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Abstract: Fatigue crack diagnosis (FCD) is of great significance for ensuring safe operation, prolonging
service time and reducing maintenance cost in aircrafts and many other safety-critical systems. As a
promising method, the guided wave (GW)-based structural health monitoring method has been
widely investigated for FCD. However, reliable FCD still meets challenges, because uncertainties
in real engineering applications usually cause serious change both to the crack propagation itself
and GW monitoring signals. As one of deep learning methods, convolutional neural network (CNN)
owns the ability of fusing a large amount of data, extracting high-level feature expressions related
to classification, which provides a potential new technology to be applied in the GW-structural
health monitoring method for crack evaluation. To address the influence of dispersion on reliable
FCD, in this paper, a GW-CNN based FCD method is proposed. In this method, multiple damage
indexes (DIs) from multiple GW exciting-acquisition channels are extracted. A CNN is designed and
trained to further extract high-level features from the multiple DIs and implement feature fusion for
crack evaluation. Fatigue tests on a typical kind of aircraft structure are performed to validate the
proposed method. The results show that the proposed method can effectively reduce the influence of
uncertainties on FCD, which is promising for real engineering applications.

Keywords: convolutional neural network; guided wave based monitoring; fatigue crack diagnosis;
uncertainty; structural health monitoring

1. Introduction

Damage monitoring is a key issue for safety-critical systems such as aircraft, wind turbines,
bridges, and nuclear plants [1,2]. As a common damage type, fatigue crack is one of the primary
causes of structural failure, which is estimated to cause up to 90% of failures of metallic structures
in service [3]. It is of considerable significance to monitor fatigue crack state to ensure the safety of
structures in engineering applications.

The guided wave (GW) based structural health monitoring method [4,5] has been widely
investigated to realize fatigue crack diagnosis (FCD) [6]. However, reliable FCD in real engineering
applications still meets challenges because of uncertainties in real engineering applications, such as
crystal structures in material, performances of sensors, bonding between sensors and structures,
propagation paths, or internal inclination angle of fatigue cracks, etc. These uncertainties usually
cause serious change both to the crack propagation itself and GW monitoring signals. Due to these
uncertainties, FCD calibration by one or even a set of training structures usually does not work well
for a monitoring structure in service.
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Some developments have been reported on dealing with the influence of uncertainties on damage
diagnosis. The method of extracting GW damage features that are sensitive to damage changes instead
of external factors (such as environmental temperature, surface humidity) has been investigated [7–9].
However, the performance of these GW damage features has only been verified in simple structures
such as aluminum plates. In real engineering applications, uncertainties will make the baseline
signals dispersive, thus reducing the reliability of damage diagnosis. Furthermore, machine learning
techniques are useful in modeling complex nonlinear phenomena in the presence of uncertainties [10],
which can be introduced to construct a mathematical model of damage features to estimate the
damage of structures. Yuan and Mei et al. [11] proposed the GW-Hidden Markov model based
method to achieve a probabilistic evaluation of the propagation state of cracks. Uncertainties such as
changing load and structural boundary conditions were considered in this research. Qiu et al. [12,13]
proposed the GW-Gaussian mixture model based method to model the probability characteristic of
GW features under changing loads. In the above methods, the number of Gaussian components,
parameter initialization, and convergence of the model are still problems that need to be further
researched. Moreover, the artificial neural network is an effective mathematical method that is widely
used for damage estimating, which can learn the relevant features from data. Gu et al. [14] utilized an
artificial neural network to study the change of natural frequency of structure caused by damages at
different temperatures. It is shown that the proposed artificial neural network with novelty detection
is able to distinguish damage occurrence and severity regardless of temperature variations and noise
perturbations. However, the verification is only conducted based on a simple supported beam and
finite element models. Other methods, such as support vector machine [15], fuzzy logic [16], and so on
have also made some progress. However, these methods still have drawbacks, such as limited hierarchy,
and the optimization process is prone to fall into the local optimum leading to a limited expression and
limited generalization ability to data. These methods still face restrictions in engineering applications.

In recent years, deep learning has attracted significant attention [17]. As one of the deep learning
methods, the convolutional neural network (CNN) has been successfully applied in many areas [18,19].
CNN has a deep hierarchy and complex structure, which makes it more capable of expressing
data. Its unique structures, such as local connection, shared weights, and sub-sampling, allow it to
automatically extract representations that are beneficial for classification by fusing a large amount of
data [20]. These characteristics make CNN owns the potential to be used to improve the diagnosis
accuracy of crack length under the influence of uncertainties. However, research on damage diagnosis
of mechanical structures using CNN is rarely reported. Sun et al. [21] put forward a discriminant
convolutional feature learning method. In this method, the CNN model is utilized to derive invariant
and robust features, and vibration signals are used to monitor the fault conditions of the induction motor.
Six different fault conditions are identified, but the severity of fault conditions is not distinguished.
Guo et al. [22] proposed a hierarchical learning rate adaptive CNN based on an improved algorithm,
in which the CNN model is based on the classical LeNet5 models proposed by LeCun. This method
achieved both fault-pattern recognition and fault-size evaluation. Although showing potential in
addressing the uncertainty issue, the current CNN based damage diagnosis are mainly performed
based on vibration-based methods, which are not sensitive to small damages like crack. Until now,
there has been little research on combining and taking advantages of the GW based structural health
monitoring and CNN, which could be used for reliable FCD under the influence of uncertainties and is
urgently needed.

