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Abstract: Robust and centimeter-level Real-time Kinematic (RTK)-based Global Navigation Satellite 
System (GNSS) positioning is of paramount importance for emerging GNSS applications, such as 
drones and automobile systems. However, the performance of conventional single-rover RTK 
degrades greatly in urban environments due to signal blockage and strong multipath. The 
increasing use of multiple-antenna/rover configurations for attitude determination in the above 
precise positioning applications, just as well, allows more information involved to improve RTK 
positioning performance in urban areas. This paper proposes a dual-antenna constraint RTK 
algorithm, which combines GNSS measurements of both antennas by making use of the geometric 
constraint between them. By doing this, the reception diversity between two antennas can be taken 
advantage of to improve the availability and geometric distribution of GNSS satellites, and what is 
more, the redundant measurements from a second antenna help to weaken the multipath effect on 
the first antenna. Particularly, an Ambiguity Dilution of Precision (ADOP)-based analysis is carried 
out to explore the intrinsic model strength for ambiguity resolution (AR) with different kinds of 
constraints. Based on the results, a Dual-Antenna with baseline VEctor Constraint algorithm (RTK) 
is developed. The primary advantages of the reported method include: 1) Improved availability and 
success rate of RTK, even if neither of the two single-antenna receivers can successfully solve the 
AR problem; and 2) reduced computational burden by adopting the concept of measurement 
projection. Simulated and real data experiments are performed to demonstrate robustness and 
precision of the algorithm in GNSS-challenged environments. 
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1. Introduction 

The recent interest in emerging Global Navigation Satellite System (GNSS) applications such as 
unmanned aerial vehicles (UAVs) and automatic driving systems has necessitated the development 
of robust and centimeter-level precise GNSS positioning.  

Real-time Kinematic (RTK) has been proven to be a reliable and efficient method for precise 
localization of outdoor vehicles in open areas [1]. In principle, integer ambiguity resolution (AR) is 
the key to RTK relative positioning. Traditional AR technique comprises two steps: Firstly, estimate 
the float ambiguities by solving the equations of GNSS measurements; and then, search for the correct 
integer ambiguities in ambiguity space with the center of the float ambiguities [2]. Therefore, precise 
estimation of float ambiguities, which are significantly influenced by satellite geometric distribution 
and the qualities of GNSS measurements, especially the ones of pseudoranges [3], is crucial for 
successful AR. 

However, the performance of RTK deteriorates significantly in urban environments, since the 
number of visible satellites slumps because of frequent signal blockages in dynamic situations [1], 
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and pseudorange measurements are contaminated with large multipath errors from trees and high-
rises. As a result, the AR success rate declines dramatically and, therefore, RTK fails to provide 
accurate positioning results. 

Intensive research efforts have been expanded to enhance GNSS precise positioning in harsh 
environments. The two mostly investigated directions are multi-sensor fusion [4–6] and robust GNSS 
positioning algorithms [7,8], respectively. Firstly, by integrating GNSS with self-contained sensors 
such as inertial navigation systems (INS), unmanned vehicles are able to maintain accurate 
navigation through GNSS signal outages for a short time, which is normally one minute or more [9]. 
Nevertheless, the challenge in GNSS/INS integrated positioning comes with its disability for long-
term precise navigation during GNSS blockages due to the significant bias drift in consumer-grade 
INS modules, which are usually applied in commercial unmanned vehicles. Secondly, existing 
algorithms to improve the robustness of GNSS positioning against degraded environments mainly 
focus on the elimination of noisy GNSS measurements and anomalies, such as multipath detection 
algorithms [7] and Carrier phase-based Receiver Autonomous Integrity Monitoring (CRAIM) [8]. 
That is, the robustness and precision gains come at the cost of reduced availability. Therefore, in order 
to fulfil robust and low-cost precise positioning, a solution to enhance RTK availability and precision 
is still needed. 

Fortunately, a new research direction appears, along with the use of multiple-antenna 
configuration in above-mentioned GNSS applications. The initial purpose of such configuration is to 
determine the attitude of the moving platform, which is denoted by orientation of the baselines 
between several onboard RTK antennas [4]. Nevertheless, raw GNSS observations from an auxiliary 
rover and the relationship between master and auxiliary rovers, in fact, could also be used to improve 
AR performance of the positioning system [10–13]. As according to Taro [14], pronounced 
measurement discrepancy between two antennas appears when vehicles maneuver through urban 
areas, since each GNSS antenna involves different GNSS signal propagation paths. Specifically, due 
to tree and building blockages, there is a high probability that rover antennas have different numbers 
of satellites in view, and even for common-viewed satellites, their measurement noise characteristics 
may differ from antenna to antenna.  

