low 12.36 965.71 15.27 1192.42
Moderate 25.23 1971.09 25.64 2002.93
High 33.42 2610.36 31.96 2496.24
Very high 23.86 1864.13 21.95 1714.26

High and Very high 57.28 4474.50 53.90 4210.50

Moreover, the percentage of training and testing landslides located in each susceptibility class
are presented in Table 4. According to this table, a considerable distinction is the percentage of
the landslides found within the “Very high” susceptibility class. As is seen, the prediction of the
unreinforced ANN indicates that about 27% and 20% of the training and testing landslides, respectively,
are located in the mentioned class. Use of the optimized version increased these values to about
39% and 40%. Also, about 71% and 78% of the landslides which used for pattern discerning by the
ANN and HHO–ANN were found in the regions with “High” and “Very high” susceptibility in the
developed maps. These values were calculated as 68.87% and 75.98% for unseen landslide events.

Table 4. The percentage of the training and testing landslides located in each susceptibility classes.

Susceptibility Class ANN HHO–ANN

Train Test Train Test

Very low 1.32 1.75 1.52 1.24
Low 6.94 8.76 4.66 6.39
Moderate 21.01 20.62 15.59 16.39
High 43.14 48.76 38.89 35.98
Very high 27.59 20.10 39.34 40.00

High and Very high 70.73 68.87 78.23 75.98

5.4. Presenting the HHO-Based Predictive Formula

As previously explained, the main contribution of the used hybrid algorithm (i.e., the HHO) to
the problem of landslide susceptibility assessment lies in determining the most proper values of the
weights assigned to each landside conditioning factor. Therefore, this section aims to present the
landslide susceptibility index formula of the ANN which is optimized by the proposed HHO algorithm.
The weights and biases of the HHO–ANN model is shown in Table 5.

Landslide susceptibility index HHO-ANN = 0.2517 × Z1 + 0.9157 × Z2 +

0.3330 × Z3 + 0.1148 × Z4 + 0.4546 × Z5 + 0.5011 × Z6 − 0.6282 ×
Z7 + 0.6683 × Z8 − 0.3576,

(13)

where Z1, Z2, . . . , Z8 are calculated as follows.
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Table 5. Weights and biases of the HHO–ANN model.

Neurons (i)
Zi = Tansig (Wi1 × Elevation +Wi2 × Slope Degree +Wi3 × Profile Curvature +Wi4 × Plan Curvature +Wi5 × Slope Aspect +Wi6 × SPI +Wi7 × TWI +Wi8 ×

Land Cover +Wi9 × Rainfall +Wi10 × Lithology +Wi11 × Soil Type +Wi12 × DTT Road +Wi13 × DTT Fault +Wi14 × DTT River + bi)

Wi1 Wi2 Wi3 Wi4 Wi5 Wi6 Wi7 Wi8 Wi9 Wi10 Wi11 Wi12 Wi13 Wi14 bi

1 0.1389 0.8873 −0.3536 −0.5390 0.6093 0.5324 −0.1268 −0.2768 −0.4110 −0.3422 −0.2914 −0.3273 −0.0984 0.6987 −1.8520
2 0.1941 −1.1906 −1.0853 0.8015 0.0674 −0.8543 0.4639 −0.3317 −0.5433 0.5304 −1.0774 −0.9195 0.6389 −0.6643 0.4390
3 −0.8748 0.1018 0.9202 −0.4856 −1.0795 0.5776 0.9880 0.8675 −1.1525 −0.0134 0.5032 −0.4689 −1.0977 0.0411 0.9416
4 0.6930 1.0847 0.3555 −0.0661 0.4444 0.9255 −1.2186 0.1724 0.0116 −1.1188 1.3439 0.6624 0.2156 1.0617 −1.3524
5 −0.6105 −0.0710 0.5563 −2.1150 1.2181 0.2868 0.6106 0.0989 −0.0542 0.7688 −0.3673 −0.8785 1.3454 −0.1275 −0.7786
6 0.4460 −0.4059 −0.5671 0.3063 −0.2774 0.4887 −0.6989 −0.3011 0.4759 −0.1634 −1.0011 0.3701 −0.1290 −0.8039 0.2600
7 0.1713 −0.7522 0.4283 0.079 0.5879 0.4686 0.5622 −0.3228 1.2865 −0.5585 −0.5446 0.5838 1.0550 0.4543 0.5437
8 −1.9718 0.6761 −0.5493 −0.1083 0.6430 −0.6932 −0.2789 −0.9709 0.9544 −0.2919 −0.2008 −0.0433 −0.3142 1.6938 −1.3263

DTT: Distance to the.
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It is well-established that generating a susceptibility map of environmental threats is one of the
most fundamental prerequisites for dealing with them. Landslides are one of the most disastrous
of these threats. In the case of susceptibility zonation of the landslide, scholars have used different
predictive and evaluative techniques. Also, due to the existing shortcomings of statistical methods,
as well as the regular machine learning tools, they have employed hybrid metaheuristic algorithms
to overcome these drawbacks. These algorithms represent search methods which aim to find the
best-fitted solution for a mathematically defined problem.

Artificial neural networks have been efficiently used for landslide susceptibility analysis in
various areas. As one of the first attempts, Lee et al. [63] determined the relative importance of
landslide thematic factors through training an ANN by the backpropagation algorithm. More recently,
Can et al. [64] tested four different learning strategies of the ANN, namely quick propagation, batch
backpropagation, Levenberg–Marquardt, and conjugate gradient descent (CGD) for producing the
landslide susceptibility map of Ovacık region, Tukey. Their findings revealed that the last algorithm
outperforms those presented by other colleagues. However, it also emerged as the slowest algorithm.

