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Abstract: Fiber-reinforced polymer (FRP) composites have been widely employed to design advanced
structural columns such as the hybrid FRP–concrete–steel double-skin tubular column (hybrid
DSTC) with potential benefits. To date, the safety and self-monitoring of the hybrid DSTCs are
still a challenge to overcome due to the complex damage scenarios. This paper investigates the
self-sensing performance of a newly developed smart double-skin tubular confined concrete column
(smart BFST-DSTC) made of basalt FRP–steel composite with built-in optical fiber Bragg grating
sensors (OFBGs). The design of the smart BFST-DSTC and sensing principle are firstly addressed,
followed by an experimental investigation on the basic mechanical properties and strain-based sensing
performance of ten scaled specimens under axial compression. The outcomes reveal the enhancement
of the proposed column in terms of load-carrying capacity, confinement ratio, and axial stress-axial
strain behavior, as well as failure and damage modes when compared with the hybrid DSTC.
The self-sensing investigation demonstrates that the measurement range satisfies the requirement
to monitor and evaluate the hoop strains of the FRP jackets and the health state of the inner tube.
The smart BFST-DSTC can replace the hybrid DSTC with the ability to provide early failure warning
and life cycle health monitoring.

Keywords: self-sensing; double-skin tubular column; built-in OFBG; FRP-strengthened steel;
punched-in pattern steel; life cycle strain monitoring

1. Introduction

Fiber-reinforced polymer (FRP) composites have been widely used as civil infrastructure
construction materials in the world due to their high strength-to-weight ratio, good corrosion resistance,
and tailorable mechanical properties. FRP composites offer ample possibilities for advanced structural
columns including concrete-filled FRP tube (CFFT) [1], FRP-confined concrete-filled steel tube (CFST) [2],
and hybrid FRP–concrete–steel double-skin tubular column (hybrid DSTC) [3]. The hybrid DSTC
appears advantageous due to the good combination of the outer FRP tube, the inner steel tube, and the
concrete in between. Despite presenting high-strength and good ductility properties under flexural [4]
and axial compression [5–8], the accumulated deformation occurring in the hybrid DSTC leads to
multiple damage scenarios before reaching its ultimate loading capacity. The progressive damage
includes concrete fragmentation, buckling of the inner steel tube, fiber-matrix debonding, and sudden
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fiber failure of the outer FRP tube [9,10]. Consequently, it is important to design a stronger column
with higher safety and a life cycle self-sensing ability.

Different methods have been developed for the damage detection in FRP-based confined tubular
columns. Li et al. used acoustic emission (AE) technology to analyze the damage of CFST [11].
The severity of the damage has been estimated using the AE signals. However, AE technology can
only give a response when damage has already happened, and it often requires complex data analysis.
The piezoceramic (PZT)-based method has been used to detect the interfacial condition between the
concrete and the confinement material of CFST [12] and CFFT [13]. The experimental findings showed
that the embedded PZT sensors detect and locate the interface debonding between the concrete infill
and the confinement material. However, the size of the PZT sensors limits its integration into the
FRP tube. OFBGs have been installed in the concrete–FRP interface to measure the strain state of the
concrete columns confined with FRP [14] and embedded in the inter-ply to measure the strain of the
outer FRP tube in CFFT [15]. However, these studies [14,15] focused only on the strain measurement
during the strengthening stage. They did not investigate the damage detection of the CFFT beyond
the strengthening stage, and their study was limited to the strain monitoring of the outer FRP tube.
Currently, there is no investigation on the health monitoring of the hybrid DSTC.

Optical fiber sensors (OFS) are easy to integrate into complex materials due to their tiny
dimensions, lightweight size, low cost, and immunity to electromagnetic interference. Researchers have
demonstrated the excellent properties of OFS packaged into FRP materials for strain and temperature
change detection in civil infrastructures [16–18]. Based on this principle, some smart FRP-based
components with built-in OFS have been developed to contribute to the life cycle monitoring
of civil infrastructures from inception through to the construction and service stage until final
decommissioning [19–21]. Li et al. also revealed that the strain sensitivity of OFBGs remains
constant after embedding into glass FRP (GFRP) [22]. The built-in method with FRP reduces the
cost of sensor installation and allows the monitoring of the structure where sensor installation is
quasi-impossible [23,24]. The strain measurement range for embedded OFBGs in FRP has been
enhanced up to 8000 µε [25]. Zhou et al. [24] have verified that the built-in OFBG-FRP rebar can be
well-combined with steel material to detect strain in the FRP–steel smart strand. On the other hand,
basalt FRP (BFRP) presents some advantages compared to traditional carbon, glass, and aramid FRP.
With the ultimate strain close to the GFRP, excellent environmental resistance, thermal expansion
coefficient close to concrete, and low cost, BFRP is an excellent candidate for OFS packaging [26].
The benefits of BFRP allow designing smart components with wide strain range, long-term stability,
reliable protection, a decrease of temperature stress, and low cost.

