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Abstract: This paper presents a framework for the evaluation of system complexity and utility and
the identification of bottlenecks in the deployment of field-based, high-throughput phenotyping
(FB-HTP) systems. Although the capabilities of technology used for high-throughput phenotyping
has improved and costs decreased, there have been few, if any, successful attempts at developing
turnkey field-based phenotyping systems. To identify areas for future improvement in developing
turnkey FB-HTP solutions, a framework for evaluating their complexity and utility was developed
and applied to total of 10 case studies to highlight potential barriers in their development and
adoption. The framework performs system factorization and rates the complexity and utility
of subsystem factors, as well as each FB-HTP system as a whole, and provides data related to
the trends and relationships within the complexity and utility factors. This work suggests that
additional research and development are needed focused around the following areas: (i) data
handling and management, specifically data transfer from the field to the data processing pipeline,
(ii) improved human-machine interaction to facilitate usability across multiple users, and (iii) design
standardization of the factors common across all FB-HTP systems to limit the competing drivers of
system complexity and utility. This framework can be used to evaluate both previously developed
and future proposed systems to approximate the overall system complexity and identify areas for
improvement prior to implementation.

Keywords: systems analysis; human-machine interaction; complexity analysis; technology adoption

1. Introduction

While there has been much work and progress in developing automated, commercial phenotyping
systems in controlled environments (e.g., LemnaTech Conveyor Scanalyzer, Phenospex TraitFinder),
there remains a need to continue developing systems for phenotyping at larger field scales. Field-based
systems that employ proximal sensing approaches enable data collection at high spatial resolutions
necessary for measuring a variety of morphological and physiological traits in realistic growing
conditions over an entire growing season. These FB-HTP systems commonly utilize image, spectral,
and climate sensors to collect data at the plant, row, or plot level in crop systems, operating with
varying levels of autonomy. These field systems are typically built by interdisciplinary academic
research teams for highly specialized phenotyping needs. Although the capabilities of technology used
for high-throughput phenotyping have improved and costs decreased, there have been few, if any,
successful attempts at developing turnkey field-based phenotyping systems. To address this issue,
this work presents and implements a framework for characterizing system utility and complexity and
evaluates FB-HTP systems through a meta-analysis to identify bottlenecks in adoption, and identifying
areas for future work in system improvement.
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It has been suggested that resources for developing these systems, maintaining standards for data
collection and management, integrating data from multiple sources, environmental challenges, and
the need for specialized solutions may all be limiting factors of FB-HTP development. The phenomics
community has acknowledged difficulties due the complexity and scale of data needed by the academic
sector and breeding programs [1,2]. Additionally, it has been observed that FB-HTP platforms are
built by large, interdisciplinary teams for specialized needs and require significant resources [3],
prompting recommendations for phenotyping systems to be low cost [3,4], usable [2,3], and open
source [1–3], but unfortunately these recommendations have yet to be adopted across a wide range of
field-based phenotyping applications. There remains a lack of development and adoption of turnkey
FB-HTP systems, particularly ground-based systems, suggesting that a systematic investigation into
development challenges is warranted.

To motivate the need of understanding bottlenecks in developing FB-HTP systems, a citation
search using the Web of Science database was conducted to understand recent trends of field-based
phenotyping systems in the literature. The search queried all records with the words “field AND
phenotyping” present in the title, abstract, or keywords which resulted in 2823 records. A second search
was similarly conducted and filtered using the terms “field AND phenotyping AND high throughput”
to focus on the development of HTP systems, which resulted in 299 records. It can be easily seen
from Figure 1 that the number of publication records focusing on field-based phenotyping systems
has steadily increased over the past decade, indicating a trend of increased efforts in development,
evaluation, and deployment of this technology. Although work in FB-HTP development is temporally
increasing, this field is likely still in its infancy, and a framework for conducting systems-level analysis
is merited to identify potential areas of technology advancement and adoption as this trend continues.

(a) (b)

Figure 1. (a) The total number of records matching search criteria for “field AND phenotyping”,
and (b) total number of records matching search criteria for “field AND phenotyping AND high
throughput”. To eliminate irrelevant topics, search results were filtered to include the following fields:
agriculture, plant sciences, science technology other topics, imaging science photographic technology,
computer science, engineering, instrumentation, remote sensing, automation control systems,
and robotics.

The purpose of developing an evaluation framework is to assess the quality, performance,
and sophistication of the system [5]. The development of a framework also enables the evaluation of
the intrinsic properties, usability, and utility of FB-HTP systems in their environment. Related work
has been done to develop methods of evaluating usability of agent-based information systems [6],
including methods which decompose a central domain into smaller dimensions and use qualitative
scales to determine ratings based on a set of predetermined criteria [7,8]. Comparatively, a systems
approach can also assess subsystem properties to evaluate emergent properties of the system in its
entirety [9] and evaluate interactions between subsystems [10]. These types of analysis tools are useful
for FB-HTP systems due to their system complexity, multiple and diverse users, and the necessity to
perform system decomposition for cross-platform analysis and comparison.
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One particularly useful framework for software evaluation developed by Boloix and Pierre [5]
enabled assessment of the system’s quality and sophistication by investigating and consolidating
multiple points of view. Additionally, their framework simplified complex mechanisms to make large
amounts of available information useful and provide a basis for comparison. Their framework [5]
was adapted for FB-HTP platforms by taking a systems approach and integrating it with an approach
for project complexity evaluation [11,12]. This newly developed framework provides a tool for
evaluating FB-HTP systems that considers the following points of view: the research project goals,
the phenotyping platform requirements, the crop system requirements, and the data analysis pipeline.
The evaluation outcome is valuable because it identifies gaps in current research efforts and points to
future research directions that are necessary to overcome the current challenges related to developing
turnkey hardware and software for FB-HTP platforms.

