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Abstract: To solve the self-alignment problem of the Strapdown Inertial Navigation System (SINS),
a novel adaptive filter based on Complementary Ensemble Empirical Mode Decomposition (CEEMD)
is proposed. The Gravitational Apparent Motion (GAM) is used in the coarse alignment, and the
problem of obtaining the attitude matrix between the body frame and the navigation frame is
attributed to obtaining the matrix between the initial body frame and the current navigation frame
using two gravitational apparent motion vectors at different moments. However, the accuracy and
time of this alignment method always suffer from the measurement noise of sensors. Thus, a novel
adaptive filter based on CEEMD using an l2-norm to calculate the similarity measure between the
Probability Density Function (PDF) of each Intrinsic Mode Function (IMF) and the original signal
is proposed to denoise the measurements of the accelerometer. Furthermore, the advantage of this
filter is verified by comparing with other conventional denoising methods, such as PDF-based EMD
(EMD-PDF) and the Finite Impulse Response (FIR) digital low-pass filter method. The results of the
simulation and experiments indicate that the proposed method performs better than the conventional
methods in both alignment time and alignment accuracy.

Keywords: SINS self-alignment; gravitational apparent motion; complementary ensemble empirical
mode decomposition; similarity measure; l2-norm

1. Introduction

The Strapdown Inertial Navigation System (SINS) has been applied in various fields and
developed rapidly because of its independence and accuracy [1–5]. The self-alignment, as the
basis of SINS, is required to obtain the initial attitude accurately and quickly only by utilizing
the measurements from the Inertial Measurement Unit (IMU). Unfortunately, due to the harsh
environments and measurement interference, achieving high precision initial alignment within a
short time is a great challenge.

Normally, the self-alignment process contains two consecutive phases: coarse alignment and fine
alignment [4,6]. The main purpose of coarse alignment is to calculate the rough attitude angles rapidly
followed by the Kalman filter-based fine alignment. The precision of coarse alignment determines the
accuracy and time of fine alignment. The classical static and quasi-static bases alignment methods
can achieve satisfactory results, but they cannot be used for a swaying base due to the disturbance of
waves, and so on.

Inspired by the new alignment algorithm of xSea Company, several Gravitational Apparent
Motion (GAM)-based coarse alignment methods have been proposed [4,7–9]. The alignment problem
is converted from determining the attitude matrix between the body frame and the navigation frame
to determining the matrix between the body inertial frame and the navigation inertial frame by the
GAM-based alignment method. It has been proven that the GAM-based alignment method has
the same theoretical alignment accuracy as the conventional methods [7,8]. In practical applications,
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however, because the accelerometer data are applied to calculate the GAM directly, some non-negligible
errors, especially random noise from accelerometers, are brought into the alignment process [8,10].
In response to this problem, Xu J.et al. [6] proposed to adopt velocity vectors by integrating gravitational
acceleration to participate in alignment calculation. Nevertheless, in the case of linear velocity
interference, the performance of this method will be poor without the reference of external velocity
sensors. Chang L. et al. [3] also employed gradient descent optimization to determine the initial
attitude matrix according to the characteristics of GAM. The shortcoming of this method is that gradient
descent optimization has strict requirements on the objective function and step-size, which limits its
wide application in practice. Besides, Liu X. et al. [10] recognized and reconstructed the GAM by
analyzing the general expressions of apparent motion. However, the reconstructed system was unable
to maintain the complete observability of the whole coarse alignment process. Based on the different
frequency characteristics of noise, Xu X. et al. [11] and Sun F. et al. [9] employed the low filter to filter
random noises. Meanwhile, Xu X. et al. [12] filtered the high-frequency noises of the measurements
with the designed Real-time Wavelet Denoising (RWD). However, due to the instability of external
conditions, it is difficult to determine the parameters of the above filters in practical applications.
An alternative denoising method was presented by Huang called Empirical Mode Decomposition
(EMD) [13,14], which is totally adaptive. To surmount the defect of mode mixing and end effect
in conventional EMD, Complementary Ensemble Empirical Mode Decomposition (CEEMD) was
proposed in [15]. Then, the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
(CEEMDAN) was proposed as a more effective method [16]. However, the improvement of the
filtering accuracy of CEEMDAN is based on longer decomposition time, which makes it restrictive
in practical applications. Focusing on the problem of effective IMF selection, Ayenu-Prah et al. [17]
and Duan et al. [18] adopted a Correlation-based method (EMD-COR) to determine the effective
IMFs. Wang Y. et al. [19] employed EMD-COR to complete the initial alignment of SINS. However,
the relevant modes were selected based on prior information, actually. The performances of some
methods will be verified later in this paper. To solve this imperfection, a method based on Consecutive
Mean Squared Error (CMSE) was proposed in [20]. This method does not need a threshold and can
adapt to most conditions, but it will perform poorly because of the local minimum. On the basis of
the above studies, Komaty obtained effective IMFs according to the similarity measure between the
Probability Density Functions (PDF) of IMFs and the original signal [21]. Yang proposed EMD Interval
Thresholding (EMD-IT) based on the probability density function with the order of time complexity
comparable to EMD, but having higher accuracy [22]. The limitation of the above two methods is that
the mode mixture of EMD has not been fundamentally solved.