Evolutionary algorithms have also shown good incorporation with typical intelligent models to
enhance their performance. Different attempts have conducted the optimization of ANNs and ANFIS
for modeling various natural phenomena like landslide [65], forest fire [66,67], and groundwater
potential [68,69]. As is known, these population-based algorithms mime different social behaviors to
search the most appropriate response to a problem. When it comes to machine learning models, the
main objective is to overcome existing drawbacks like local minimum and dimension dangers [23],
through achieving more suitable values of computational parameters. It also can be considered as
the main contribution of such techniques to the proposed problems. In the case of spatial analysis
of landslides, as stated in previous research [63,70], the connecting weights of the ANN denote the
relative importance of the thematic layers. In this sense, Moayedi et al. [32] found that utilizing the
PSO algorithm enhances the capability of the MLP neural network. They also presented the extracted
weights that the PSO assigned to each considered landslide conditioning factor.

In the current research, for the first time, the HHO optimization algorithm was applied to the
landslide susceptibility problem by incorporation with ANN. The results clearly showed that the HHO
performed efficiently in improving the reliability of the proposed spatial analysis. In investigating the
optimization path, the convergence curve of the HHO–ANN ensemble showed that an appreciable
portion of the objective function reduction occurred in the first attempts. It continued to decrease the
error until it remained more and less steady in the last 200 repetitions.

Referring to the results, the authors believe that the proposed HHO algorithm can be promisingly
used for optimizing different intelligent tools for landslide susceptibility mapping. It seems to be a
proper model for assist the engineers and authorities in future planning in order to alleviate the damage
caused by landslides. However, the authors believe that the proposed ensemble could achieve higher
accuracy by applying some measures like sensitivity analysis for better structures or optimizing the
conditioning factors. Last but not least, establishing a comparison between the optimization capability
of the HHO with other well-known metaheuristic techniques would be a good idea for future studies.

6. Conclusions

Recent years have witnessed the large employment of evolutionary science for optimizing the
performance of a typical intelligent model due to the existing drawbacks in dealing with highly
complex issues. Landslides are disastrous environmental hazards which need nonlinear analysis to be
simulated. Hence, in this paper, a novel metaheuristic technique, namely Harris hawks optimization,
was synthesized with an artificial neural network to overcome the computational shortcomings of
this model in spatial modeling of landslide susceptibility mapping. After providing the required
spatial database, the ANN was coupled with the HHO for adjusting the computational parameters.
The results revealed that the HHO acts efficiently in reducing the learning error of the ANN, which
resulted in more accurate analysis from the spatial relationship between the landslide occurrence and
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its conditioning factors. Consequently, the landslide susceptibility map produced by the HHO–ANN
was more successful than the ANN map in terms of predicting the unseen landslide events. Finally,
due to the acceptable accuracy of the generated maps, they can be used for risk management and
decision making in the future.
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Appendix A

More details about four steps of the exploitation phase in the HHO algorithm are presented below:
1. Soft surround: when r ≥ 1

2 and |E| ≥ 1
2 , then we have:

X(iter + 1) = ∆X(iter) − E
∣∣∣JXrabit(iter) − X(iter)

∣∣∣ (A1)

∆X(iter) = Xrabit(iter) −X(iter) (A2)

where the outcome ∆X denotes the difference between the prey position vector and the term J stands
for the prey jump severity.

2. Hard surround: when r ≥ 1
2 and |E| < 1

2 , then the current position is expressed as follows:

X(iter + 1) = ∆X(iter) − E
∣∣∣JXrabit(iter) − X(iter)

∣∣∣ (A3)

3. Advanced rapid dives while soft surround: when r < 1
2 and |E| ≥ 1

2 , the next action of the
hawks is determined by the following relation:

Y = Xrabit(iter) − E
∣∣∣JXrabit(iter) − X(iter)

∣∣∣ (A4)

In the following, the below equation describes the diving of the hawks:

Z = Y + S× LF(D) (A5)

where S1×D shows random vector, D symbolizes the issue dimension, and LF indicates the levy flight.
Let µ and ϑ be random values which can vary from 0 to 1, the LF and is calculated as:

LF(D) = 0.01×
µ× σ

|ϑ|
1
β

· σ =

 Γ(1 + β) × sin
(πβ

2

)
Γ
( 1+β

2

)
× β× 2(

β−1
2 )

·β = 1.5 (A6)

Consequently, the hawks’ location is updated by the below equation:

X(iter + 1) =
{

Y i f F(Y) < F(X(iter))
Z i f F(Z) < F(X(iter))

(A7)

4. Advanced rapid dives while hard surround: when r < 1
2 and |E| < 1

2 , then the behavior of the
hawks which are considered to be near the rabbit can be expressed as:

X(iter + 1) =
{

Y i f F(Y) < F(X(iter))
Z i f F(Z) < F(X(iter))

(A8)
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In the above formula, considering Xm(iter) = 1
N

∑N
i=1 Xi(iter), Y and Z should be calculated as

follow [71]:
Y = Xrabit(iter) − E

∣∣∣JXrabit(iter) − Xm(iter)
∣∣∣ (A9)

Z = Y + S× LF(D) (A10)
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