In this paper, a GW-CNN based FCD method is proposed to address the influence of uncertainties
on reliable FCD. In this method, different kinds of damage indexes (DIs) from multiple GW
exciting-acquisition channels under one crack length were extracted to construct the input feature
vector. Then, a designed CNN model was trained with feature vectors at different crack lengths
extracted from historical GW data. Finally, the feature vector obtained from the monitored structure
forward propagates through the trained CNN layer by layer. High-level features are automatically



Sensors 2019, 19, 3567 3 of 18

extracted, which are beneficial for FCD. Reliable crack size can be directly obtained by the CNN output
under the influence of uncertainties among different structures.

The rest of the article is organized as follows: in Section 2, details of the proposed method are
shown. In Section 3, the feasibility of the proposed method is verified by attachment lug specimens,
and the advantages are verified by comparative experiments. The conclusion is drawn in Section 4.

2. GW-CNN Based Fatigue Crack Diagnosis Method

In this section, the proposed GW-CNN based FCD method is introduced. Firstly, GW features that
are extracted from multiple GW exciting-acquisition channels are used to construct the CNN input
vector. Then, a CNN model is designed and trained for FCD. Finally, the trained CNN model can be
used for reliable FCD of a monitored structure.

2.1. Multi-Channel and Multi-GW Features Extraction

GW is a kind of elastic waves that propagates in plate-like structures. It can travel a long distance
in structures with small energy loss; hence, it can be used to monitor a relatively large structure
area. Piezoelectric transducer (PZT) is a conventional kind of sensor used to excite and receive
GW in structure. A typical sensor network configuration is shown in Figure 1 where J (J ∈ N+)
exciting-acquisition channels are formed. From one sensor network, the number of obtained GW
signals is J. After the GW is excited in the structure by a PZT, the interaction of the GW with the crack
can influence the GW propagation. By comparing the received signals under healthy and cracked
conditions, the length of the crack can be estimated.
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Figure 1. The guided wave (GW) based structural health monitoring method for on-line crack
monitoring. PZT: Piezoelectric transducer.

Many kinds of DIs can be defined to evaluate the variations between the baseline signal
collected when the structure is healthy and the monitoring signal when the crack propagates in
the structure. These DIs are extracted from GW signals in the time domain, frequency domain,
and time–frequency domain.

As mentioned above, various GW features can be obtained from one crack length, which provides
the potential of reliable FCD through data fusion of CNN. Based on this, a multi-channel and multi-GW
features extraction method is proposed as follows. Firstly, under the one crack length, GW signals from
J exciting-acquisition channels are acquired, recorded as S = {s1, s2, . . . , si, . . . , sJ

}
. Then, from one

GW signal si, d kinds of DIs were chosen for GW features extraction, which were recorded as
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D j = [D j
1, D j

2, . . . , D j
d], j ∈ {1,2, . . . ,J}. Finally, the extracted DIs were arranged into a feature vector of p

in order of channel as shown in Equation (1):

p = [D1
1, D1

2, . . . , D j
1, D j

2, . . . , D j
d, . . . , DJ

d−1, DJ
d](J×d)×1

(1)

The feature vector p was standardized to pnorm to obtain a similar data distribution [23] for each
input feature to achieve a better learning efficiency and improve the accuracy of FCD.

2.2. CNN Based Fatigue Crack Diagnosis

Based on the above procedure of data preprocessing, DIs from multi-channels are formed into a
one-dimensional (1D) feature vector pnorm, which is designed as the CNN input. Crack lengths are
divided into z (z ∈ N+) crack sizes for classification; each crack size is an interval that contains a certain
crack length. Softmax classifier [24] is adopted as the output layer to express z crack sizes, which
makes the CNN output a vector that has the form of a = [a1, a2, . . . , ak, . . . , az]z×1. The classification
result corresponds to the class that has the highest output value. For example, the desired output q,
which denotes the kth crack size, is defined as a vector with z elements as q = [q1, q2, . . . , qk, . . . , qz]z×1,
in which the kth element value qk = 1 and the rest are 0.