Previous studies on multi-antenna configured AR have focused on several recognized directions. 
One of the most popular research fields is high-reliability attitude determination [15]. Since the two 
antennas are closely placed, the common-mode errors can be removed almost completely by 
differencing their GNSS measurements, and therefore, orientation of the baseline is much easier to 
obtain. In dual-antenna attitude determination, a more efficient ambiguity-searching algorithm is the 
Multivariate Constraint Least-squares AMBiguity Decorrelation Adjustment (MC-LAMBDA) by 
Nadarajah [15,16]; while for low-cost GNSS receivers with ultrashort baseline, a Mean Square 
Residual (MSR) method was developed in [17]. Another research direction of multi-antenna reception 
is to improve the robustness of RTK-GNSS precise positioning. Firstly, at the fix solution level, where 
correct integer ambiguities have been obtained, Farhad [10] combined redundant GNSS fix solutions 
from three antennas with a weighted estimation method to increase precision of the positioning result. 
In addition, Taro [14] improved availability of the multi-antenna positioning outputs by transforming 
redundant antenna positions to the UAV master antenna position, using the previously solved 
vehicle attitude. Secondly, to improve the accuracy of the float ambiguity estimation, Paziewski [13] 
developed a Multiple Rover Constraints (MRC) algorithm to re-parameterize ambiguities of 
common-viewed satellites from auxiliary rover to phase center of the master rover. The MRC method 
reduced the positioning error of open-sky GNSS receivers from 2.9–2.7 cm, with a medium length 
baseline up to 70 km. However, in urban areas, applications of this method are significantly limited 
because of the reduced number of satellites visible from both antennas, as well as the enlarged noise 
in GNSS measurements. In summary, although these methods indeed increase precision and 
availability of RTK positioning by making use of the multi-antenna configuration under given 
environments, the AR success rate improvement at the float solution level is limited and therefore, 
there is still room for improvement. 
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The approach presented here aims at developing a method that takes full advantage of the 
measurement redundancy and diversity, along with the geometric constraints, between two closely 
placed rover antennas to improve accuracy of the float ambiguity estimation and, consequently, the 
AR success rate. In particular, to explore the instinct model strength for AR with different dual-
antenna constraints, an innovative Ambiguity Dilution of Precision (ADOP)-based analysis is 
performed in this paper. 

The contribution is organized as follows. In Section 2, a brief introduction of the fundamental 
model of dual-antenna constraint AR is firstly given, then gains from different constraint formulae 
are analyzed and compared, and thereafter, according to the results, a Dual-Antenna with baseline 
VEctor Constraint (DAVEC) algorithm is proposed. Section 3 demonstrates the robustness and 
availability of the proposed algorithm with both simulation and real GNSS data experimental results. 
At last, conclusions are drawn in Section 4. 

2. Methodology 

2.1. Functional Model 

Figure 1 schematically illustrates a dual-antenna configured RTK system. The base station is 
fixed in an open sky area and two GNSS rovers, termed as the master rover (r1) and the auxiliary 
rover (r2), respectively, are rigidly mounted on the surface of a vehicle. Positioning results of the 
system correspond to the phase center of the master rover.  

 

Figure 1. Dual-antenna configuration for precise Real-time Kinematic (RTK)-based Global Navigation 
Satellite System (GNSS) positioning. 

In terms of single-rover RTK, carrier phase and pseudorange observations are firstly differenced 
between satellites to remove receiver clock errors, and then, differenced again between rover and 
base receivers to remove common-mode errors, generating the following double-differenced (DD) 
observation model [18]: 
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where  is the wavelength,  is the carrier phase observation in cycle, and P  is the pseudorange 

measurement in meter.      ij i j

rb rb rb
        with      * * *

rb r b
       is the double-differencing 

operator between base b  and rover r  with satellite i  and j ,   is the geometric range, N  is 
the unknown carrier phase integer ambiguity, and   represents all the errors that cannot be 
modeled. In this paper, satellite j  is set as the reference satellite. 

As mentioned before, traditional AR resolution of the observation model in Equation (1) uses a 
two-step procedure [11]. Firstly, estimate the float ambiguity solution by means of weighted least 
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squares adjustment; secondly, search for the integer ambiguities with the well-known LAMBDA 
method. Once the AR problem is successfully solved, a centimeter-lever accurate baseline vector 

rbr  
can be obtained based on the resolved integer ambiguities, which is termed as the fixed solution. 

However, in GNSS-challenged environments, the number of visible satellites from single-rover 
receivers may fail the minimum requirement for RTK positioning. And yet, for all that, it is worth 
noticing that the entire dual-antenna system may have adequate satellites in view altogether, such as 
the situation shown in Figure 1. What is more, as the two antennas are fixedly mounted on the vehicle, 
formulae about the ultrashort baseline between rovers actually impose several constraints that can 
be used to benefit the RTK precise positioning. Consequently, a dual-antenna constraint DD model 
is constructed: 
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where 1r  and 2r  denote the master and the auxiliary rover, respectively, satellite j  and q  are 

reference satellites for each base and rover pair, and constraint function  
1 2r b r bf r r  is the known 

formula of the dual-antenna geometric constraint with prior information y .  

Particularly, function  
1 2r b r bf r r  can be characterized as either a hard or a soft constraint. By 

definition, a hard constraint must be satisfied by any solution, while a soft constraint specifies a 
function to be optimized by choosing among the feasible solutions [19]. This paper takes y  as a soft 
constraint to allow for measurement errors. Therefore, the measurement equation of the baseline 
constraint can be written as:  

 
1 2

ˆ = r b r bf  y r εr  (3)

where the “hat” symbol indicates measured quantities and ε  is the error in ˆ y . 
By linearizing Equations (2) and (3), a linearized dual-antenna constraint DD functional model 

is derived as follows:  
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where n  and m  are number of unknown ambiguities of r1 and r2, respectively, matrix A  
includes the satellite/receiver geometry [9], n n  is an identity matrix of size n , and Ξ  is the 

geometric matrix projecting vector 
1 2r b r br r  to the constraint domain. 

Accordingly, the measurement model above becomes an Integer Least Squares (ILS) problem 
with the form:  

 y Hx ε , Nx ∈ ℤ (5)

where H  is the design matrix, x  is the state vector, y  is the measurement vector, and ε  is the 
measurement noise with covariance matrix R . 
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2.2. ADOP Analysis for Three Types of Dual-Antenna Constraints 

In this section, the specific formulae of different constraint function  
1 2r b r bf r r  are discussed. 