However, it is difficult to embed OFBGs in the inner steel tube of the hybrid DSTC. FRP-jacketed
steel (FRP–steel composite) has been used in CFST to solve the corrosion issue and enhance the
mechanical behavior of the column [27–29]. The FRP jacket delays the buckling of the steel tube,
as well as enhances the ductility and failure mode of the column [30]. The FRP jacket can also delay
the local buckling of deficient hollow steel columns [31] and the elephant’s foot buckling of cylinder
shells [32]. However, the full utilization of the tensile strength from the outer FRP jacket is a critical
issue to achieve high confinement efficiency [33].

This paper investigates the self-sensing performance of a newly developed OFBG-based smart
DSTC with basalt FRP–steel composite (smart BFST-DSTC) under axial compression. The smart
BFST-DSTC consists of inner and outer basalt FRP–steel composite tubes with built-in OFBGs.
The designed manufacturing process and self-sensing principle are first highlighted. A series of
axial compression tests on ten scaled specimens were conducted to investigate the basic mechanical
properties and the strain-based self-sensing performance. Parameter designs (concrete strength,
outer steel skin with punched-in pattern, thickness of steel skin, and FRP jackets layer number) that
influence the strain-sensing properties were also studied briefly. The smart BFST-DSTC has potential
mechanical benefits to overtake the hybrid DSTC as a modern form of structural column. The embedded
OFBGs can monitor the strain developed in the column up to 70% of the strengthening load, which is
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wide enough to detect minor damage occurring in the BFST-DSTC. Finally, the wavelength shift (WS)
from the inner FRP jacket allows us to evaluate damage beyond the ultimate load of the column.

2. Design, Manufacturing, and Sensing Principle of the Smart BFST-DSTC

2.1. Design of the Smart BFST-DSTC

The smart BFST-DSTC consists of an inner and outer self-sensing basalt FRP–steel tube (BFSTs),
and concrete in between. The BFSTs with built-in OFBGs are manufactured first, before the production of
the smart BFST-DSTC. Similar to the hybrid DSTC, the inner BFST provides longitudinal reinforcement,
and the outer BFST plays a role as lateral confinement. Thus, the inner BFST has a thicker steel layer
than the outer BFST. The use of FRP jacket in the inner BFST delays the plastic deformation and
even the buckling of the steel. The OFBG sensors’ layout design is based on the preliminary analysis
of the stress distribution and the monitoring purpose. For the typical damage modes of the DSTC,
such as cracking and buckling, the damage evolution process is always accompanied by the continuous
increase of the hoop strain. However, the strain variation characteristic is not consistent for the vertical
strain under damage. Therefore, the OFBGs are only embedded in the hoop direction for both the
inner and outer FRP jackets. To be more sensitive to the damage or failure, the OFBGs are positioned
at the middle height of the column. The BFST has two OFBGs positioned at the middle height in the
circumference direction between the FRP layers (red marker, see Figure 1).
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Figure 1. Cross-sectional design for hybrid FRP–concrete–steel double-skin tubular column (hybrid
DSTC), normal BFST-DSTC, and BFST-DSTC with punched-in pattern.

2.2. Fabrication of the Scaled Smart BFST-DSTC

Embedding OFBGs into FRP-based structural component is advantageous for developing novel
smart components. However, conventional OFBGs are fragile and could easily break during the
wrapping process. Basalt fibers are used as a sheath to protect the OFBGs. Figure 2 shows the detailed
manufacturing process using the filament winding/wrapping method. For the BFST tube, the steel
serves as a permanent mandrel on the wrapping tool. The basalt sheet with OFBGs is first dipped
in the epoxy resin bath for shaping. Then it is passed through a plate to control the dosage of the
epoxy resin before wrapping around the steel. A fiber placement head guides the optical fiber in the
basalt sheet to the desired position. During the wrapping process, all the OFBGs are connected to
an OFBGs demodulator to monitor the production quality continuously. The composite tube is cured
for a specific time to reduce the temperature before entering the trimmer. After the trimming process,
the final self-sensing BFST is obtained. The scaled BFST-DSTC test sample is then fabricated by filling
concrete in-between the BFSTs.
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Figure 2. Manufacturing process for the self-sensing basalt fiber-reinforced polymer (FRP)–steel
composite (BFST).