In this study, the GW signals corresponding to crack lengths are obtained from known structures,
which are called historical data. The feature vector pnorm obtained from historical data and its
corresponding desired output q is formed into an input sample {pnorm, q}. These historical input
samples are utilized for CNN training.

CNN is designed to process data that come in the form of multiple arrays. For example,
two-dimensional data for pictures or audio spectrograms and 1D data like signals and sequences [19].
There are four key ideas behind CNN that take advantage of the properties of input data:
local connections, shared weights, pooling, and the use of multiple layers [16]. Typically, CNN for
classification is composed of five parts [18]: convolutional layers (CL), pooling layers (PL), flatten layer
(FL), full-connected layers (FCL), and classification layer, as shown in Figure 2. M and L represent the
total layer number of convolutional layers and full-connected layers respectively. The convolutional
and pooling layers are alternated layer by layer for extracting features from input data, the flatten layer
is used to transform the outputs of pooling layer into the 1D feature set, and the last two parts are
employed for classification from the learned features.
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Figure 2. Architecture of a typical convolutional neural network (CNN).

The convolutional layer, as the name suggests, utilizes the operation of convolution to process
input data. In one convolutional layer, there are several convolutional kernels (or filters), for example
El convolutional kernels at the lth (l ∈ [1, 2, . . . , L]) layer. Each convolutional kernel consists of a certain
number of trainable weights. One convolutional feature at lth layer is calculated as follows:

Hl
i( j) = f (pl( j) ∗wl

i + bl
i) (2)
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where the symbol of asterisk * denotes the convolutional operation; Hl
i( j) represents the convolutional

feature of ith convolutional kernel that slides to the jth region of the input vector, where i ∈ [1, 2, . . . , El];
f represents the activation function; pl( j) represents the vector composed of the elements in jth region

of the input vector; wl
i =

[
wl

i,1, wl
i,2, . . . , wl

i,rl

]
; and bl

i denote the ith convolutional kernel and its bias.

The activation function is defined as Rectified Linear Units (ReLU) function, which has more
simple derivative result than traditional tanh and sigmoid functions leading to faster training when
using the training algorithm. The mathematical expression of the ReLU function is shown as follows:

f (x) =
{

x, x ≥ 0
0, x < 0

(3)

Each convolutional kernel slides over the input vector, then all the convolutional features constitute
the convolutional output Hl

i which is obtained by the ith convolutional kernel:

Hl
i= [Hl

i(1), Hl
i(2), . . . , Hl

i(n
l
− rl + 1)

]
(4)

Different convolutional kernels attain different convolutional outputs, which fuse information of
the input vector from different ways. That is to say, different perspectives of features that are beneficial
to classification can be extracted. Furthermore, the convolutional layer provides characteristics of local
connections and shared weights, which can reduce the number of parameters, significantly reduce the
computational costs, and have certain robustness to local noise [19].

The pooling layer is usually connected after the convolutional layer, which is used to sub-sampling
features with maximum pooling, average pooling or other operation. Assuming the pooling size is c,
the maximum pooling feature of the jth region at lth pooling layer can be expressed as:

Tl
i( j) = max

j
(Hl

i( j)) (5)

where Tl
i( j) represents the pooling feature when slides to the jth region of the ith convolutional output

and Hl
i( j) represents the jth region of the ith convolutional output.

The vector composed of all pooling features is the pooling output denotes as Tl
i after sliding.

The key idea of pooling is to reduce the amount of data transferred to the next layer. Moreover,
the pooling takes typical features as its outputs, which owns the ability of invariance [19].

In consequence, the framework of the proposed CNN based FCD method can be described
in Figure 3. It is noticeable that the proposed CNN model has a nine-layer configuration, which
consists of one input layer, three convolutional layers followed with one pooling layer, a flatten layer,
two full-connected layers, and an output layer. In the CNN model, to obtain features that are less
affected by uncertainties, the first convolutional layer (CL1) is used to extract features from a GW signal
and fuse crack information from different channels of GW signals at the same time. As mentioned
above, DIs are arranged into an input vector in order of channel. Therefore, the crack information from
the same channel is in d DIs that are arranged sequentially in the input feature vector. Accordingly,
based on the above analysis, a set of kernels with the size of d× 1 are utilized in CL1. In this study,
each element of the feature vector contains useful crack information and the number of elements is
really scarce. However, a pooling layer may lead to the loss of valuable information because it only
chooses one typical feature as its output in a pooling area. Hence, there is no pooling layer followed by
CL1, but two convolutional layers are added as CL2 and CL3. Taking the Pyramid Shape mentioned in
Leslie’s paper [25] into consideration, the kernel size decreases throughout the architecture to get better
performance. Next, a pooling layer (PL) is added followed by a flatten layer which is used to transform
the outputs of PL into the 1D feature set. Then, two full-connected layers (FCL) are added, denoted
by FCL1 and FCL2. The outputs of the flatten layer are employed as the inputs of FCL1. These two
full-connected layers are designed as hidden layers to map the features into CNN outputs and select
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the features that are less affected by uncertainties. Most features that less affected by uncertainties will
be found, which are in favor of leading to a higher FCD accuracy. In addition, the L2 regularization
method [26] is operated in full-connected layers during the training process to reduce the possibility
of overfitting.
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The training of CNN is a procedure of optimizing the connected weights and bias, which are
trained via minimizing the cost function with training data. In the proposed method, training data
are input vectors at different crack length collected from historical data as mentioned above. The cost
function of the proposed model is defined as the cross-entropy function in accordance with the softmax
classifier which is the output layer of the model, given as the following equation:

G(w; qk, ak) = −
1
z

z∑
k=1

[qklnak + (1− qk) ln(1− ak)] +
λ
2

L∑
l=1

ml∑
j=1

ml+1∑
i=1

(wl+1
j,i )

2
(6)

where wl
j,i denotes the weight that connects the jth neuron at the lth layer and the ith neuron at

the (l + 1) th layer and ml denotes the neuron number at lth layer. In Equation (6), the first term is
the cross-entropy between the CNN output and the desired output, and the second term is the L2
regularization part, in which λ(0 < λ < 1) denotes the regularization coefficient. Here, weights are
initialized with Xavier method [27], which makes the weights of each layer obey the following uniform
distribution:

w ∼ U[−

√
6√

ml + ml+1
,

√
6√

ml + ml+1
] (7)

Bias is initialized to be bl = 0. Then, weight and bias are updated with the Adam optimization
method [28], in which independent adaptive learning rate is designed for different parameters
by calculating the first and second order moment estimation of the gradient. In the Adam
optimization method, the first-order moments of weight gradient and bias gradient are initialized
to be Vdwl = 0, Vdbl = 0 and the second-order moments are initialized to be Idwl = 0, Idbl = 0 firstly.
Next, based on the backpropagation algorithm, the recurrence relation for the sensitivity can be written
as follows:

sl
j = ( f l)′(x)

(
wl+1

j,i

)T
sl+1

i (8)
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where sl
j and sl+1

i denote the sensitivity of jth neuron at the lth layer and the ith neuron at the (l + 1)th

layer and ( f l)′(x) denotes the derivative of the activation function at lth layer. Then, the gradient can
be calculated by the following expression:

dwl = slal, dbl = sl (9)

After that, Vdw, Vdb, Idw, and Idb can be updated as follows:

Vdwl(k + 1) = β1Vdwl(k)+(1−β1)dwl, Vdbl(k + 1) = β1Vdbl(k)+(1−β1)dbl (10)

Idwl(k + 1) = β2Idwl(k)+(1−β2)(dwl)2, Idbl(k + 1) = β2Idbl(k)+(1−β2)(dbl)2 (11)

where k denotes the number of iterations and β1 and β2 are parameters that are generally preset as 0.9
and 0.999, respectively. Then, the updated values are corrected as follows:

V
corrected

dwl (k + 1) =
Vdwl(k + 1)

1−β1(k)
, V

corrected

dbl (k + 1) =
Vdbl(k + 1)

1−β1(k)
(12)

I
corrected

dwl (k + 1) =
Sdwl(k + 1)

1−β2(k)
, I

corrected

dbl (k + 1) =
Sdbl(k + 1)

1−β2(k)
(13)

where the superscript represents the corrected value. Finally, the weight and bias are updated as the
following equations:

wl(k + 1) = wl(k) − α
V

corrected

dwl (k + 1)√
Icorrected

dwl (k + 1) + ε
(14)

bl(k + 1) = bl(k) − α
V

corrected

dbl (k + 1)√
Icorrected

dbl (k + 1) + ε
(15)

where α denotes the learning rate and ε is set to prevent the denominator from being 0, which can be
ε = 10−8.

The training of CNN is finished when the cost function is close to converging. Eventually, the input
feature vector from a similar monitored structure is put into the trained model to get its diagnostic
crack size.

3. Experimental Verification and Analysis

Attachment lugs are an important type of joint in aircraft structures. They are typically used
as a connection between two components, and are quite susceptible to fatigue cracks due to stress
concentrations. In this paper, fatigue tests are performed on attachment lug specimens to validate
the proposed method. The uncertainty of GW signals and DIs are discussed. After that, the designed
CNN model and its training process are given. Finally, the fatigue crack diagnosis results based on the
proposed method are presented and discussed.