Given the problems above, this paper introduces a GAM-based self-alignment method by a novel
adaptive filter called effective IMF selection based on CEEMD-l2PDF. The main superiority of this
method is to select IMFs self-adaptively without any prior information. Measurement signals of
the accelerometer with noises are decomposed into IMFs through CEEMD. For the acquisition of
relative IMFs, their PDFs are estimated by the kernel density estimator, followed by self-adaptive
separation of the main signal and harmful noise. The final reconstructed signal will be applied to
calculate GAM in self-alignment. The remainder part of this paper is organized as follows. Section 2
provides the general alignment algorithm based on GAM and the corresponding simulation. Then,
the improved denoising method by CEEMD-l2PDF and reconstructed gravitational apparent motion
vectors are presented in Section 3. Moreover, simulations, the turntable test, and the ship experiment
are carried out to verify the effectiveness of the proposed algorithm in Section 4, whilst the conclusions
are given in Section 5.
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2. Alignment Algorithm Based on GAM and Simulation

2.1. An Initial Alignment Method Based on GAM

Due to the complicated marine environment, it is difficult to separate the Earth rate from the
measured angular rate badly disturbed by the swaying conditions [7,8,10]. In order to determine the
attitude matrix Cn

b (t) between the body frame and the navigation frame, it can be decomposed into
two parts according to the matrix chain multiplication:

Cn
b (t) = Cn

ib0
(t)Cib

b (t) (1)

in which n and b denote the navigation frame and the body frame, respectively; ib0 is defined as the
inertial frame non-rotating relative to the inertial space, which is fixed with the body frame at time
instant t = t(0); Cib0

b (t) is the attitude matrix between the initial body frame and the present body
frame, which can be updated by Equation (2).

Ċib0
b (t) = Cib0

b (t)
(

ω̃b
ib0b×

)
(2)

where ω̃b
ib0b× denotes the angular rate measured by the gyroscope. From the above analysis, it can be

concluded that the key point of obtaining Cn
b (t) is the calculation of Cn

ib0
(t) in Equation (1).

According to [6,7], the trajectory of the gravity vector at a fixed point rotating with the Earth is
regarded as GAM. As shown in Figure 1a, A and B represent the same point on the Earth at time tA
and current time tB in the inertial frame, and gA and gB are non-collinear gravity vectors of A and
B, respectively. After the rotation of the gravity vector in the Earth cycle, a cone with the geocentric
vertex can be formed. In this paper, East–North–Up (ENU) and right-forward-up are selected as frame
n and frame b, respectively. According to Figure 1a, the theoretical measurement of the accelerometer
is the projection of the gravity vector in body frame b without translational motion of the carrier, and
two vectors are in opposite directions as follows:

f b(t) = −gb(t) (3)

where f b(t) denotes the theoretical measurement of the accelerometer. In practice, the acceleration,

f̃ b
(t), measured by the accelerometer contains f b(t) and measurement errors. The projection of f̃ b

(t)
in the initial inertial frame ib0 is as follows:

f̃ ib0(t) = Cib0
b (t) f̃ b (4)

According to the geometric relationship in Figure 1, Equation (5) can be obtained.

EAB =
f̃ ib0 (tB)− f̃ ib0 (tA)∥∥∥ f̃ ib0 (tB)− f̃ ib0 (tA)

∥∥∥ (5)

in which EAB is defined as the unit east vector at the middle point OAB between A and B. In Figure 1b,
the navigation frame of point B is composed of E, N, and U, which are the east vector, north vector
and up vector, respectively. They can be denoted as follows:

U (tB) =
f̃ ib0 (tB)∥∥∥ f̃ ib0 (tB)

∥∥∥
E (tB) =

 cos (ωie (tB − tA) /2) − sin (ωie (tB − tA) /2) 0
sin (ωie (tB − tA) /2) cos (ωie (tB − tA) /2) 0

0 0 1

 EAB

N (tB) = U (tB)× E (tB)

(6)
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where ωie is the Earth rate. According to the above vectors, the Cn
ib0

(tB) can be constructed as follows:

Cn
ib0

(tB) = [E (tB) N (tB) U (tB)] (7)

According to Equations (1)–(7), the initial alignment for SINS can be accomplished. It has been
deduced that the highest theoretical alignment accuracy of this method can be determined as [8]:

φE = −∇N
g

, φN = −∇E
g

, φU = − εE
ωie · cos L

+
∇E
g

tan L (8)

where EE denotes the gyroscope error in the east; ∇N and ∇E are the equivalent accelerometer errors
in the north and east, respectively.