This paper is organized as follows: Drawing on insights from the literature and a qualitative study,
Section 2 presents the systems approach and framework development for evaluating FB-HTP systems.
Section 3 describes the implementation of the framework on a set of 10 field-based phenotyping
systems and includes results from the framework evaluation. Finally, Section 4 presents a discussion
of the results, and Section 5 presents the conclusions and future directions of this work.

2. The Framework and Evaluation Approach

The original Boloix and Pierre framework was built on the Goal Question Metric (GQM) approach,
which assumes that goals are specified first, then the data required to complete those goals are
identified, followed by providing a framework for handling and interpreting the data in order for a
system to operate in a purposeful way [13]. The adaptation of their framework to FB-HTP systems
required taking a systems approach, which considers the individual attributes of an entire system to
achieve the overall objective of a system. For this study, the overall system objective is to perform
high-throughput phenotyping in a field environment with a system that, from the perspective of a user,
is easy to use (less complex) and has the most added value (highest utility). This approach evaluates
the phenotyping system as a whole by decomposing it into appropriate subsystem dimensions and
performing factorization to assess complexity and utility at the smallest, common level. By conducting
an assessment at the subsystem and factor levels, complex behaviors can be managed and captured,
and relationships between subsystems and emergent behaviors of the whole system become apparent.

2.1. Defining the System Boundary

There are many steps in the overall breeding process, where FB-HTP phenotyping plays only
a sub-role, albeit a critical one. The system boundary considered in this framework is shown in Figure 2
below. The FB-HTP process takes place after the genetic resources and plant material are in place in a
field environment, and is considered terminated when the phenotypic traits have been extracted and
are ready for integration with other data to perform genetic analysis. These components, and their
corresponding subsystems and factors as described in the subsequent sections, are considered for
analysis within this framework.

Figure 2. The red dotted line highlights the system boundary of the field-based, high-throughput
phenotyping (FB-HTP) systems included in this analysis.
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2.2. Defining the Elements

A complete phenotyping system is made up of subsystems, or smaller units, that are
interconnected and have inputs and outputs. The subsystem dimensions in this framework are integral
for considering the complete phenotyping system and include the following: the project components,
the physical system, the operating environment, and the resulting data and processing pipeline.
These subsystems provide different opportunities for evaluation, and depending on the project team,
roles may be allocated according to the subsystems. For each given subsystem there are a set of factors
determined by further decomposition which represent the smallest unit that can effectively be analyzed
and compared across different phenotyping systems. These factors, depending on their function,
contribute differently to the overall operation of the system; some factors affect the usability of
the system, or its complexity (which should be minimized), while some factors affect the overall value
obtained from using the system, or the utility (which should be maximized). The factors can be
categorized according to their complexity and utility contributions, which are useful attributes for
classification from maturity and usability perspectives [5]. The major subsystems and their associated
factors that are common to all FB-HTP platforms are illustrated in Figure 3. It is important to note
that the complexity rating is determined from the perspective of the user or operator, as opposed
to the developer. For example, a fully autonomous navigation system may have the most complex
source code, but would be easier for someone to use than a system that requires continuous manual
input for operation. Each subsystem, the associated factors, and category ratings are defined and
described in greater detail in the following sections.

Figure 3. Illustration of the subsystem dimensions, factors, and their relationships included in this
framework. A brief description of each factor is included in the panels on the right. Definitions for
each subsystem and factor are included in Section 2.2. Factors in the gray shaded boxes are associated
with system utility, and factors in white boxes are associated with system complexity.
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2.2.1. Project

The project subsystem characterizes the context of the FB-HTP project, including the team
(personnel and institutions), goals, and resources available for completion. These factors guide
the project and provide a top-down approach for determining the subsequent subsystems and
associated factors. Table 1 describes the team and resource complexity factors, and the goal utility
factor, and provides descriptions for the Basic, Intermediate, and Advanced categories from a user’s
perspective.

Table 1. Factors associated with the project subsystem and descriptions of their associated categories.

Factor Description Category

Basic Intermediate Advanced

Complexity

Team

The personnel,
institutions, and
expertise that comprise
the team members

Few team members;
single-institution;
same or
related disciplines

Multiple team
members; one to
two institutions;
multidisciplinary
teams

Many team members
(>10), multiple
institutions; diverse
teams across many
factors (geography,
country, discipline)

Resources

The equipment (sensors
and platforms), land,
budget, and human
resources available for
use in the project

Small plots;
minimal equipment;
few team members
actively
participating in
data collection

Mid-sized field
trails; on-site
equipment
available; some
team members
dedicated for
phenotyping

Large-scale plots;
technically advanced
sensors and
equipment; many
team members
involved with data
collection operations

Utility

Goals

The high-level goal of the
phenotyping project as
stated in the introduction
or motivation sections

One-dimensional,
highly specific goal

Multi-dimensional,
high-level goal(s)

Highly complex,
multi-dimensional
goal; multiple
stated goals

2.2.2. Platform

The platform subsystem characterizes the machine properties, accompanying sensors,
and resulting capabilities of the FB-HTP system with a focus on the physical platform. The complexity
factors associated with this subsystem include navigation, operational requirements, user interface,
and operational constraints. The utility factors include the sensors, possible phenotypic measurements,
sensor resolution, and ability to integrate new sensors. All factors are detailed in Table 2 below.

Table 2. Factors associated with the platform subsystem and descriptions of the associated categories.