3.1. Fatigue Tests of Attachment Lug Specimens

Fatigue tests are performed on six attachment lug specimens, labeled from T1 to T6. To be close to
the real engineering applications, the specimens are made of 5 mm-thick LY12 aluminum alloy, which
have a hole with the diameter of 25 mm. Their geometry and sensor layout are shown in Figure 4.
In real engineering applications, the attachment lug usually suffers from the axial tension load during
service. Finite element method results for the lug show that stress concentration occurs at the edge of
the hole. Since the stress concentration area often initiates crack, a 2 mm long notch is made at the edge
of the lug hole to make the crack initiation and control the direction of crack growth, and this notch
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was created by a wire-electrode cutting machine. The same sensor layout is chosen for each specimen,
in which PZT sensors named PZT1–PZT3 are arranged on the front side and PZT4–PZT5 are arranged
on the opposite side. As shown in Figure 5b, a fixture with a dowel pin is adopted to connect the lug,
and transmits the axial tension load, which is a real load transmitting style in engineering applications.Sensors 2019, 19, x FOR PEER REVIEW 8 of 18 
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Figure 5. The fatigue test setup.

An MTS810 electro-hydraulic servo tensile machine is used to apply the fatigue load, as shown in
Figure 5a. According to engineering experience, a sinusoidal load with a peak value of Fmax = 18 kN
is chosen for fatigue tests, which is 25% of the fracture load of 72kN. The load frequency is chosen
as 10Hz and the stress ratio is R = Fmin/Fmax = 0.1. The crack lengths were measured with a digital
magnifier and scale lines on one surface of the specimen. The crack growth processes of specimens
T1–T6 are shown in Figure 6. It is noteworthy that crack growth of different specimens is different;
this will introduce uncertainties for FCD.
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During the fatigue tests, the multi-channel PZTs array scanning system developed by the authors’
group is employed to perform the GW based fatigue crack monitoring [29]. Here, the three-cycle
sine burst signal with central frequency of 160 kHz and the exciting voltage of ±70 V is adopted as
exciting signal, and the sampling frequency is set as 50MHz. Moreover, PZT2, PZT3, and PZT5 are
chosen to excite signals, while PZT1 and PZT4 are used to acquire signals. As a result, three effective
exciting-acquisition channels are obtained denoted as 2-1 channel, 3-1 channel, and 5-4 channel as
shown in Figure 4. The fatigue load is suspended to collect two sets of GW signals when the fatigue
crack grows every 1 mm for the crack length of 0 mm to 18 mm, where each set contains three channels
of GW signals.

As a consequence, 38 sets of signals are collected from each specimen, and 228 set of signals for
six specimens in total. Figures 7 and 8 show the GW signals of specimens T1 and T4 under partial
crack length during the fatigue crack monitoring in the 2-1 channel.
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It can be seen from the above figures that GW signals obtained from different specimens (T1/T4)
are different in both amplitude and phase. These are the reflection of uncertainties among different
structures on original GW signals.

3.2. GW Monitoring and DIs Extraction

According to Figures 7 and 8, the S0 mode which has a clear wave packet is chosen to calculate
DIs. However, the other part of the signal is affected by complex mode, boundary reflection, and so
on, which makes it difficult to extract the crack information from the mix of these waves. In addition,
for different specimens, the difference of signal behind S0 in different specimens is much greater than
that of S0 mode in different specimens. That will make the crack quantification problem more difficult.
Seven kinds of DIs are used for GW features extraction as shown in Table 1, where B(t) and D(t) are the
baseline signal and the monitoring signal, respectively; the baseline is the GW signal acquired after the
notch is machined and it is unique to each sample; t1 and t2 are the start time and the end time of the
selected wave packet; and ω denotes the signal frequency obtained by the Fourier transform.
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Table 1. DI extraction algorithms.

Damage IndexDI Extraction Algorithm

Cross correlation [6] DI= 1−

√√
[
∫ t2

t1
B(t)D(t)dt]

2∫ t2
t1

B2(t)dt
∫ t2

t1
D2(t)dt

Spatial phase difference DI =
∫ t2

t1
(
∼

D(t) − αB(t))
2
dt,
∼

D(t) = D(t)√∫ t2
t1

D2(t)dt
,α =

∫ t2
t1

∼

D(t)B(t)dt,∫ t2
t1

B2(t)dt

Spectrum loss DI =

∫ ωN
ω1
|B(ω)−D(ω)|dω∫ ωN
ω1
|B(ω)|dω

Central spectrum loss DI = a(ω)−b(ω)
a(ω) , a(ω) = max(B(ω)), b(ω) = max(D(ω))

Differential curve energy [7] DI =

N∑
n=2

[b(tn)−b(tn−1)]
2

N∑
n=2

[B(tn)−B(tn−1)]
2
, b(n) = B(n) −D(n)