2.3. Sensing Principle of the OFBG

The Bragg gratings are formed by exposing the core of the optical fiber to the UV-laser light.
The refractive index of the gratings section is different from that of the optical fiber. The formed grating
only reflects a specified wavelength that is related to its grating period when a broadband source of
light travels in the fiber. The reflected wavelength, known as the Bragg wavelength (λB), is expressed
in Equation (1) [15].

λB = 2ne f f Λ (1)

where neff represents the effective refractive index and Λ is the grating period of the optical fiber.
The Bragg wavelength (λB) varies when a load is applied to the fiber. A stretching or tension

loading results in a positive wavelength shift (∆λB), while a compression force produces a negative
shift. However, the Bragg wavelength shifts (WS) are linearly proportional to the applied strain and
temperature variation. The cross-sensitivity of the Bragg WS can be expressed in Equation (2) [15].

∆λB(∆ε, ∆T) = αε∆ε+ αT∆T (2)

where αε and αT are the strain and temperature sensitivity coefficients of the OFBGs, respectively.
In a laboratory test with constant temperature, the WS varies with the applied strain, given in

Equation (3).
∆λB(∆ε, 0) = αε∆ε. (3)

The WS of a free-strain OFBG can be expressed in Equation (4).

∆λB(0, ∆T) = αT∆T. (4)

Thus, the relative applied strain is obtained by Equation (5).

∆ε = [∆λB(∆ε, ∆T) − ∆λB(0, ∆T)]/αε. (5)

3. Lab Tests on the Smart Columns

3.1. Test Specimens

Ten specimens, including two hybrid DSTCs and eight BFST-DSTCs with different structural
designs, were tested for comparison. The eight BFST-DSTCs included two normal BFST-DSTCs and
six BFST-DSTCs with punched-in patterns. All of the test specimens were designed based on the
guidelines in GB50608-2010 [34]. The specimens were manufactured based on the fabrication processes
described in Section 2.2. The radial punched-in pattern of the outer steel was selected to increase
the confinement effectiveness and reduce the brittle failure risk of the outer FRP jacket. Figure 1
shows the cross-sectional design for the hybrid DSTC, the normal BFST-DSTC, and the BFST-DSTC
with punched-in pattern. The number of FRP sheet layers and the steel thickness were considered as
variable parameters according to the demand in construction (Table 1). All the smart BFST-DSTCs were
made with outer self-sensing BFST, whereas, only five had inner self-sensing BFST due to accidental
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damage of the optical fiber jumpers for specimens BFST-DSTC1, BFST-DSTC4, and BFST-DSTC6.
The optical fiber jumpers for DSTC2 was also broken before test. Thus, the self-sensing performance of
the DSTC2 is unavailable in the test results. A uniform inner steel tube thickness of 4 mm was chosen
for all the scaled columns. The BFST-DSTC scaled columns had a different inner FRP jacket thickness.
One specimen with full round outer steel for each concrete type was designed to compare with the
corresponding specimen with punched-in pattern.

3.2. Materials

The experiment involved the use of self-compacted concrete, carbon steel, and unidirectional
basalt fiber sheets. The concrete cylinder compressive strength (f co) could be converted by the concrete
cubic strength obtained from the test at 28 days. The f co were 20.02 MPa and 60.55 MPa for the normal
strength concrete (NSC) and high-strength concrete (HSC), respectively. The steel used in the inner tube
of all specimens consisted of galvanized Q275. The steel layer in the outer BFST consisted of a low-grade
steel plate, where the radial punched-in patterns were manually formed. The tensile test samples were
conducted by following the British standard BS18 [35] to provide the mechanical properties for each
type of steel. Table 2 reports the mechanical properties of all steel materials. The unidirectional basalt
fiber sheet had a nominal thickness of 0.115 mm. One layer and two layers of basalt FRP (BFRP) flat
samples were tested according to the ASTM standard D3039 [36] to determine the tensile properties
of the BFRP. The basalt fiber sheet used in the current experiment had an average tensile strength of
2030.43 MPa, a tensile modulus of 97.77 GPa, and an average rupture strain of 0.02115.