Factor Description Category

Basic Intermediate Advanced

Complexity

Navigation
The navigation system
capabilities of the
phenotyping platform

Fully autonomous;
little to no human
interaction
required; human as
system monitor

Some autonomous
functions; some
level of human
interaction
required

Manual operation;
no autonomy;
continuous human
input required for
operation

Requirements

Operational
requirements that must
be met for the system
to properly function

Highly flexible
operational
environments; few
to none strict
requirements

Moderate
operational
requirements;
some strict, some
flexible

Strict set of
operating
conditions and
requirements
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Table 2. Cont.

Factor Description Category

Basic Intermediate Advanced

Interface
The user interface that
controls the system
during operation

Expert knowledge
of the syste is
required to operate
using interface, for
example, command
line or hardware
interfacing

Interface is
operable with
some training,
requires some
domain
knowledge.

Visual Graphic
User Interface
(GUI) that enables
operation by a
non-expert

Constraints
The environmental and
physical constraints for
system operation

Can operate in a
wide range of
environments
and settings

Can operate in a
few environments
and settings

Strict operating
constraints and
environments

Utility

Sensors
The number and type
of sensors on board
used for phenotyping

Few or one sensor
on board;
independent
sensor operation

Few sensors on
board; integration
of sensors begins
to occur

Many sensors on
board; full system
integration and
synchronization
required

Measurements

The types of
phenotypic
measurements that the
system enables during
data collection

One to few
measurement
types; multiple
measurements can
come from
one sensor

Multiple traits of
interest; data from
a few sensors may
be combined of
synthesized

Complex traits of
different types (e.g.,
physical, spectral);
measurements are
integrated to
produce additional
metrics

Resolution
The resolution of the
sensor(s) included in
the system

Low-resolution
data; point data
only; or sensors
only capable of
collecting
plot-level data

Sensors are
capable of
producing
reasonably high
resolution data at
the plant level

Multiple
high-resolution
sensors

Integration

The ability to add
additional sensors to
the platform for
custom configurations

System was
constructed
specifically for one
or few types of
individual sensors;
highly
application specific

System is not
ready for
integration with
any sensor type,
but new sensors
can be added with
some effort

System was
constructed in a
modular fashion
with flexibility and
sensor integration
in mind

2.2.3. Environment

The environment subsystem characterizes the operational environment (e.g., the crop system) of
the phenotyping platform. Specific complexity factors associated with the environmental dimension
include planting configuration and the plant structure, and utility factors include the environmental
resolution of the data and the range of crops suitable for deployment, which are described in Table 3.
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Table 3. Factors associated with the environment subsystem and descriptions of the associated categories.

Factor Description Category

Basic Intermediate Advanced

Complexity

Configuration

The planting
configuration of the crop
system, including row
spacing, plant height,
and field layout

Wide row
spacing; low crop
density;
symmetric and
ordered layout

Narrower row
spacing; taller
crops; more
complex layout

Tallest crop height;
dense planting;
narrow row
spacing; complex
field layout

Structure

The physical
characteristics of plant
architecture, including
aspects that impact
measurement

Simple plant
morphological
structure; few
occlusions;
high visibility

More complex
morphological
structure; some
occlusions

Complex
morphological
structure; many
occlusions

Utility

Resolution
Range

The range environmental
resolution of the
phenotypic data

Coarse, plot-level
data

Row-level data;
aggregate
plant-level data

Plant or plant
organ data; single
plant per genotype

Crop Range
The range of crop
systems that the platform
is capable of operating in

Platform built for
and operates in
one specific crop

Platform is
moderately
flexible and can
operate in a broad
category of crop

System is highly
flexible and can
operate in a wide
range of crops

2.2.4. Data

The data subsystem characterizes the resulting data collected from the platforms and the
processing pipeline, encompassing the entire data handling process. Specific factors associated with
this subsystem’s complexity include raw data management, data transfer methods, the level of
post-processing automation, and trait data management. Utility factors include the types of analysis
developed, the level of accessibility of the trait analysis methods, the accuracy of the methods, and how
the system accounts for variability in environmental conditions in the resulting data. All factors are
described in Table 4.

Table 4. Factors associated with the data subsystem and descriptions of the associated categories.

Factor Description Category

Basic Intermediate Advanced

Complexity

Raw Data

The methods for
storing and organizing
the raw data collected
from the sensors

Data automatically
organized
according to date,
time, and location

Some organization
or metadata
recorded
automatically, but
some manual
processing needed

All organization
and metadata
handling manually
required post-data
collection

Data
Transfer

How the data are
handled throughout
the processing pipeline

Processing on-board
with automatic
transfer for storage;
little to no
manual handling

Some manual data
handling required;
most of the process
is automated

Complete manual
data transfers
required for each
step of the pipeline
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Table 4. Cont.

Factor Description Category

Basic Intermediate Advanced

Processing
Automation

The level of autonomy
in the data
post-processing
pipeline, after data
transfer from
the platform

Fully autonomous
post-processing
software or
techniques used to
extract the trait data

Semi-automated or
semi-supervised
post-processing
techniques used for
trait extraction

Trait extraction
methods were fully
manual or required
continuous
human input

Trait Data
The methods for storing
and organizing the trait
data after computation

Data automatically
organized, usually
into a database,
with accompanying
metadata

Some automatic
organization and
metadata recording,
but some manual
processing needed

All organization
and storage
handled manually
after computation

Utility

Analysis

The type of analytical
solutions that are made
available with the
system for
post-processing of
the data

Basic analysis of
traits; raw trait data
used without
analysis

Some
post-processing
techniques made for
trait extraction;
Some detail
provided about the
analysis methods
with reference to
softwares used

Ability to extract a
wide range of
phenotypic traits;
Details explanation
provided

Accessibility
The accessibility and
availability of the data
processing methods

No code or scripts
made available; no
reference to
software used,
or proprietary
software used only;
no details about the
methods provided

Open source
software used;
methods are
standard or
available, but
specific code used
was not provided