Normalized Correlation Moment [8]
DI =

∫ τ=t2
τ=t1

τk|rHH(τ)|dτ−
∫ τ=t2
τ=t1

τk|rHD(τ)|dτ∫ τ=t2
τ=t1

τk|rHH(τ)|dτ
, rHD(τ) =∫ +∞

−∞
B(t)D(t− τ)dt, rHH(τ) =

∫ +∞

−∞
B(t)B(t− τ)dt

Differential signal energy DI =
∫ t2

t1
(
∼

B(t) −
∼

D(t))
2
dt,
∼

B(t) = B(t)√∫ t2
t1

B2(t)dt
,
∼

D(t) = D(t)√∫ t2
t1

D2(t)dt

As is shown in the table, These DIs reflect the crack from the time domain and frequency domain,
which can be more comprehensive response to crack length.

1. The Cross correlation is a DI in the time domain, which is describe the degree of correlation
between the normalized baseline signal and the monitoring signal;

2. The Spatial phase difference is also a DI in the time domain that describes the size of the angle
between the normalized baseline signal and the monitoring signal;

3. The Spectrum loss is a DI in the frequency domain, which describes the difference value in
spectrum between two signals;

4. The Central spectrum loss is also a DI in the frequency domain, which measures the change of
central spectrum between baseline and monitoring signal;

5. The Differential curve energy is a DI that measured the variation of waveform curve of the
difference of two signal;

6. The Normalized Correlation Moment is a DI that based on local statistical features of the waveform;
the energy and phase change of the signal has been taken into consideration;

7. The differential signal energy is a DI that measured the variation of signal energy.

To give an intuition of what the uncertainty of DIs is and show how the multi-channel DIs fusing
owns the potential of improving the accuracy of FCD. Firstly, typical time-domain DI (cross correlation)
and frequency-domain DI (central spectrum loss) varying with crack growth in the same typical 2-1
channel are shown in Figure 9.
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It is apparent that these DIs can reflect the fatigue crack growth effectively, but there is a large
uncertainty of the same DI values under the same fatigue crack length for different specimens, which
means the same DI value corresponds to multiple crack lengths. Meanwhile, numerical distributions
of different DIs are altered during the fatigue crack growth process for the same specimen, which
indicates that the influence of crack on GW signal is described from different perspectives by different
DIs. This provides a basis for data fusion with CNN.

Then, the cross-correlation DI is chosen to show its value varying with fatigue crack growth for
typical specimen T1 and T4 under three different exciting-acquisition channels. As shown in Figure 10,
the distribution of DIs in different exciting-acquisition channels are different during crack growth,
which indicates that different channels of DIs provide different perspectives of crack information for
CNN to learn.
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As is shown from the above analysis, three channels of GW signals can be acquired under one
crack length during the fatigue tests. As for each GW signal, 7 kinds of DIs are extracted. Finally,
7× 3× 1 = 21 DIs are obtained under one crack length to construct a 1D feature vector p.

3.3. GW-CNN Based Diagnosis Training

In this study, all input vectors p that correspond to different crack length are standardized to pnorm

firstly. Then, the fatigue cracks are classified into 19 crack sizes according to its crack length: 1 crack
size per 1mm, named C1–C19, as shown in Table 2. Crack size Ck (k ∈ [1, 2, . . . , 19]) is transformed
into the desired output form of q = [0, 0, . . . , 1, . . . , 0] in which the kth element is 1 and the rest are 0.
The standardized input pnorm and its corresponding desired output q are formed to input-output pair:{
pnorm

21×1, q19×1

}
to be an input sample.
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Table 2. Fatigue crack sizes corresponding to crack length.

Crack Size C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Crack length (mm) 0 1 2 3 4 5 6 7 8 9
Crack size C11 C12 C13 C14 C15 C16 C17 C18 C19

Crack length (mm) 10 11 12 13 14 15 16 17 18

In real engineering applications, the fatigue crack information obtained from existing structures is
often used to diagnose fatigue crack of unknown structures. Thus, samples from one of the specimens
among T1–T6 are chosen as the testing samples, and the rest samples are used for training, as shown
in Table 3. Consequently, as for each testing specimen, 38 and 190 samples are utilized for testing
and training.

Table 3. Testing specimen and its corresponding training specimens.