As the two rover antennas are rigidly mounted on the surface of the platform, on the one hand, 
the geometric distance between antennas is fixed, while on the other hand, the baseline vector is 
relatively easy to obtain through the attitude determination. Therefore, three Dual-Antenna 
Constraint (DAC) strategies are evaluated in this paper, which are termed as:  

Strategy #1: Dual-Antenna with NO Constraint (DANOC).  
Strategy #2: Dual-Antenna with baseline LEngth Constraint (DALEC). The linearized constraint 

measurement equation is as follows: 
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with baseline length noise variance of 2
, =BL R , where     is the 2-norm operator for vectors. 

Strategy #3: Dual-Antenna with baseline VEctor Constraint (DAVEC), and the corresponding 
measurement equation is derived as: 

 
2 1, ,=ˆ BV r b rb BV  εr ry , , 3 3=BV Ξ I  (7)

with three-dimension baseline noise variance matrix of , =BV R R . 
Substituting Equations (6) and (7) into (4), we get the specific expression of strategies DALEC 

and DAVEC. To evaluate the performance gain of each strategy with respect to the single-antenna 
condition, the following two questions should be discussed: 
1. Although new information is introduced to the single-rover observation model from both 

baseline constraints and GNSS measurements of the auxiliary rover, the number of states to be 
estimated increases too, making it harder to precisely resolve the float ambiguities. Then, is there 
any benefit from the dual-antenna combination? 

2. As extra computation load is required to solve the expanded ILS measurement equations in the 
dual-antenna model, as well as to obtain the constraint observations in DALEC and DAVEC, we 
need to figure out which strategy should be chosen, and is there any method to reduce 
computational complexity of the algorithm? 
In this paper, we take the AR success rate as an evaluating indicator, and specifically, introduce 

the Ambiguity Dilution of Precision (ADOP) to analyze the corresponding theoretical success rate. 

2.2.1. Ambiguity Dilution of Precision 

The ADOP concept was introduced by Teunissen [20] as an easy-to-compute scalar diagnostic 
to evaluate the GNSS model strength for the AR problem. Despite its wide applications in analyzing 
single-rover baseline models [21], the ADOP has rarely been used in multi-antenna constraint AR 
analysis. The definition of ADOP is given as [20]:  

ˆ

1

ADOP= 
N

Q  (8)

where   is the number of unknown DD ambiguities,     is the determinant operator, and ˆN
Q  

is the covariance matrix of float ambiguities. The structure of ˆN
Q  includes design and noise 

matrixes of the measurement model in Equation (4):  
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Accordingly, the AR success rate cP  is bounded with:  

c

1
P 2 1

2ADOP


        

 (10)

where  x  denotes the cumulative distribution function of the standard normal distribution. 
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According to Equations (8) and (9), no additional measurements are required to compute the 
ADOP value. Furthermore, the geometric distribution of the satellites and measurement noise of 
GNSS observables—which as mentioned before, are the two key factors of successful AR—are 
denoted by the design matrix H  and the noise matrix R , respectively. 

2.2.2. ADOP of the Dual-Antenna Constraint System 

This section firstly deduces the general expression of Dual-Antenna Constraint ADOP, which is 
denoted by DACADOP , and then discusses the specific forms of DACADOP  under different strategies. 

According to the ILS problem of (4), the observation model can be divided into two parts, one 
of which involves the joint DD measurements from r1 and r2, with related design matrix G , 
measurement noise covariance matrix GR and measurement vector Gy ; the other involves the 

constraint with related design matrix H , constraint noise covariance matrix R , and constraint 

vector y . Therefore, linearized measurement equations in (4) can be rewritten as: 
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According to Equation (A1) in Appendix A, the dual-antenna ambiguity covariance matrix ˆN
Q  

in Equation (8) is given as:  
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where   1T 
 -1

GGQ RG G  is the covariance matrix of the constraint-free situation. 

The relationship between GQ  and state covariance matrixes of r1 and r2 under single-antenna 

RTK conditions, which are represented by 1Q and 2Q , respectively, satisfies:  
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Substituting H  and Equation (13) into (12), we can get the joint covariance matrix ˆN
Q  and 

the corresponding DACADOP : 
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where the weight matrix W  can be expressed as:  

 
1 2

1T T T
     


  b bΞ Ξ Ξ Ξ ΞQ R ΞW Q . (16)

According to the equation above, W  is essentially the inverse product of the joint positioning 
state error matrix with effects of the baseline measurement noise, as well as the single-antenna 
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positioning state errors of r1 and r2 taken into consideration. To be specific, geometric covariance 
matrixes 

1b
Q , 

2b
Q , and R  are firstly superposed in the constraint domain and then transferred to 

the positioning domain by the geometry matrix Ξ . 
Next, by substituting Equations (6), (7), and (16) into (15), the specific expressions of ADOP  for 

the above three constraint strategies can be derived as follows: 
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As can be seen, Equation (17) clearly shows that the DANOCADOP  is basically a weighted average 
of the single-antenna ADOP of r1 and r2. The weighting factor is assigned according to the number 
of unknown DD ambiguities; while in Equations (18) and (19), a correction term is added to the 
ambiguity covariance matrix of strategy DANOC. To be specific, the modification is theoretically a 
projection of the combined state errors of r1 and r2, which are represented by weighting matrix W

, from position domain to ambiguity domain.  
Moreover, noting that ,BVW  is reversible, according to Appendix A, the formula of 

DAVECADOP  can be transformed as follows:  
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Apparently, compared with DANOCADOP , an extra combination gain in DAVEC from prior 
knowledge of the baseline vector turns up, which is represented by the second term on the right in 
Equation (20). In terms of physical meaning, in the numerator of the correction term above, the 
positioning state errors of both r1 and r2 are reduced, resulting in a smaller value than the dominator. 
However, since the weighting matrix ,BLW  is irreversible, an explicit expression of the relationship 

between DANOCADOP  and DAVECADOP  cannot be provided.  