Open source
software used, and
code or scripts used
for analysis made
available for use

Accuracy
&
Precision

The accuracy and
precision of the
resulting processed
phenotypic data

Relatively low
accuracy and
precision; no
ground-truth
procedures
performed

Moderate agreement
between system
measurements and
ground truth data

Ground-truth
results presented
for phenotypic trait
analysis, resulting
in high accuracy
(> 90%)

Variability

How the system
handles variability in
environmental
conditions in the
resulting data

Environmental
variability was not
controlled for
or measured

Variability in
environmental
conditions was
measured with each
sensor measurement

Attempts were
made to control
environmental
variability for all
sensor
measurements

3. Applying the Framework

3.1. Selection of Case Studies

A total of 10 FB-HTP system case studies were selected from the literature that met the
following criteria: (i) the phenotyping system was built for high-throughput field deployment; (ii) the
reference(s) included information about the platform (including development, sensors, and operation),
and included some examples of phenotypic data and analysis, and (iii) the deployment scale was
appropriate for breeding trials (i.e., production agriculture technology was not included). Information
about the case studies is included in Table 5, including the participating institutions, project goals,
platform type, and crop system that the platform was deployed or tested in. Detailed technical
information of each case study is not included for brevity, although this information can be found in
the Supplementary Materials.
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Table 5. Basic information for the selected case studies, including platform, crop system, institutions, and goals of developing the system.

Ref(s) Author Institutions Goals Platform Crop

[14]

Univ. of Applied Sciences Osnabrück (Competence Centre of
Applied Agricultural Eng.); Universität Hohenheim (State Plant
Breeding Institute, Institute of Agricultural Engineering);
AMAZONEN-WERKE H.Dreyer GmbH & Co. KG

To develop a tractor-pulled multi-sensor
phenotyping platform for small grain cereals

Tractor-pulled sensor
trailer

Small grains and
cereals (tested in
triticale)

[15]

Julius Kühn-Institut, Federal Research Centre of Cultivated Plants;
Liebniz Institute for Agricultural Engineering Potsdam-Bornim;
University of Bonn, Department of Geodesy; Geisenheim Uni.,
Dept. of Viticultural Engineering

To develop an automated phenotyping platform
to screen for phenotypic traits on a single-plant
level in a reasonable time

Autonomous chain
vehicle Grapevines

[16–18] Robert Bosch GmbH; University of Applied Sciences Osnabrück;
AMAZONEN-WERKE H.Dreyer GmbH & Co. KG

To develop an autonomous field scout robot for
phenotyping at the single plant level

Autonomous
four-legged rover

A wide range of row
crops, including
maize

[19]
CSIRO Plant Industry and Climate Adaptation Flagship,
Computational Informatics, and High Resolution Plant
Phenomics Centre

To develop an autonomous platform and a
software workflow solution for plot-based data

Autonomous
unmanned aerial
vehicle

Row crops that
require plot-level
data (e.g., sorghum,
sugarcane)

[20]

University of Illinois at Urbana-Champaign (Civil and
Environmental Engineering); Iowa State University (Agricultural
and Biosystems Engineering); Massachusetts Institute of
Technology

To image the plant from both the side and above
and enable phenotyping throughout the entire
growing season

Portable
between-row robot Energy sorghum

[21] Iowa State University (Agronomy, Agricultural and Biosystems
Engineering)

To create a self-propelled platform adaptable to
tall crops

Modified tractor
system

Tall biomass crops
(e.g., sorghum)

[22]

University of Arizona (Agricultural and Biosystems Eng.); US
Department of Agriculture, Arid-Land Agricultural Research
Center; Cornell University (Plant Breeding and Genetics);
Rothamsted Research (Plant Biology and Crop Science)

To develop a system that records multiple types
of data in a single pass to increase throughput
and enable more accurate and comprehensive
specification of phenotypes

Proximal sensing cart Cotton

[23] University of Nebraska-Lincoln (Biological Systems Engineering;
Agronomy and Horticulture)

To develop a multi-sensor system to collect high
throughput, plot-level trait measurements for
plant breeding

Proximal sensing cart Soybean and wheat

[24] University of Georgia (Electrical and Computer Engineering,
Agricultural and Environmental Sciences, Arts and Sciences)

To develop and evaluate a FB-HTP system
accommodating high-resolution imagers

Sensing system
integrated into a
high-clearance tractor

Cotton

[25] University of Missouri (Electrical Engineering and Computer
Science, Division of Plant Sciences)

To develop a ground vehicle that measures
individual plants coupled with an observation
tower that oversees an entire field

Autonomous mobile
platform and
stationary tower

Maize and sorghum
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3.2. Applying the Framework and Results

To apply this framework, each factor within the subsystems of all 10 case studies was evaluated
against the factor criteria presented in Tables 1–4. All information considered for this analysis was
included in the provided references. When not enough information was available in the reference,
the designation “NA” or “not available” was given. The complexity and utility ratings were reported on
the following five-point scale: 1 = Basic, 2 = Basic-Intermediate, 3 = Intermediate, 4 = Intermediate-Advanced,
and 5 = Advanced. The ratings provided are from the perspective of the user, meaning they would
value a highly advanced system for the utility ratings, but would prefer a lower rating (less advanced)
for the complexity ratings. The values were recorded in a table format similar to the Crawford-Ishikura
Factor Table for Evaluating Roles (CIFTER) presented in [11,12]. The factor complexity scores and
utility scores were added together to determine a total complexity and utility score for each FB-HTP
platform, respectively. Detailed results from applying this framework for each study are included in
the Supplementary Materials, and the final scoring results are included in Section 3.3 below.