Testing Specimen T1 T2 T3 T4 T5 T6

Training specimens T2–T6 T1, T3–T6 T1–T2, T4–T6 T1–T3, T5–T6 T1–T4, T6 T1–T5

The algorithm implementation of the designed CNN is under Python on a desktop with
Nvidia graphics processing unit (GPU) GTX960. Before the model training, several important
hyper-parameters, including learning rate, mini-batch size, kernel size and kernel numbers in
convolutional layers and pooling layer, neuron numbers of full-connected layers, and regularization
coefficient λ, needed to be determined in advance. In this work, the CNN configuration was
set to CL1(16)-CL2(32)-CL3(32)-PL(32)-FCL1(1024)-FCL2(512), and the kernel size was set to
CL1(7)-CL2(5)-CL3(5) according to previous studies. The L2 regularization was added to FCL1
and FCL2, and the regularization coefficients were set to be 0.01 and 0.05, respectively. The optimal
learning rate and batch size were obtained via a trial-and-error method. Here, various batch sizes
were considered, ranging from 10 to 100 with an interval of 10, while the learning rate varies from
0.0002 to 0.005 with an interval of 0.0005. Figure 11 shows the cross-entropy of CNN model for testing
specimens T1 and T4. It is noticeable that small values of batch size and large values of learning rate
will lead to poor performance (big costs value) of the trained model. With the increase of batch size and
decrease of the learning rate, the cross-entropy error of the CNN model will be gradually decreased
and then tends to be stable or will be increased a little bit after the costs arrive at its minimum value.
According to the result in Figure 11 and a more subtle adjustment, 24 and 0.001 were adopted as the
optimal batch size and learning rate for CNN training.
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Then, the CNN model was trained based on optimal model parameters using training samples.
In the situation where specimen T1 was used as the testing specimen, the training samples from T2–T6
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were put into CNN model to train the model with Adam algorithm. As shown in Figure 12, the CNN
model at the iteration of 22 was chosen as the trained CNN model because the costs started to converge
and too much training may lead to overfitting. When another specimen was selected as the testing
specimen, the corresponding CNN model was trained in the same way above.
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3.4. Diagnosis Results and Discussion

Testing samples from the testing specimen are put into the trained CNN model to obtain diagnostic
crack size. After that, the testing accuracy shown as Table 4 can be calculated as the following equation:

Testing accuracy =
NCC
NT

× 100% (16)

where NCC denotes the number of correctly classified crack size by CNN and NT denotes the total
number of testing samples. The CNN diagnostic crack size and its real crack size are given in Figure 13.

Table 4. Diagnostic results of different testing specimen.

Testing Specimen T1 T2 T3 T4 T5 T6

Accuracy 100% 86.84% 97.37% 86.84% 100% 94.74%
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Figure 13. Diagnostic results of different testing specimen.

Seen from the above results, the diagnostic accuracies of testing specimens T1 and T5 are 100%;
as for testing specimens T2 and T4, the accuracies are 86.84%. To display what happened in T2 and
T4, the distributions of typical DI (cross-correlation) in the testing data (red triangle) and training
data (blue circle) of the 2-1 channel varying with crack sizes are shown in Figure 14, respectively.
In Figure 14a, DI values of testing specimen T2 are basically smaller than those of training DI values
before C14, but the values become larger after C15. In Figure 14b, DI values of the testing specimen of
T4 are basically smaller than DI values of training specimens. These phenomena also happen in other
kinds of DIs or other channels, which make it difficult to estimate the fatigue crack size by the general
rule of the DI values varying with crack sizes of training data. However, the diagnostic error is only
1 mm as shown in Figure 14, which is allowed in real engineering applications. This indicates that the
proposed method is promising in the presence of uncertainties.
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To illustrate the effectiveness of the proposed method in solving the problem of uncertainties,
the Unified Euclidean Distance is adopted to quantitatively analyze the similarity of input feature
vector and features extracted by CNN between two different specimens. Assuming there are two
kinds of variables X= [x1, x2, . . . , xi, . . .] and Y= [y1, y2, . . . , y j, . . .], in which xi = [xi1, xi2, . . . , xin] and
y j= [y j1, y j2, . . . , y jm]. These two variables are different in variable length (n , m) and numerical
distribution. Taking the Unified Euclidean Distance between specimen 1 and specimen 2 as an example,
the Unified Euclidean Distance of DX

12 between x1= [x11, x12, . . . , x1n] and x2= [x21, x22, . . . , x2n] was
calculated as follows: firstly, x1 and x2 were normalized to reduce the influence of different numerical
distributions expressed as Equation (17); then, the results were divided by the length of the variable
n to avoid the influence of length as expressed in Equation (18). The Unified Euclidean Distance
DY

12 between y1= [y11, y12, . . . , y1m] and y2= [y21, y22, . . . , y2m] was calculated in the same way as DX
12.

After that, DX
12 and DY

12 can be used to compare which is more similar between two specimens.
The larger the Unified Euclidean Distance is, the less similar the data will be.

x′1i = x1i/max(x1), x′2i = x2i/max(x2), i ∈ [1, 2, 3, . . . n] (17)
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DX
12 =

√√ n∑
k=1

(x′1k − x′2k)
2/n (18)

Suppose that T1 is the testing specimen, the typical crack sizes C7 and C18 are selected to compare
two kinds of Unified Euclidean Distance (a. input feature vector, b. output features from the FCL2,
denoted as the output feature vector) between two specimens. Results are shown in Table 5, where
Din and Dout denotes the Unified Euclidean Distance of the input feature vector and output feature
vector respectively.