2.2.3. ADOP-Based Performance Gain Evaluation  

In order to examine the performance gain of above dual-antenna combination strategies, the 
ADOP-based instantaneous AR success rates are simulated and compared in the following scenarios:  

Scenario #0: Single-antenna (SANT) RTK as a reference; 
Scenario #1: DANOC while each rover has one exclusive satellite that can only be observed by 

each antenna itself, and thus, the whole system has one more satellite in view than r1/r2; 
Scenario #2-1: DALEC while two antennas share a common view of satellites; 
Scenario #2-2: DALEC while each rover has one exclusive satellite; 
Scenario #3-1: DAVEC while two antennas share a common view of satellites; and 
Scenario #3-2: DAVEC while each rover has one exclusive satellite. 
In all scenarios, receiver r1 and r2 observe an equal number of satellites ranging from 5 to 10 

with a cut-off elevation angle of 15 degrees. Standard deviations (STDs) of the additive white 
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Gaussian noise in r1 and r2 carrier phase and pseudorange measurements are 0.005 m and 0.5 m, 
respectively. STDs of the baseline length measurement in Scenarios 2-1 and 2-2 is 0.010 m, and STDs 
of the baseline vector measurements in Scenario 3-1 and 3-2 are 0.040 m and 0.080 m in horizontal 
and vertical directions, respectively.  

Figure 2 shows the simulated AR success rate of above six scenarios.  

 

Figure 2. Simulated ambiguity resolution (AR) success rate of dual-antenna combinations with Dual-
Antenna with NO Constraint (DANOC), Dual-Antenna with baseline LEngth Constraint (DALEC), 
and Dual-Antenna with baseline VEctor Constraint (DAVEC) compared with referencing single-
antenna method. 

As depicted in the figure, the success rate increases as the number of visible satellites rises. 
However, compared with Scenario 0, a slump appears when two antennas are directly combined in 
Scenario 1. The reason is that, for DANOC, AR resolutions of r1 and r2 are mutually independent 
and the ADOP value for the master rover is equal to that in Scenario 0; however, the total number of 
unknown DD ambiguities of the dual-antenna system (Na) is doubled, thus the success rate drops to 
one-half of the root of the single-antenna AR. For DALEC, the AR estimation upper bound is increased 
by 10–20%; meanwhile, the emergence of exclusive satellites in Scenario 2-2 also brings some extra gain. 
The largest combination gain comes from DAVEC, whose AR success rate is greater than 90% for all 
simulated number of visible satellites. 

According to the results above, no combination gain could be seen from DANOC, which means 
that the cost of increasing system unknowns is greater than the benefit of adding the information of 
rover r2. Nevertheless, with the help of prior constraint information of the baseline vector, DALEC 
and DAVEC can bring  positive combination gains to the dual-antenna system. The best AR 
performance comes with the DAVEC method, and should be adopted in the dual-antenna algorithm 
design. 

2.3. Precise Positioning with DAVEC 

2.3.1. Mechanism 

In this section, a DAVEC-based RTK algorithm is developed. The basic idea of the algorithm is 
to generate a set of equivalent GNSS measurements of the master rover by projecting observations of 
the auxiliary rover to the phase center of the master rover with the use of the known baseline vector.  

The reason for the projection process is as follows. On the one hand, in terms of the ILS problem 
in Equation (4), the rover r2-related state parameters are of no concern to our system, but increase 
both computational burden and AR difficulty of the algorithm. On the other hand, with the early-
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solved baseline vector, no Degree of Freedom (DOF) remains between r1 and r2, meaning that the 
position and DD ambiguities of r2 can be determined uniquely by that of r1, along with the baseline 
vector. Therefore, with the procedure of projecting, a new dimension-reduced observation model can 
be obtained in the form of: 

1

1

r b

r b

f
  
  


    
y ε

r

N
   (21)

where 
1rb

N


 is the equivalent DD ambiguities of all satellites in view of the dual-antenna system. 

Specifically, 
1rb

N


 comprises of two parts: DD ambiguities of satellites observed by r1 and DD 

ambiguities of satellites observed by r2 only, denoted by 
1rb

N  and 
2r b

N , respectively. 

Below, a four-step projection process for DAVEC-based RTK is introduced. 

Step i: Select the reference satellites for rovers r1 and r2. 

Line-of-Sight (LOS) satellites of the dual-antenna system can actually fall into three classes: 
Common-viewed ones observed by both r1 and r2, ones observed by r1 only, and ones observed by 
r2 only, which are named as classes ComSAT, ExcSAT1, and ExcSAT2 in Figure 3, respectively. 

 

Figure 3. Classification of Line-of-Sight (LOS) satellites of the dual-antenna system according to each 
antenna’s visibility situation. 