3.3. Results of Framework Application

3.3.1. Complexity Scoring

The system complexity scoring results are shown in Table 6. As can be seen from the values in
the table, there is a wide range of complexity levels across subsystems and factors, as well as within
subsystems for a given phenotyping platform. The project team factor had complexity ratings of
intermediate or higher for half of the systems (n = 5), and the systems that had lower complex ratings
were teams comprised primarily of personnel from the same institution or from only engineering
disciplines (n = 5) [19,21,23–25]. The resources factor ratings were highly variable, which is to be
expected as each intuition and project has their own available equipment, field locations, and facilities,
and there were no significant correlations between the resources factor and any other factor included
in the complexity analysis.

Table 6. Scoring results for the complexity factors after applying the framework. The ratings were
reported on the following five-point scale from a user perspective: 1 = Basic, 2 = Basic-Intermediate, 3
= Intermediate, 4 = Intermediate-Advanced, and 5 = Advanced, where a lower rating for each complexity
factor is desirable.

Refs. [14] [15] [16–18] [19] [20,26] [21] [22] [23] [24] [25]

Project
Team Members 5 5 5 4 1 2 4 2 2 1
Resources 4 2 4 4 2 3 3 2 4 5

System
System Navigation 4 2 2 1 2 2 4 5 4 3
Operation Requirements 3 2 1 4 3 4 2 1 1 2
User Interface 2 1 4 4 5 2 5 1 1 5
Operation Constraints 3 3 2 5 4 4 4 5 2 4

Environment
Field Configuration 3 2 2 1 4 2 3 2 1 2
Crop Structure 3 2 3 2 4 4 1 1 2 3

Data
Raw Data Management 1 1 1 3 3 3 4 4 3 3
Data Handling 2 1 2 2 3 3 4 3 3 3
Data Processing Automation 1 2 3 3 2 3 5 5 1 2
Trait Data Management 2 2 1 NA 1 NA NA 4 NA NA

All of the FB-HTP systems required some level of human input for navigation. A total of
n = 5 systems were considered highly autonomous, while n = 5 of the systems required more
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continuous manual inputs. One trend for the interface implementation was the use of a graphical
user interface, or GUI, for user input, although a few of the systems did not explicitly address the
human machine interface technology [16,20,25]. The system operational requirements and constraint
ratings were also variable, although complex operational requirements were normally associated with
complex constraints [14,19–21]. In addition, complex sensor configurations enabled more complex
measurements to be collected [14,16,24,25], which is as expected. A few operating environments were
considered to be moderately complex [14,20,22], largely due to the height and density of the crop
and the row spacing, making measurements of individual plants challenging. A majority of systems
operated in intermediate or basic environments, with adequate row spacing to fit larger equipment
(for example, [15]), or planting configurations that facilitate measurements at the individual plant level
(for example, [24]). A total of n = 3 systems implemented automated organization of raw data into
databases located on board servers during the data collection processes [14–16]; however, this was not
feasible for some systems due to their form factor, which could not house the same types of computing
systems (for example, [19,20]). There were also trends in a lack of non-reported information related to
trait data management and storage aspects of the system. While reporting on data handling methods
may not be of scientific interest for documentation purposes in all cases, it is a critical component that
ultimately affects the usability and complexity of these systems.

A correlation matrix for the complexity ratings is shown in Figure 4, with only the significant
correlations (p < 0.05) highlighted. Due to the data being ordinal in nature, the Spearman correlation
coefficients were calculated and are shown in the matrix. In general, the phenotyping platform
complexity is not directly dependent on any single factor, but rather is dependent on many factors;
however, there were several significant correlations between individual complexity factors. For further
exploration of these trends, scatter plots for these data are shown in Figure 5. The first plot indicates
that more recent publications on the design and evaluation of FB-HTP systems include teams that
are less complex, or teams that have fewer individuals representing fewer disciplines. This may be
an indicator of increased interest and work in the phenotyping domain from individuals with an
engineering background, or a shift towards a more narrow focus into the technology development of
more advanced robotic systems. Additionally, it is important to note the authorship of these reference
materials does not necessarily represent all personnel who may have contributed to the system
development overall, and it is likely that all of these systems were the results of interdisciplinary
efforts (as sometimes evidenced by the acknowledgement sections). There is a second trend that
systems with less complex raw data management strategies (e.g., automatic storage and labeling
processes) resulted in less complex data handling and transfer methods across the post-processing
pipeline, possibly indicating that development effort up front in data management may reduce the
effort in handling these data throughout the rest of the project. There is also a trend that systems
with more complex environmental constraints had more complex raw data management strategies,
perhaps because the platforms designed to handle more complex environments, such as small
mobile robots [19,20,25], cannot carry the same industrial PCs and servers that large sensor carts
of tractor systems can (however, those larger systems are typically less flexible in their deployment
environments). Finally, there was a moderate negative linear relationship between the data transfer
methods and the team complexity, which perhaps indicates that teams with more diverse expertise
were better equipped with the knowledge and expertise to design the sub-systems and processes within
a FB-HTP system, although this was not evident from the remainder of the relationships between team
complexity and the other complexity factors.
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Figure 4. The intercorrelations between the complexity scores for the subsystem factors. Only scores
that were significant at the p < 0.05 level were shaded in the matrix. Note that the trait data
management factor was not included in this correlation analysis due to the high number of missing
data points, as can be seen from Table 6.
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Figure 5. Scatter plots of the significant complexity correlations from the analysis presented in Figure 4:
Team complexity and publication year (r2 = −0.852); raw data management and data transfer
(r2 = 0.840); raw data management and environmental constraints (r2 = 0.679); and data transfer
and team complexity (r2 = −0.676).
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3.3.2. Utility Scoring