Table 1. Smart column details.

Specimen
no.

Inner Tube Outer Tube Concrete
Strength

[MPa]
tis

3

(mm)
dis

4

(mm) ni
5 Type tos

6

(mm)
Steel Layer

Type
dos

7

(mm) no
8 Type

Hybrid
DSTC1 4.0 100 0 NS 1 0 N/A N/A 3 NS 1 20.02

BFST-DSTC1 4.0 100 2 Smart 2 0.7 Punched-in 150 2 Smart 20.02
BFST-DSTC2 4.0 100 2 Smart 0.7 Punched-in 150 3 Smart 20.02
BFST-DSTC3 4.0 100 3 Smart 0.7 Punched-in 150 3 Smart 20.02
BFST-DSTC4 4.0 100 3 Smart 2 1.2 Punched-in 150 3 Smart 20.02
BFST-DSTC5 4.0 100 2 Smart 0.7 Normal 150 3 Smart 20.02

Hybrid
DSTC2 4.0 100 0 NS 1 0 N/A N/A 3 NS 1 60.55

BFST-DSTC6 4.0 100 2 Smart 2 0.7 Punched-in 150 6 Smart 60.55
BFST-DSTC7 4.0 100 3 Smart 0.7 Punched-in 150 9 Smart 60.55
BFST-DSTC8 4.0 100 2 Smart 0.7 Normal 150 9 Smart 60.55

1 Not smart; 2 optical fiber jumper was broken before testing; 3 and 4 inner steel thickness and diameter; 6 and 7

outer steel thickness and diameter; 5 and 8 numbers of inner and outer FRP layers.

Table 2. Material properties of steel.

Steel Thickness [mm] Yield Strength [MPa] Tensile Modulus [GPa] Ultimate Stress [MPa]

4.0 270.64 191.0 335
6.0 260.15 189.0 410
0.7 196.19 189.5 313.12
1.2 195 189.5 313.12

3.3. Test Set-Up and Loading Procedure

Axial and hoop strain gauges (SG) were installed on the FRP surface at midheight for all the
tubes. The SGs were located at the same position as the OFBGs, but distant radially as they were
mounted outside the FRP jacket instead of built-in like the OFBGs (see Figure 1). Two linear variable
displacement transducers (LVDTs) measured the axial shortening of the specimens. The optical fiber
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jumpers from the embedded OFBGs were connected to an optical demodulator device (ZX-FP-C16)
that recorded all the WS. A high definition camera was used to capture the buckling deformation in the
inner tube. The SGs, LVDTs, and the load cell were connected to a data acquisition device (DH3820)
(see Figure 3). Although the experiment was conducted at a lab, the climatic condition was not actually
at constant temperature. Temperature variation that could affect the WS of the built-in OFBGs was
observed during loading. Some precautions were taken for each test specimen by using a stress-free
specimen, which served as temperature compensation. The same optical demodulator device collected
the WS from the stress-free specimen. The specimens were loaded until failure to investigate their
mechanical and self-sensing performance at every stage if possible. The hybrid DSTC fails at the
rupture of the outer FRP tube, whereas the BFST-DSTC fails at the rupture of the outer steel skin.
A 15 kN preload followed by a displacement control rate of 0.3 mm per minute defined the loading
procedure for each specimen.
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4. Results and Discussions

4.1. Mechanical Performance and Behavior of the Proposed BFST-DSTC

4.1.1. Failure and Damage Mechanisms

Generally, the failure mechanism of all the BFST-DSTC specimens includes the rupture of the
outer FRP jackets. Steel-adhesive interfacial debonding occurred before the rupture of the outer jacket,
characterized by several epoxy sounds. The BFST-DSTCs showed a progressive rupture of the outer
FRP jacket (Figure 4b,c), characterized by a gradual decrease in the load capacity. This is due to different
factors such as the presence of the steel layer, punched-in pattern, and the use of BFRP. The outer FRP
jacket failure started at the mid-height of the specimen (see Figure 4), and then extended towards the
ends. The concrete expansion after the initial failure resulted in the outward buckling deformation and
rupture of the outer steel layer (see Figure 4d). For comparison, the hybrid DSTC showed a sudden
failure at the ultimate load that is depicted in Figure 4a.
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of the outer steel layer in BFST-DSTC.