Reference satellites for differencing between satellites are selected among the common visible 
satellites in class ComSAT. Specifically, if two or more satellites are observed by both r1 and r2, the 
one with the highest elevation angle (such as the Sat 2 in Figure 3) should be chosen as the reference 
satellite for both antennas. Otherwise, if the number of satellites in ComSAT is less than two, which 
means there are no common DD ambiguities between r1 and r2, the reference satellites are selected 
independently as the same as the single-antenna situation.  

Step ii: Project pseudorange observations of the auxiliary antenna to the phase center of the 
master rover. 

The DD pseudorange measurement of rover r2 can be transferred to the phase center of r1 by 
adding a geometric range correction to it:  

1 2 2 1
ˆpq pq pq

r b r b r rP P      (22)

where q  is the reference satellite of r2, p  represents any other satellite except q , and 
2 1

ˆ pq
r r  is 

the geometric range correction term, which can be approximated as:  

2 1 2 2 2 1
ˆ ˆ( )pq p q
r r r r r r    1 1 r  (23)
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where ‘  ’ denotes the dot operator, p1  is the LOS unit vector from the phase center of r2 to satellite 
p , and 

2 1
ˆ
r rr  is the estimated baseline vector between r1 and r2. 

Step iii: Project carrier phase observations of the auxiliary antenna to the phase center of the 
master rover. 

In addition to geometric range corrections, the DD ambiguities between the DD carrier phases 
of r1 and r2 also need to be eliminated from the projection of DD carrier phase measurements of r2, 
since what we will estimate are the DD ambiguities of r1, not the ones of r2. Thus, the projection can 
be expressed as:  

1 2 2 1 2 1
ˆ= - -pq pq pq

rb r b r r
pq
r rN        (24)

where 
2 1

q
r
p
rN  is the DD ambiguity of the baseline vector 

2 1r rr . Specifically, since the measurement 

error in 
1 2

pq
r r  is small, even in GNSS-challenged environments (within 0.25 cycle), and 

2 1
ˆ pq
r r  is 

derived from the accurate baseline vector, the DD ambiguity 
2 1

q
r
p
rN  can be determined as the 

rounding result of their difference, as shown in (25). One exception is that the involved satellite p or 
q is observed by r2 only and the DD ambiguities between r1 and r2 are inexistent; in this case, we set 
the corresponding DD ambiguities zero, which means we will solve the DD ambiguities of r2, instead.  

 2 1

2 1

2 1

ˆ
,  if ,  are common in view

0,  otherwise

pq
r rpq

r rpq
r r

p q
N




 
  

    



 (25)

where    is the rounding operator. 
After the projection, DD ambiguities of r2 satellite pairs in class ComSAT are removed from the 

state vector in Equation (4). In other words, only DD ambiguities related to satellites in class ExcSAT2 
are added to the original single-antenna state vector, thus greatly reducing the computational burden, 
as well as the difficulty of solving the AR problem. 

Step iv: Calculate covariance matrix of projected GNSS measurement noises of the auxiliary 
antenna. 

To estimate noise characteristics of the projected measurements, we should take the baseline 
vector measurement noises into consideration. Namely, the projected measurement noise covariance 
matrix can be derived by superimposing the ranging noise in 2, ,Pε  with that in 

2 1
ˆ pq
r r . 

 
2 11, , , ,2

Te n e T T
P P n r r n   R R DΨ C R C Ψ D  (26)

where 2, ,PR  is the noise covariance matrix of r2, 
2 1

n
r rR  is the baseline vector noise matrix in the 

East-North-Up (ENU) coordinate, e
nC  is the rotation matrix from ENU to the Earth-Center-Earth-

Fixed (ECEF) coordinate, 
2 2 2

1 2 Tn
r r r   Ψ 1 1 1  is the geometric projection matrix, and D  is the 

single-differencing matrix.  
In this paper, the ENU errors of 

2 1
ˆ
r rr , which are denoted by 2

e , 2  n , and 2
u  are mutually 

independent, thus 
2 1

n
r rR  can be formulated as a diagonal matrix with  

2 1

2 2 2n
r r e n udiag   R . In 

practice, the baseline vector noise matrix can also be obtained during the attitude determination of 
the baseline vector. A detailed derivation of Equations (22)–(26) is provided in Appendix B.  

Consequently, the joint covariance matrix of measurements 
1

pq
rbP   and 

1

pq
rb  is expressed 

as: 

1,
1

1,P

 
  
  

R 0
R

0 R




  (27)
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2.3.2. Functional Model of DAVEC-Based RTK 

Based on Equations (22)–(27), a dimension-reduced DAVEC measurement model is re-
constructed as follows:  

1 1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 2 1

1 1
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,
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+

+
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1 ,
pq
rb P

 (28)

where the third and fourth equations in (28) correspond to r2-visible satellites in class ComSAT, and the 
fifth and sixth ones correspond to those in class ExcSAT2. 

After linearizing the original and projected DD measurements with respect to the state vector in 
Equation (21), a new linearized DAVEC model reads as: 
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where 2 1n m  is the number of satellites in class ComSAT, 1n  and 2m  are satellites visible only in r1 
and r2, respectively. As can be seen, positioning state parameters 

2r b
r  and the unknown DD 

ambiguities of r2, which can be calculated from those of r1, are eliminated from the original functional 
model in Equation (4), so are the constraint measurement equations.  

Finally, after solving the ILS problem in Equation (29), a more accurate float solution can be 
obtained, thus facilitating the subsequent AR search. 