The factory utility scoring results are shown in Table 7. Similarly to the complexity rating results,
there is a wide range of complexity levels across subsystems and factors, as well as within subsystems
for a given phenotyping platform. The goal factor ratings were highly variable, which is to be expected
as each intuition and project has their own agenda for conducting the associated research. Three total
systems were rated the highest utility score for the number of sensors used [14,16,24], which also
corresponded to high utility ratings for the possible phenotypes measured. There were a few systems
who used fewer sensors to collect measurements with higher utility, specifically the systems developed
in [21,25] which were able to create 3D reconstructions of the plants, which are highly valuable for
obtaining plant architecture traits, using concepts of stereovision and relatively simple sensors (e.g.,
RGB cameras). Several systems that scored high for sensor integration utility were designed to be
flexible and modular from the start [16,24,25]. For the environment factors, systems that enabled data
collection at the individual plant level scored highest for environmental resolution. Platforms that had
more flexibility in deployment (with the UAV ranking highest, and systems with flexible wheelbases
or between-row systems ranking second-highest) ranked higher for crop range utility.

Table 7. Scoring results for the utility factors after applying the framework. The ratings were reported
on the following five-point scale from a user perspective: 1 = Basic, 2 = Basic-Intermediate, 3 = Intermediate,
4 = Intermediate-Advanced, and 5 = Advanced, where a higher rating for the utility factors is desirable.

Refs. [14] [15] [16–18] [19] [20,26] [21] [22] [23] [24] [25]

Project
Project Goal 2 1 4 3 3 1 1 4 3 5

System
Sensors 5 2 5 3 2 1 2 2 5 1
Phenotype Measurements 4 1 5 2 2 2 2 3 4 3
Sensor Resolution 3 4 NA 4 3 3 3 2 4 2
Sensor Integration 5 3 5 2 2 2 4 4 5 4

Environment
Environmental Resolution 3 5 5 1 5 4 3 1 5 5
Crop Deployment Range 3 1 3 5 4 4 3 3 3 4

Data
Types of Analyses 4 2 3 4 3 4 2 2 4 5
Analysis and Data Accessibility 2 2 1 3 3 3 2 2 4 3
Accuracy and Precision 5 3 NA 3 4 4 3 2 5 5
Environmental Variability 5 4 1 1 3 3 1 4 5 4

Within the data-related factors, analysis ratings varied widely, and the types of analysis developed
for the systems included calibration, trait extraction, 3D model reconstruction, plot extraction,
among others. While each system included some level of analysis in their work, none of the selected
FB-HTP projects included the post-processing code or tools as Supplementary Materials made available
with publication; however, in some cases supplementary data were made available [15,25]. In a
majority of the references, details about the methods, and in some cases the equations used for trait
measurement, were described in detail [21,24,26], while some systems included very little detail
about the trait extraction methods [15,16,23]. Accuracy and precision across most systems were,
in general, highly suitable for phenotyping applications [14,20,21,24,25]; some systems showed lower
correlations between multiple methods for measuring the same phenotypes, but that is to be expected
as each method has some variability. Additionally, even studies which included ground truth data
were expected to have some variability due to human error. Finally, for dealing with environmental
variability (namely, solar radiation and changes in lighting conditions), a wide range of strategies were
evident, including completely enclosing the sensors to control the data acquisition environment [14,24],
adding sensors to measure changes in lighting or solar radiation [23,25], and not accounting for
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variability in environmental conditions [16,19,20,22]. Some platforms limited the time window for data
collection to ensure more optimal conditions [15,21], which is also a strategy, but limits the usability of
the system. Additionally, the need to actively consider environmental conditions at the time of data
acquisition depends on the phenotypes of interest, because solar radiation and sunlight have less of an
effect on physical plant architecture measurements, but a potentially significant effect on reflectance,
temperature, and color measurements.

A correlation matrix for the utility ratings is shown in Figure 6, with only the significant
correlations (p < 0.05) highlighted. The Spearman correlation coefficients are shown in the matrix as
well. The data for the significant relationships are shown in scatter plots in Figure 7. These correlations
highlight several interesting trends observed in these data. First, there is an increasing trend between
publication year and the accessibility of the data and analytics methods, indicating that the trend of
open source software and hardware in research is possibly increasing. Second, there is an increasing
relationship between the number of phenotypic measurements and the environmental variability
control; this is likely due to the fact that many of the platforms that controlled for lighting conditions did
so by enclosing the sensors in fabric or including sensors for measuring ambient lighting; both strategies
that were completed on sensor carts which can hold more sensors and make more measurements
compared to small, portable lightweight robotic systems. Third, there was an increasing relationship
between the types of analysis included in the study and the reported accuracy and precision of
the system. This may be because more data-intensive studies implemented ground-truth methods
and focused on the analysis as much as they did on the platform development. Finally, there was
an increasing relationship between the ability to integrate new sensors, and the possible phenotypic
measurements. The systems with high utility ratings for integration designed the systems to be
modular from the beginning, with an emphasis on flexibility for future sensors; these systems also
tended to use sensor carts capable of recording a larger number of possible recorded phenotypes.

Figure 6. The intercorrelations between the utility scores for the subsystem factors. Only scores that
were significant at the p < 0.05 level were shaded in the matrix. Note that the system from [16] was
not included in these data due to missing data points for multiple factors (see Table 7).
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Figure 7. Scatter plots for the significant utility correlations from the analysis presented in Figure 6:
Accessibility and publication year (r2 = 0.716); environmental variability control and phenotype
measurements (r2 = 0.697); accuracy and precision and analysis types (r2 = 0.779); and phenotype
measurements and sensor integration (r2 = 0.795).