4.1.2. Load-Carrying Capacity and Confinement Ratio

The load-carrying capacity and confinement ratio define the strength for FRP-based confined
concrete column at the rupture of the FRP. Table 3 highlights the mechanical performance results of
each scaled specimen regarding yield load (Py), load-carrying capacity (Pf), confinement ratio (εcc/εco),
and confinement efficiency (f cc/f co). f co and εco are the compressive strength and corresponding strain
of the unconfined concrete, respectively. f cc and εcc are the maximum compressive strength and
corresponding strain of the confined concrete. The BFST-DSTC with punched-in pattern showed higher
load capacity due to the additional confinement force from the outer punched-in steel layer and inner
FRP jacket compared with the hybrid DSTC and the normal BFST-DSTC. The confinement efficiency
and confinement ratio were enhanced for all the BFST-DSTC, except for BFST-DSTC1, which could be
due to the low confinement efficiency of the two outer FRP layers. The cost-benefit of the proposed
system was defined by the highly enhanced ratio of the confinement efficiency up to 40% when
three layers of inner FRP jacket and a skinny punched-in steel layer were adopted in the design.
The enhanced ratio in Table 3 is the rapport between the confinement efficiency of each specimen with
the reference hybrid DSTC. The Py of the BFST-DSTC was also enhanced slightly.

Table 3. Mechanical test results.

Specimen no. Py [kN] Pf [kN] f cc/f co Enhanced Ratio εcc/εco

Hybrid DSTC1 673.4 975.6 1.31 1 10.45
BFST-DSTC1 679.3 964.4 1.23 0.94 10.03
BFST-DSTC2 761.7 1061.7 1.42 1.08 10.42
BFST-DSTC3 764.3 1211.7 1.83 1.42 17.16
BFST-DSTC4 823.7 1312.3 1.43 1.09 14.96
BFST-DSTC5 708.5 1033.1 1.36 1.04 9.18

Hybrid DSTC2 1022.1 1505.4 1.59 1 9.60
BFST-DSTC6 1062.7 1657.1 1.45 0.91 11.89
BFST-DSTC7 1309.4 2189.6 2.30 1.45 18.33
BFST-DSTC8 1127.9 1968.8 1.87 1.18 16.02

4.1.3. Axial Stress–Strain Behavior

The differences in the failure mechanisms of the hybrid DSTC and BFST-DSTC result in distinct
changes in the stress–strain behavior. Figure 5a,b stand for the general axial stress–strain behavior of
concrete inside the hybrid DSTC and the BFST-DSTC, respectively. The hybrid DSTC has piecewise
linear segments separated by a short transition before reaching f cc. The first segment (OM) ends at the
yield point of the inner steel tube. The second linear segment (MN) starts from the full activation to
the rupture of the FRP tube, since the strain reading from the OFBGs in the FRP tube is quite small
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and unstable at the OM part. The stress–strain behavior of the BFST-DSTC (Figure 5b) generally
consists of three main sections. First, an ascending piecewise linear (OMN) part with a medium
transition. The first linear segment (OM) ends when the inner and outer steel yield. The inner and
outer FRP jackets become gradually active in the transition stage. The full activation of both inner and
outer FRP jackets to the outer FRP rupture point characterized the second linear segment. The inner
FRP jacket ruptured either during the strengthening stage or after the peak load. Unlike the hybrid
DSTC, a gradual descending section or “initial failure” (curve ND) (the second section) exists. It starts
from the initial rupture of the outer FRP jacket to a stress level (f d) that is still superior to the yield
point (f co) of the concrete inside the BFST-DSTC. A gradual descent of the loading capacity due to
the slow attenuation of the FRP confinement is observed. At last, a residual section, (curve DF or
DN’F) depending mainly on the parameters of the inner BFST, will be further explored in future
works. A second ascending segment (DN’) with post-peak stress (f 2c) and a degradation part (curve
N’F) characterize the residual section for specimens with NSC. For specimens with HSC (curve DF),
it decreases progressively until reaching stress equivalent to f c,rup. The corresponding strain for each
specific stress is also plotted in Figure 5.
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4.2. Self-Sensing Performance Analysis Based on WS from the Outer Tube