Here, a simple discussion is given below to provide a qualitative explanation for the 
performance gain from DAVEC. For simplicity, considering a single GNSS system and single-
frequency dual-antenna system, we denote s  and t  as the number of visible satellites in r1 and r2, 
respectively, l as the number of total DD measurements,  as the number of system states, and k
as the number of satellites observed by the auxiliary antenna only. The formulae of l  and   are 
given as: 

   
 

 

2 1 2 1

6 ( 1) 1

3 1

DANOC

DAVEC

l s t

s t

s k





   

    

   

 (30)

Taking =4,6,8s t  and 0,1k   for example, the number of measurements and unknowns of 
DANOC and DAVEC are compared in Table 1.  

Table 1. Number of GNSS measurements and unknowns of DANOC and DAVEC. 

s/t l 
ω 

DANOC DAVEC, k=0 DAVEC, k=1 
4 12 12 6 7 
6 20 16 8 9 
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8 28 20 10 11 

As can be seen, compared with DANOC, the number of unknowns is reduced by half in DAVEC 
with k = 0 and is as the same as the one in the single-rover situation. In this sense, the performance gain is 
obtained from redundant observations of the same satellite. Moreover, in the condition of k = 1, although 
one more DD ambiguity is introduced, an improved satellite distribution is provided, which becomes 
another source of the DAVEC performance gain. Therefore, the float solution is enhanced by two 
factors: Redundancy in GNSS observations and improvement of the satellite geometric distribution. 

3. Experiments 

In this section, simulation experiments are firstly conducted to analyze the effects of 
measurement noises on AR performance of DAVEC, then road tests in urban areas are carried out 
for performance validation of the algorithm.  

3.1. ADOP-Based AR Success Rate Simulation  

To illustrate the effects of different factors on the DAVEC algorithm, an ADOP-based success 
rate simulation is conducted, as shown in Figure 4b, with normal/large measurement noises of r1 and 
r2, and different baseline vector estimation noises. Code pseudorange and carrier phase noise STDs 
of the large noise situation are 1.0 m and 0.052 cycle, respectively, and the ones of the normal noise 
situation are 0.5 m and 0.026 cycle, respectively. Simulation experiments are designed with both 
antennas that suffer from large measurement noises (L, L), both have normal noises (N, N), and the 
noise STDs of r2 are significantly greater than that of r1 (N, L). Baseline vector noise STDs in 
horizontal range from 0.001 to 0.05 m, and in vertical the values are doubled, under the assumption 
that the DD ambiguities between r1 and r2 are resolved correctly. The AR success rate of single-
antenna RTK with r1 is used as a reference. The satellite distribution is plotted in Figure 4a, with six 
visible satellites in a shared view of r1 and r2. 

 
 

（a） （b） 

Figure 4. (a) Satellite geometry distribution. (b) Ambiguity Dilution of Precision (ADOP)-based AR 
Success rate of DAVEC and Single Antenna (SANT) algorithms under (a). 

As can be seen, the success rate drops as the baseline noise rises, and when the noise exceeds a 
certain threshold, the AR success rate of DAVEC becomes lower than that of SANT. For noise 
combinations (L, L) and (N, N), the thresholds of noise STDs in horizontal are greater than 0.05 m, 
which is approximately the upper bound value for correct AR estimations between r1 and r2. While 
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for the combination with r2 GNSS measurements much more deteriorated than those of r1, a dual-
antenna combination gain still exists when the horizontal noise STD is smaller than 0.016 m.  

 
 

（a） （b） 

Figure 5. (a) Satellite geometry distribution. (b) ADOP-based AR Success rate of DAVEC and SANT 
algorithms under (a). 

In addition, a similar simulation under a poor satellite distribution is conducted with all the six 
visible satellites distributed in the northern sky. The success rate and the satellite geometry 
distribution are plotted in Figure 5. With such satellite geometry distribution, the success rate drops 
greatly in comparison with the situation under normal geometry distribution. For all measurement 
noise combinations (L,L), (N,N), and (N,L), the proposed DAVEC method always has performance 
advantages over SANT over the range of simulated baseline noises. Here, comparing with the 
simulation experiment above, under normal satellite distributions, a larger baseline noise STD range 
is seen due to the significantly decreased referencing single antenna AR success rate. 

In fact, the ENU error STDs of baseline vectors in urban environments are usually at the level of 
0.005 m in horizontal and of 0.010 m in vertical. Meanwhile, in most GNSS dual-antenna applications, 
the distance between the two antennas is less than 1.5 m [22].  

  

(a) (b) 

Figure 6. (a) Experimental platform configured with two GNSS antennas for raw observation data 
collection. (b) Road test routine in Tsinghua University, Beijing, China, including three dynamic 
scenarios through dense foliage, urban canyons, and open areas, represented by characters A, B, and 
R, respectively. The RTK base station was located at the position marked with a star. 

3.2. Road Test  
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3.2.1. Data Collection 

Figure 6 shows the dual-antenna experiment platform and the road test routine, respectively. 
Two Harxon GPS500 GNSS antennas were installed on the top of a vehicle with a distance of 40 cm, 
and the Trimble MB-Two dual-frequency GNSS receiver was employed for GPS L1CA raw 
measurements. The base station for RTK was located on the rooftop of the Weiqing building. Test 
scenarios include dense foliage, urban canyons, and open areas, with a driving speed of around 20 
km/h. 

Figure 7 depicts the number of satellites visible in the master and auxiliary antennas during the 
whole routine, along with the Position Dilution of Precision (PDOP) parameter, which is a common 
indicator of the effect of satellite geometric distributions on positioning. Theoretically, the smaller the 
PDOP is, the more precise the positioning results will be.  