3.3.3. Total Complexity and Utility Scores

The total complexity and utility scores were calculated and plotted for each system, as shown
in Figure 8. While the correlation between utility and complexity total scores is weak (Spearman
correlation coefficient r2 = 0.185), there are some systems that have more desirable total scores
compared to others. A more ideal system would have a high utility rating and a lower overall
system complexity rating; the system developed in [24] is closest to this more optimal relationship.
Alternatively, a system that ranks higher in overall complexity and lower in total utility is less desirable;
the platform in [22] is closest to this less optimal location. One major difference between these two
cases is the development of software in [24] that enables a more modular, flexible system with an
easy-to-use GUI that facilitated automated data collection, as opposed to the system in [22] that was
hardware-driven with very little software and no user interface; however, this is also an illustrative
example of how these systems can improve over time, as the sensor system in [22] was one of the first
multi-sensor phenotyping systems developed for high-throughput field work, paving the way for the
development of future systems.
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Figure 8. Scatter plot of the total utility scores and total complexity scores for each system. The most
and least optimal regions on this graph are also highlighted.

4. Discussion

This framework acknowledges that there are multiple approaches to designing field-based
phenotyping systems, that every team and project have different goals, that there are multiple
paths to achieve satisfactory results, and that the definitions of satisfactory results vary between
projects and systems. While this framework is agnostic to some of these factors in order to compare
across different case studies, there are trends in the complexity and utility rating data and how the
subsystems interface that illustrate several observations and areas for improvement in the current
FB-HTP development from which future research directions can be highlighted.

4.1. Observations from Complexity and Utility Rating Data

Several observations can be made from the complexity and utility score assessments of the
FB-HTP systems, which include: (i) lack of information and development related to data handling,
transfer, and storage; (ii) underdeveloped HMI for phenotyping system operators; and (iii) competing
contributions from factors towards the total system complexity and utility scores.

4.1.1. Observation 1: Lack of Included Information Related to the Data Subsystem

Data handling and processing remains a challenge for the phenomics community. Phenotypic data
are nearly infinite in spatial and temporal scales, vary greatly depending on the project, and require
significant storage capacity [3,27]. These challenges are evident when assessing the complexity scores
for the data-related factors. A few case studies were methodological in developing raw data handling
methods to automatically organize data into a database and process metadata in real time [14–16];
however, for many case studies, the data were collected individually for each sensor and not managed
effectively until the post-processing phase. Additionally, many systems did not detail their methods
for trait data management through the post-processing pipeline [21,23–25], and for the systems that
did mention their data handling methods, some level of manual data handling was required [19,20,22].

The manual transfer of data from the field to a central server for post-processing is both a physical
and temporal bottleneck in the efficiency of FB-HTP systems and a problem inherent to human-data
interaction (HDI). HDI can be defined as the human manipulation, analysis, and sensemaking of
data [28]. The data manipulation aspect is of particular significance to the development of FB-HTP,
and in general has the following challenges [28]:

• Large scale. Datasets are on the order of thousands, millions, or even billions of items.
• Unstructured. The data are often heterogeneous and lack coherent structure.
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• Multiple sources. The data must be combined and synthesized from several different sources,
each with their own data format and possibly without explicit relations.

These challenges directly impact the data handling and manipulation aspects of HDI. Maintaining
data management strategies and automating as much of the pipeline as possible will be necessary
for future FB-HTP systems. Additionally, it is critical that current efforts report on their data
handling and management methods so the research community can learn and make progress as
a whole. Moving forward, one particularly important research area will be reducing or eliminating the
amount of manual interaction required to transfer data from the field, which will likely require some
amount of data reduction. Potential areas of research in this domain include edge computing and
on-board data processing to extract and upload only trait data, rather than uploading entire data sets;
however, these are viable solutions only after specific traits of interest are identified and raw data
are no longer needed. As the research community continues to relate phenotype to genotype with
increasing efficiency, data reduction is expected to play a central role in future efficient deployments of
FB-HTP technology.

4.1.2. Observation 2: Inadequate Human-Machine Interaction Technology

Another trend from the system complexity analysis is the development and implementation
of effective interfacing, or HMI, for phenotyping operators and system monitors. Several of the
case studies did not include the development of a dedicated user interface [16,20,25]. Some systems
mentioned hardware or software interfaces [22,23]; however, these tend to require detailed knowledge
of how the system operates to be used effectively. Only half of the case studies developed custom GUIs
specifically for non-expert users [14,15,19,21,24], which included information such as sensor status
indicators, vehicle status, and sample imagery. While this information is likely useful, there remains a
lack of focused studies to determine the most effective HMI for field-based phenotyping systems.

Poorly designed HMI can cause errors in operation, which can affect the outcome of the
phenotypic data collection. This is especially important when commercial field-based systems are
eventually developed and selection decisions will be made from the collected phenotypic data.
In general, manual operation of multiple phenotyping tasks is not desired as the perceptual and
motor requirements of each task can interfere with each other and affect performance [29]; however,
the decision on what tasks to automate is complex, and fully automating processes is not guaranteed
to reduce cognitive load and fatigue [30]. The level of phenotyping system automation, which varied
widely across these case studies, will ultimately affect the operator requirements and the determination
of appropriate HMI [31]. A rich history of literature exists on designing automation around user
requirements, and phenotyping or agriculture-specific models should be developed to assess which
tasks should be automated [31,32]. First, however, there is a need for focused HMI studies to
understand phenotyping operator requirements in a field setting, which includes the manual operation
of machinery (e.g., tractors) and monitoring autonomous systems (e.g., small robots).