The self-sensing performance of the built-in OFBGs from the outer tube is analyzed in this
section. The WS along with the SG curves are used to describe the deformation occurring in the
column. Hereafter, the strain readings from the hoop SGs were considered as reference due to the
wide application of SGs in measuring the hoop strain of FRP tubes in FRP-based confined concrete
columns. Figures 6 and 7 provide the relationship between the WS, axial load, and hoop strain from
the SGs for specimens with NSC and HSC, respectively. The WS of the built-in OFBGs was calculated
from Equation (5), due to temperature effect compensation. The inconsistency between the SG and the
OFBGs readings is due to the difference in their respective radial position. Assuming that the good
interfacial bonding between concrete and the outer tube exists, Figure 8 plots the typical variation of the
WS and SG, as well as axial strain versus time. The method of Pham et al. [9] calculated the maximum
usable strain limit (εlim) for the confined concrete, which gave a lower value than the recommended
value (1%, equivalent to 10,000 µε) in ACI 440.2R-08 [37]. The minimum (εlim_min = 3500 µε) and
maximum (εlim_max = 5400 µε) defined the range of the usable strain limit for specimens with NSC,
while the average of εlim was represented for the specimen with HSC. The nominal axial strain was
the average axial shortening from LVDTs to the overall height. The self-sensing included only the
piecewise linear segments of each respective specimen. The WS and the SG shared a tiny slope at the
commencement with an axial load below 200 kN and 500 kN for the specimen with NSC and HSC,
respectively. All specimens were healthy, and there was no micro-damage observed yet. Before the steel
yielded, the slopes of the WS and SG curves for all specimens increased slowly with the hoop strain
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around 2000 µε, except for BFST-DSTC3. According to Figure 8, all specimens reached the εlim_min.
The concrete core deformation accompanied with the outer steel layer confinement activation might
have caused the increase of the WS slopes before the yielding point. The εlim for all specimens could be
effectively monitored based on the relationship between the WS and the axial strain. The sharp changes
of the WS curves were due to concrete expansion and the steel yielding. However, the WS curves
were still reliable for assessing the strain developed in the outer FRP jacket. The increase in the gap
between the SG and WS was considered as a warning sign of the full activation of the outer FRP jacket.
The hoop strain values were below 4000 µε, except for the BFST-DSTC3 (Figure 6d), which reached
around 6000 µε.
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Figure 6. Hoop strain self-sensing performance of the outer tube for specimens with normal strength
(concrete) NSC: (a) Hybrid DSTC1; (b) BFST-DSTC1; (c) BFST-DSTC2; (d) BFST-DSTC3; (e) BFST-DSTC4;
(f) BFST-DSTC5. TMF: Total measurement from optical fiber Bragg grating sensors (OFBGs), SMR:
Strain measurement range, * OFBGs’ last reading.



Sensors 2019, 19, 3572 10 of 19

In the strengthening stage, the hoop strain developed in the outer FRP jacket is essential to
monitor due to its brittle failure. The measurement ranges of the built-in OFBGs are introduced to
investigate their self-sensing performance. Table 4 provides the strain measurement range (SMR) when
the error between the OFBGs and SG are included in the interval of ±2.5% (i,e., −2.5% < SMR < +2.5%),
and the total measurement from the OFBGs (TMF). The SMR and TMF were obtained by dividing
their corresponding loads by the difference between the ultimate load (Pf) and the yield load (Py).
All the BFST-DSTCs have a minimum TMF of 71.5%. Within these values, the measured strain of the
FRP jacket reached 8000 µε to 10,000 µε for specimens with NSC (see Figure 6b–f), and more than
10,000 µε for specimens with HSC (Figure 7a–c). These values are remarkable and wide enough to
monitor the usable and limit strains of the outer FRP jacket (see Figure 8b–i). The FRP tube in hybrid
DSTC1 had a TMF inferior to 50%, with a total measured strain less than 7500 µε (Figure 6a). The SMR
for the BFST-DSTC was more than 50% compared to that of the hybrid DSTC (47.48%). Only specimen
BFST-DSTC8 (Figure 7b) had an SMR smaller than that of the hybrid DSTC1. The strain developed in
the outer FRP jacket had already reached around 8000 µε, except for specimen BFST-DSTC5 (Figure 6f).
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Figure 7. Hoop strain self-sensing performance of the outer tube for specimens with high-strength
concrete (HSC): (a) BFST-DSTC6; (b) BFST-DSTC7; (c) BFST-DSTC8. TMF: Total measurement from
OFBGs, SMR: Strain measurement range, * OFBGs last reading.
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Figure 8. Axial strain monitoring based on outer tube wavelength shift (WS) for specimens: (a) hybrid
DSTC1; (b) BFST-DSTC1; (c) BFST-DSTC2; (d) BFST-DSTC3; (e) BFST-DSTC4; (f) BFST-DSTC5;
(g) BFST-DSTC6; (h) BFST-DSTC7; (i) BFST-DSTC8.