Table 5. Unified Euclidean Distance between different specimens.

Crack Size
Input Samples Output Features

Din
T2,T4 Din

T2,T1 Din
T4,T1 Dout

T2,T4 Dout
T2,T1 Dout

T4,T1

C7 2.0159 0.2142 1.8326 0.0002 0.0016 0.0011
C18 0.0204 0.0253 0.0137 0.0002 0.0011 0.0015

In Table 5, it is apparent that, under the same crack size, Unified Euclidean Distance of output
features are smaller than Unified Euclidean Distance of input features between the identical specimens.
This shows that output features between training specimens (T2 and T4) or between testing specimen
and training specimen (T2 and T1, T4 and T1) are more similar than input features under the same
crack size. That is to say, after features fusion and extraction by CNN, the invariance of different
specimens under the same crack size is found, which reduces the uncertainties and effectively improves
the reliability of FCD.

Furthermore, two sets of comparative experiments (I and II) were carried out to verify the
advantages of the proposed method for reliable FCD under the influence of uncertainties.

(I). To verify advantages of multi-channel DIs extraction, DIs extracted from a single-channel
(2-1 channel, 3-1 channel, and 5-4 channel) were chosen to form the input sample, which has the
dimension of 7 × 1 to be the comparison modes. Notably, the form of the CNN input is the only
difference in this comparative experiment.

Diagnostic accuracies of specimens T1 and T4 for three single-channel input forms and
multi-channel input form are shown in Figure 15, respectively. Seen from the figures, diagnostic
accuracies for single-channel input forms are lower than 80% for T1 and lower than 60% for T4.
This indicates that the uncertainty of DIs seriously affects the diagnostic accuracies. Compared with the
single-channel input forms, the diagnostic accuracies for multi-channel input form are 100% and 86.84%
for T1 and T4. The multi-channel input vector contains more crack information for the designed CNN
to extract features that are beneficial to classification, leading to the improvement of the diagnostic
accuracy effectively.
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(II). Traditional neural networks (backpropagation networks) and the softmax classifier are
selected as comparative classification methods to show the advantages of designed CNN model.
For one type, the neural number of single hidden layer are set which has the same neural number
(NN(1024)) and different neural number (NN(100)) as FCL1, respectively. For another type, the neural
number of multiple hidden layer are set which has the same neural number (NN(1024-512)) and
different neural number (NN(512-100)) as FCL1 and FCL2, respectively. The purpose of these settings
is to compare the effectiveness of convolutional layers. The neural number of the softmax classifier is
19. It is worth noting that different classification methods are trained and tested with the same training
and testing input samples.

The diagnostic accuracies and training time of testing specimens T1 and T4 are shown in Figure 16
and Table 6, respectively. In Figure 16, the proposed method achieves the highest diagnostic accuracy
in both T1 and T4. That is to say, the reliable FCD is difficult to be realized only by full-connected
neural networks because of the lack of expression ability. Table 6 shows that the training consumption
of the proposed method has been dramatically reduced compared with traditional methods indicating
high diagnostic efficiency of the proposed method.
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Table 6. Training time for typical specimens with different classification methods.

Classification
Method Softmax NN (100) NN (1024) NN

(1024-512)
NN

(512-100) CNN

T1 89 s 59 s 33 s 89 s 50 s 14 s
T4 35 s 117 s 117 s 86 s 57 s 9 s

4. Conclusions

This article puts forward a GW-CNN based approach to perform FCD under the influence
of uncertainties due to different structures in real engineering applications. Firstly, multi-channel
DIs under one crack length were extracted to construct an input feature vector to obtain more
crack information for CNN to learn. Then, a CNN was designed to fuse multi-perspective fatigue
crack information from the feature vector to realize reliable FCD. Moreover, data standardization,
L2 regularization, and an Adam algorithm were adopted to improve the performance of CNN. Finally,
CNN was trained with input vectors at different crack length from historical data. What is more,
the proposed method was verified with attachment lug specimens. The lowest diagnostic accuracy
was 86.84%, which has a diagnostic error of only 1 mm. Results show that the proposed method
effectively reduced the influence of uncertainties on FCD between different structures. Finally, two sets
of comparative experiments were carried out. Compared with the single-channel input sample form,
the proposed method obtained much better diagnostic robustness and accuracy. Compared with the
traditional methods, the designed CNN not only improves the accuracy of FCD, but also reduces the
training consumption. There are some points for ongoing work to take verification on real structures
or in operating conditions, considering the time-varying temperature and loading conditions.
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