4.1.3. Observation 3: Competing Drivers of System Complexity and Utility

As with any optimization problem, there are competing interests when designing systems that
maximize utility while minimizing complexity. For example, in an effort to develop a system that can
measure a large variety of phenotypes, a user may wish to increase the number of sensors; however,
increasing the number of sensors adds technical complexity, as these sensors must be synchronized
and controlled (autonomous or manually) based on specific user needs. Another example may be
designing a platform that is highly versatile and can be deployed in a wide range of crop systems;
however, this may require more resources, such as building a custom between-row robotic system or
sensor cart, as opposed to mounting sensors to a piece of equipment readily available at the field site,
such as a tractor. Evidently, there is a wide variety in factor complexity ratings, which each contribute
to the total system complexity, but by standardizing the design of factors that can be controlled
and homogenized across systems and environments (e.g., data storage, data handling, navigation),
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these factors can start to be eliminated as drivers of system complexity. It is also important to note again
that complexity in this context is from the point of view of the user, and does not necessarily reflect
the actual technical complexity of the system. Due to variability in factors that can be attributed to
system complexity, a shift in focus may be required towards how the subsystems interact and function,
as opposed to analyses at the individual factor level, which is discussed in the future directions section.

Ultimately, any additions and design modifications must be conducted strategically and effectively
to ensure the system is usable by a wide range of users and levels of expertise. When it comes to
the design and modification of FB-HTP systems, the framework presented in this work adds value
and insight into the design process; in particular, utilizing the graphical relationship between total
system utility and total complexity. When designing future FB-HTP systems, one can use the proposed
rating system to approximate the complexity and utility scores and evaluate where the platform falls
on the spectrum ranging from more optimal to less optimal, and how it compares to other existing
platforms in the literature (as seen in Figure 8). This qualitative comparison can highlight factors
that should be improved, including both factors that other systems have succeeded at optimizing
(e.g., autonomous navigation) and factors that have yet to be consistently optimally designed within
the larger phenomics community (e.g., data transfer and management).

5. Conclusions and Future Directions

To summarize, this work developed and implemented a framework for evaluating the complexity
and utility of field-based, high-throughput phenotyping systems. The framework was developed
by taking a systems-level approach to adapting previous work [5] and integrating the framework
with established methods for complexity analysis [11,12]. A total of 10 case studies were selected and
included in the framework implementation, which rated the complexity and utility of the individual
factors and subsystems, as well as each system as a whole. The results from this evaluative framework
can also be used to determine the overall optimality of a system design based on its total complexity and
utility scores, which aids in identifying factors that need improvement in their design and effectiveness.
This study suggests that more work is needed focused around the following areas: (i) data handling and
management, specifically transfer from field to the rest of the pipeline, (ii) focused assessments related
to human-machine interaction to facilitate usability across multiple users, and (iii) standardized design
of factors common across all FB-HTP systems to limit the competing drivers of system complexity
versus system utility. By improving the human-data interaction, such as implementing edge and
on-board data reduction methods, the spatial and temporal bottleneck of transferring data from the
field may be reduced. Additionally, focused studies and modeling of the human operator will enable
better design of HMI technology that facilitates automated or semi-automated data collection while
minimizing error. Finally, by selecting a subset of factors that can be standardized across nearly all
FB-HTP systems, such as navigation and raw/trait data storage, these factors can be eliminated as
major drivers of overall system complexity while maximizing system utility. This framework can be
used to evaluate both previously developed and future proposed systems to approximate the overall
system complexity level and identify areas for potential design improvement prior to implementation.

Future Directions: Shifting Focus from Subsystems and Factors to Their Interfaces

For a given phenotyping system, the project requirements dictate the operational environment
and crop system, as can be seen from the goals described in Table 5. After these variables are defined,
the platform is constructed based on the physical constraints of the crop and environment. Then,
the development and capabilities of the platform are designed, which determine the type and amount
of data that can be collected. Finally, the phenotypic data that are collected contribute to the overall
project goal. This linear progression is illustrated in Figure 9. Ultimately, as the phenomics community
progresses towards designing effective system factors that meet user requirements for complexity
and utility, there remains the interfaces, or the connections, between sub-systems that can be optimized
as well.
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Interfaces between subsystems can be classified as four broad types: spatial, energy, information,
and material [33], which are described in Table 8. The interface between the project and the environment
is a material interface, which includes the physical inputs to create the operating environment of the
phenotyping platform. In general, phenotypic experiments are highly controlled, planned operations
that require material inputs to develop and maintain. The interface between the environment and
the platform is spatial because the system needs to operate in spatial proximity to the plants and
have a specific form factor to collect the required phenotypic data. The remaining two interfaces,
between platform and data, and data and project, are information interfaces. The platform-data interface
includes the transfer of raw data and other information from the field system to the data pipeline,
and the data-project interface includes the transfer of phenotyping information and the biological
and physiological meaning of the data to inform the project team members and contribute to the
project goals.

Table 8. Simple taxonomy of subsystem interactions [33].

Type Description

Spatial Associations of physical space and alignment; needs for
adjacency or orientation between two elements

Energy Needs for energy transfer/exchange between two elements

Information Needs for data or signal exchange between two elements

Material Needs for material exchange between two elements

Figure 9. Subsystems, factors, and interface connection types of a FB-HTP system.

By taking a systems approach moving forward, overall system performance can be improved
by optimizing and standardizing the interfaces between the subsystems and treating the subsystems
as black boxes. The material interface for experiment implementation has in general been
standardized, but areas of future work include focusing on the spatial and information interfaces.
Examples of this include designing a multipurpose physical system that can operate in many
different crops, and standardizing the metadata and minimum data requirements for phenotyping
experiments [27]. This approach is useful moving forward because the details of each factor will vary
greatly between projects, but a systems interface approach allows for design standardization and
comparison across multiple heterogeneous systems. By focusing on the interfaces between subsystems,
interoperability and transferability across systems can be ensured, while maintaining flexibility for
system development at the factor level. This flexibility is critical as the individual needs of a given
project can be highly specific, requiring the development of new factor designs.
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