Table 4. TMF, SMR, and error for the outer tubes.

Specimen SMR (%) Error (%) TMF (%)

Hybrid DSTC1 47.56 +1.11 47.56
BFST-DSTC1 100.00 +1.57 100.00
BFST-DSTC2 96.01 −0.31 96.01
BFST-DSTC3 71.50 −0.94 71.50
BFST-DSTC4 73.25 −1.75 73.25
BFST-DSTC5 53.04 +2.37 89.66
BFST-DSTC6 89.34 +0.12 89.34
BFST-DSTC7 83.87 +1.37 83.87
BFST-DSTC8 43.18 +1.98 83.48

The relationship between the axial load and the WS of the built-in OFBGs from the outer tube is
established here. Figure 9 illustrates the relationship between the axial load and the WS versus time
(represented as each loading stage). The “Max.” stage corresponds to the load where the last reading
from the WS was gathered. The WS and the load were divergent in the elastic stage. At the transition
part, a convergent relationship existed for all specimens until the end. A linear relationship existed
between the load and the WS for each piecewise linear segment. Thus, the loading process could be
well monitored by the WS from the outer FRP jacket.
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Figure 9. Relationship between the outer tubes’ WS and the load at each stage: (a) Specimens with
NSC; (b) specimens with HSC.

4.3. Self-Sensing Performance Analysis Based on WS from the Inner Tube

This section discusses the self-sensing performance of the built-in OFBGs in the inner tube to
detect the deformation of the column with the increase of load. The WS curve for each specimen has
been compared with the SG curve. Figure 10 plots the WS response from the embedded OFBGs in
the inner tube versus time, axial load, and hoop strain from the SGs. Figure 11 depicts the typical
variation of the inner WS and SG, as well as axial strain versus time, to investigate the concrete core
interaction. Similarly to the outer tube, the WS for each specimen was calculated by deducing the effect
of temperature using Equation (5). In the elastic stage, slow rising tendencies were observed from the
responses of the SG and the OFBGs. The healthy condition of the inner tube and the BFST-DSTC design
are the reason behind such observation. The maximum usable strain limit (εlim) of the confined concrete
fell in the elastic stage for specimen BFST-DSTC2, BFST-DSTC3, and BFST-DSTC5 (Figure 11a–c).
The relationship between the axial and the WS for these specimens could monitor well the εlim. In the
transition part, the inner steel yielded, and the inner FRP jacket started to activate gradually. A sudden
drop of the WS in specimens with HSC (Figure 10d,e, i.e., BFST-DSTC7 and BFST-DSTC8) was noticed at
the start of their transition stage. The εlim (see Figure 11d,e) fell in the transition branch, which was due
to the brittle failure of the HSC. However, the WS regained its growth tendency with the SG due to the
radial pressure from the concrete core to the inner FRP jacket. Specimens with NSC showed a gradual
ascending of the WS and SG, whereas specimens with HSC displayed abrupt rising tendencies.
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Figure 10. Cont.
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Figure 10. Inner tube self-sensing response based on accumulated WS for specimen: (a) BFST-DSTC2;
(b) BFST-DSTC3; (c) BFST-DSTC5; (d) BFST-DSTC7; (e) BFST-DSTC8.
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Figure 11. Axial strain monitoring based on the inner tube WS for specimens: (a) BFST-DSTC2;
(b) BFST-DSTC3; (c) BFST-DSTC5; (d) BFST-DSTC7; (e) BFST-DSTC8.

In the strengthening stage, the self-sensing performance depended on the parameters of the
inner BFST. Here, how far the inner BFST can provide data for its self-damage analysis is the focus.
The measurement ranges of each specimen were analyzed based on the error between the readings
of the built-in OFBGs and the SG. The WS for BFST-DSTC2 (Figure 10a) ended at the final of the
initial failure stage, reaching a total value up to 12,000 pm. The inner FRP jacket is assumed to fail at
this stage, so the OFBGs can be used to detect the failure of the BFST-DSTC. The high deformation
developed in the inner steel tube caused the difference between the WS and SG tendencies from the
initial failure. Visual observation from the high definition camera showed that the initial buckling
signs appeared during the second peak stage. Figure 10b demonstrates that the buckling deformation
of the BFST-DSTC3 appeared in the later stage of the second peak. However, the WS terminated
before the expected time with a strain value superior to 7000 µε. In the BFST-DSTC5 (Figure 10c),
the WS curve ended at the start of the initial failure. The visual buckling sign was observed at the
end of the initial failure stage. The WS terminated before specimens reached the peak load. Plastic
deformation occurred during the strengthening stage due to the insufficient radial pressure from the
inner FRP jacket, which resulted in the early buckling deformation. The WS data from the inner BFST
are enough to monitor the condition of the inner tube as well as the whole system before any significant
damage occurs.