 

Figure 7. Number of visible satellites and values of Position Dilution of Precision (PDOP) in different 
scenarios for the master rover r1 (top) and the auxiliary rover r2 (bottom). 

As can be seen, in the open area, up to seven satellites were visible, and the PDOPs were 1.5 and 
1.9 for r1 and r2, respectively. While in GNSS-challenged environments, the number of satellites in 
view fluctuated significantly from zero to seven, and the PDOPs reached at as much as 8.0. Strong 
PDOP values (>5.0) appeared occasionally in test scenarios A and B because of a quite small number 
of visible satellites (only four at most times) and the poor satellite geometric distribution. However, 
it is worth noting that, although individual rovers suffered from insufficient satellites, a 
complementary behavior appeared between two rovers with different numbers of visible satellites 
and different satellites distributions. This reception diversity could bring benefits for RTK precise 
positioning in urban environments by dual-antenna combination.  

3.2.2. Dual-Antenna ADOPs  

Figure 8 compares the average ADOPs of the master rover (SANT1), the auxiliary rover (SANT2), 
and the DAVEC configuration with both antennas. It can be seen that, on the one hand, for both single 
and dual-antenna RTK algorithms, the open area environment gave the smallest ADOPs, while 
driving through dense foliage (Scenario #A) provided the largest ADOPs. On the other hand, 
compared with the master rover, a decline of ADOP appeared in DAVEC, with a percentage of 44.2% 
and 47.0% in Scenarios #A and #B, respectively. As mentioned before, this ADOP gain comes from 
the geometric distribution improvement and measurement redundancy. 
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Figure 8. The average ADOPs of the master rover (SANT1), auxiliary rover (SANT2), and DAVEC in 
open areas and GNSS-obstructed observing environments. 

3.3.3. Positioning Results 

In this paper, single-epoch RTK positioning results are calculated to facilitate performance 
demonstration of the proposed DAVEC algorithm. 

 

(a) 
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（b） 

Figure 9. Single-epoch precise positioning results of: (a) SANT1 and (b) DAVEC. 

Figure 9 depicts precise positioning results of the single rover and DAVEC–based RTK, as well 
as a partial enlargement near the skywalk between buildings. As can be seen, the proposed algorithm 
recovered more quickly from GNSS blockages and provided more robust RTK positioning solutions. 
According to statistic results, the RTK success rate is improved from 48.4% to 85.3% for the entire test 
routine. The success rate is defined as the proportion of fixed AR results to all the float results. 

Table 2. Number of AR fixed epochs with different satellite visibility with respect to non-identical 
and identical viewed satellite conditions. 

Nsat 
(r1) 

SANT1 DAVEC 
IMPR 

Non Iden Total Non Iden Total 
≤3 - - - 355 - 355 - 
4 335 329 664 543 481 1024 54.2% 
5 294 748 1042 1216 1876 3092 196.7% 
6 121 1568 1689 498 4461 4959 193.6% 
7 - 987 987 - 1111 1111 12.6% 

Total 750 3632 4382 2612 7929 10541 140.6% 

Moreover, at each epoch, the auxiliary antenna r2 either observes the same satellites as r1, or has 
one or more different satellites from r1, which are termed as the “Identical View” situation and “Non-
identical View” situation, respectively. Namely, in the first case, improvement of AR performance of 
the DAVEC algorithm only comes from the GNSS measurement redundancy, while in the second 
case, satellite geometric distribution is also improved.  

To explore the contribution of the above two factors in the performance gain of DAVEC-based 
RTK, the number of AR fixed positioning results under different satellite visibility conditions of r1 
are counted in Table 2. For each number of r1-observed satellites, statistics on the number of Identical 
View and Non-identical View situations are given, as well as the percentage of availability 
improvement for DAVEC compared with SANT1. 

It can be seen from Table 2 that, when the master antenna fails to observe sufficient GNSS 
satellites (Nsat ≤  3), the proposed algorithm may successfully solve the ambiguities by the 
procedure of dual-antenna combination. When the number of r1-visible satellites ranges from four to 
six, significant AR performance gain is obtained for both Identical View and Non-identical View 
situations. As last, when the Nsat reaches seven, the DAVEC algorithm can still improve the AR 
success rate moderately, even though the single antenna RTK can already achieve a relative high AR 
success rate. 

In addition, even though the relative improvement percentage is high, the absolute number of 
AR fixed epochs enhancement was from 4382/16683 (26.3%) to 10541/16683 (63.2%), meaning that 
there is still room for improvement in future applications of the DAVEC algorithm. Particularly, if an 
Inertial Measurement Unit module can be introduced in for attitude determination of the on-board 
baseline vector, a higher AR success rate can be expected. 

Hereafter, precision and availability of the DAVEC-based RTK positioning results in different 
GNSS signal environments will be discussed. 

i. Open Sky Environment Test 
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Figure 10. East-North-Up (ENU) Positioning errors of single rover RTK (top) and DAVEC-based RTK 
(bottom) algorithms in open areas from GPS time 5:39:25 to 5:44:25. 