The WS of the built-in OFBGs from the inner tube could monitor the axial load history of each
specimen. A relationship can be established to support the results from the built-in OFBGs of the
outer tube if the latter is broken before reaching the maximum load. Figure 12 shows the relationship
between the load and the WS from the inner tube for each stage. The WS and the load were also
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divergent in the elastic stage. As the load increased, a proportional relationship existed between the
WS and the load after the yield. Both Figure 12a,b demonstrate that the increase of the load-carrying
capacity is due to outer FRP jacket.
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The findings in this paper would be a useful contribution to the R&D of smart civil 
infrastructures. However, further investigation and optimization design are still needed to improve 
the self-sensing performance of the smart BFST-DSTC developed in this study. 
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Figure 12. Relationship between the outer tube’s WS and the load at each stage: (a) Specimens with
NSC; (b) Specimens with HSC.

5. Conclusions

This paper presents the experimental investigation of the self-sensing performance for a proposed
smart BFST-DSTC with built-in OFBGs under axial compression. The conclusions of this paper are
listed as follows:

• With the built-in concept, an innovative FRP-based confined concrete system with self-sensing
ability is easy to develop and cost-effective. The proposed smart BFST-DSTC shows potential
mechanical benefits to overtake the hybrid DSTC as a modern form of structural columns.
The additional inner FRP layer and outer steel skin with punched-in patterns improve the loading
capacity, the confinement ratio, and the confinement efficiency compared with the hybrid DSTC.

• The OFBGs embedded in the outer tube satisfied the self-monitoring requirements of the
strain condition in the proposed smart BFST-DSTC and hybrid DSTC within their service limit.
Specimens with punched-in outer steel had a SMR and TMF beyond 70% of the strengthening load.
These outcomes are wide enough to detect minor and major deformations of the BFST-DSTC.

• The embedded OFBGs monitor the hoop strain of the inner and outer FRP jackets and provide
early failure warning for the inner tube. The WS from the inner FRP jacket can help for further
damage evaluation of the BFST-DSTC in the post-peak stage.

• The load and WS curves from the inner and outer tubes showed good linear relation at each
piecewise segment. The WS of the built-in OFBGs in both tubes can monitor the axial load history
of the FRP-confined concrete.

The findings in this paper would be a useful contribution to the R&D of smart civil infrastructures.
However, further investigation and optimization design are still needed to improve the self-sensing
performance of the smart BFST-DSTC developed in this study.
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Abbreviations

ASTM American standard test method
BFRP Basalt fiber reinforced polymer
BFST Basalt FRP-steel tube
CFFT Concrete-filled FRP tube
CFST Concrete-filled steel tube
DSTC Double-skin tubular column
εcc Compressive strain of confined concrete
εco Compressive strain of unconfined concrete
εlim Average strain limit value of concrete in specimens with HSC
f 2c Compressive strength at the 2nd ascending segment at the post-peak
f cc Compressive strength of confined concrete
f co Compressive strength of unconfined concrete
f d Compressive strength of confined concrete after the rupture of the FRP
FRP Fiber-reinforced polymer
GFRP Glass fiber reinforced polymer
HSC High strength concrete
LVDTs Linear variable displacement transducers
NSC Normal strength concrete
OFBGs Optical fiber Bragg grating sensor
OFS Optical fiber sensors
Pf Ultimate load/Maximum load capacity of the column
Py Yield load/load at the yield point
SG Electric strain gauge
SMR Strain measurement range of the built-in OFBGs with error between OFBGs and SG ±2.5%
TMF Total measurement from OFBGs
UV Ultraviolet
WS Wavelength shift
εlim_max Maximum strain limit value of concrete in specimens with NSC
εlim_min Minimum strain limit value of concrete in specimens with NSC
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