Figure 10 illustrates the positioning errors of single-rover and DAVEC-based RTK in the ENU 
coordinate, respectively. The reference trajectory is obtained from a self-developed dual-frequency 
(GPS L1C/A+L2) high-precision post processing GNSS software receiver. It is evident from the graph 
that many outliers in SANT1 positioning results appear with incorrect integer ambiguities due to 
limited number of visible satellites, which is six in the test environment. Nevertheless, almost no 
abnormal values have been found in DAVEC-based positioning results. The three-dimension STDs 
are determined on the basis of the shown errors, which for SANT1 are 0.022 m, 0.061 m, and 0.197 m, 
respectively, and for DAVEC are 0.003 m, 0.005 m, and 0.020 m, respectively. 

ii. Urban Environment Test 

Figure 11 shows the estimated baseline vector between r1 and r2 for dynamic experiments under 
urban environments in the ENU coordinate. The MSR method in [17] was adopted, since it is suitable 
for single-epoch attitude estimation of ultra-short baselines from 0.2 to 1.5 m in length. Statistic results 
show that the success rate of attitude determination for Scenarios #A and #B are 90.6% and 83.5%, 
respectively. In UAVs and other GNSS dual-antenna applications, an INS module is usually 
configured and can be used to enhance attitude determination of the platform. 
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Figure 11. Dual-antenna baseline measurements for dynamic experiments under urban 
environments. (Scenario #A: From GPS time 5:44:30 to 5:49:00; Scenario #B: From GPS time 5:50:00 to 
5:57:00.) 

Figure 12 gives the RTK positioning results under different satellite availability conditions of the 
master antenna during test Scenarios #A and #B. In Figure 12(a), the total number of AR fixed epochs 
is 500 for SANT1 and 1108 for the DAVEC algorithm with an increase of 123.6%. For most epochs, 
the number of satellites observed by r1 is four or five, and the identical view satellite condition is 
more likely to appear than the non-identical view one. While in Figure 12(b), the total number of AR 
fixed epochs is 607 for SANT1 and 1221 for the DAVEC algorithm with an increase of 101.2%. Since 
in building-blocked environments, the satellite is only obstructed occasionally and from different 
antennas, the non-identical view condition has a relatively higher probability to occur. To sum up, in 
test environments with dense foliage and urban canyons, the characteristics of satellite reception 
diversity between two antennas are different, but in both situations, a great AR performance gain 
from the proposed algorithm can be seen.  

(a) (b) 

Figure 12. Statistics for AR-succeeded epochs with DAVEC and single rover RTK with respect to the 
number of visible satellites from the master rover for : (a) Scenario #A and (b) Scenario #B. 

4. Conclusions 

To realize robust and precise RTK-GNSS positioning with a dual-antenna-configured system in 
GNSS-challenged environments, this paper proposed a Dual-Antenna RTK algorithm with baseline 



Sensors 2019, 19, 3586 19 of 22 

 

VEctor Constraint, namely the DAVEC. By comparing the model strength of DAVEC with DANOC 
and DALEC through an innovative dual-antenna ADOP method, performance gain of DAVEC was 
illustrated. A less computational DAVEC-RTK algorithm was proposed based on the concept of 
measurement projection, in which the reception diversity between two antennas are taken advantage 
of to improve satellite distribution of the master rover. Experiment results show that in the given test 
environment, the system AR success rate has been improved from 48.4% to 85.3%, and the three-
dimension precision of the relative positioning under open sky condition is within 0.02 m. Therefore, 
the algorithm is able to provide more precise positioning results with higher RTK success rate. 

This paper discussed the algorithm with two antennas, but it can easily be expanded to situations 
with more antennas. The integration of DAVEC-based RTK with self-contained sensors, such as the 
INS, will be further researched in our future works. 
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Appendix A 

1. Mathematical Formulae Used in the Dual-Antenna ADOP Derivation  

The following formulae are used in the derivation of the dual-antenna constraint ADOPs. 
If matrixes A  and C  are reversible, 

   -1-1 -1 -1 -1 -1 -1A+BCD = A -A B DA B+C DA  (A1)

If 
11 12

21 22

 
 
 

A A
A=

A A
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and,  
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det det det

det det





 

 

A A A A A A

A A A A A
 (A3)

If matrixes A  and B  are reversible: 

1 1   A DB C B A B CA D  (A4)

2. Derivation of the ADOP with Baseline Vector Constraint. 

Hereafter, the derivation of Equation (20) is described. 
For a DANOC-based dual-antenna combination, the covariance matrix ˆN

Q  is given as: 
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Substituting the above equation into (15), we have: 
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If 0 W , according to Equation (A4), 
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For DAVEC-based dual-antenna combination, since  
1 2

1

, ,BV BV 


  b bW Q Q R  is reversible, 

the ADOP  can be rewritten as:  
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Appendix B 

The derivation of the DAVEC algorithm is given below. 

1. Measurement Projection Based on the Known Baseline Vector: 

Proof: 
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According to [23, P170]: 
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Then by subtracting 
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Therefore, 
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For the second equation in (B1), subtract 
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we have:  

2 2 1 2 1 1 1 2 ,= +ij ij ij
r

ij ij ij
rb r r r r b b r brN N              (B6)

End of proof. 

2. Noise Projection Based on the Known Baseline Vector: 
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According to [23, P168], the SD geometric distance between r1 and r2 can be expressed as:  
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where e
nC  is the rotation matrix from ECEF to ENU. 

The SD geometric distance 
2 1r rρ is derived as: 
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The measurement noise in 
2 1r rρ  is expressed by: 
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Thus, the STD of 
2 1r r


ρ

 can be estimated with: 
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Therefore, the covariance matrix of SD baseline vector measurement is: 
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Accordingly, for SD measurements of r2: 

1 2 2 1 2 1
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The projected carrier phase SD measurement error is obtained through:  

2 1  Σ R  (B13)

The projected pseudorange SD measurement error after projection:  
2

2 1 LPratio    Σ R  (B14)
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