Figure 1. Apparent motion of the gravity vector in the inertial frame: (a) The trajectory of the gravity
vector; (b) Alignment process based on GAM.

2.2. Simulation

The mooring condition was taken as the simulation environment, and the linear acceleration
caused by the surge and sway of the carrier was ignored. The data of acceleration and angular rate
were generated by a swaying SINS simulator, and the parameters of the gyroscope and accelerometer
are shown in Table 1. In the simulation, the local latitude and the sampling rate respectively were
45.777◦ and 100 Hz. The initial attitude between the b-frame and n-frame was set as pitch(0) = 10◦,
roll(0) = 0◦, and yaw(0) = 40◦, respectively. The swing parameters of the attitude are as follows:

ρ = 10◦ + 10◦ sin
( 2

7 πt
)

θ = 10◦ sin
( 2

5 πt
)

ψ = 40◦ + 5◦ sin
( 2

5 πt
) (9)

Table 1. Parameters of the gyroscope and accelerometer.

Parameter Item Parameter Values

Gyro constant bias (◦/h) 0.01
Gyro random bias (white noise) (◦/

√
h) 0.001

Accelerometer bias (µg) 100
Accelerometer random bias (white noise) (µg) 10
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The vectors of the current moment and the previous moment were selected as the corresponding
GAM vectors in the alignment solution. The update frequency of the alignment solution was 100 Hz.
Considering the requirement of rapidity in coarse alignment, the alignment process took 250 s.
The alignment errors of the above method are shown in Figure 2, and the corresponding Standard
Deviation (STD) and means of the alignment errors in last the 10 s are shown in Table 2.

Table 2. Means and STDs of the alignment errors from 240 s–250 s.

Parameter Pitch Error (◦) Roll Error (◦) Yaw Error (◦)

Mean −0.0070 0.0035 −89.6043
STD 0.2609 0.1665 137.3078

Figure 2. The alignment errors of the Gravitational Apparent Motion (GAM).

According to Equation (8) and Table 1, the errors of the above alignment method caused by
IMU biases were about (−0.006◦, 0.006◦,−0.06◦). The curves in Figure 2 indicate that the horizontal
errors can approach the theoretical accuracy within 250 s, while the azimuth error cannot satisfy this.
As shown in Figure 2, the curve of the yaw error remains oscillatory, which means that the error will
not converge with the increasing of the alignment time. There are two main reasons for the alignment
failure when analyzing the alignment process of the above methods. One reason is the GAM vectors
become approximate collinear due to the existence of noise. The other reason is the random noise
makes it difficult to obtain real GAM from the measured data.

3. Improved Method Based on CEEMD

To solve the problems in Section 2, the works in [11,12] adopted the low-pass digital filter method
and the RWD method, respectively. Considering the signal characteristics of the IMU, an improved
CEEMD-based method is proposed in this paper. The significant differences of the proposed method
compared to the filtering methods mentioned in [9,11] are that it is adaptive and it does not require
any prior information.

3.1. A Brief Review of the CEEMD Method

The EMD-based denoising method can decompose the original signal into several IMFs and
a residue adaptively based on the intrinsic characteristics of the signal. Therefore, the EMD-based
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denoising method has been adopted as an effective method for dealing with the nonlinear and the
non-stationary signals [21]. As EMD proved to be, it still leaves the problems of mode mixing and end
effect unresolved. To solve the phenomenon of mode mixing and the end effect in the original EMD,
EEMD was proposed in [14]. The main strategy of EEMD is that the intrinsic local oscillations can be
filtered adaptively to proper scales via the natural filter bank of EMD by adding uniformly-distributed
white noise. Practically, however, the residue noise caused by the the added white noise in the signal
reconstruction cannot be eliminated by the limited number of ensembles. In other words, the added
noise would inevitably bring new errors to the IMFs derived from EEMD. CEEMD is an optimization
method of EEMD, which can overcome the drawbacks mentioned above by using each noise in pairs
with plus and minus signs. Therefore, the signal composed of the original signal and added white
noise can be expressed as: [

y1

y2

]
=

[
1 1
1 −1

] [
x
w

]
(10)

in which y1 and y2 denote the sum of the original data with positive noise and negative noise,
respectively; x is the original data; w is the added white noise. For given original data x(t),
the procedure of CEEMD can be described as follows:

1. Generate reconstructed y according to Equation (10).
2. Decompose completely y1 and y2 by EMD, obtaining IMFi(+) and IMFi(−) (i = 1, . . . , I)

derived from y1 and y2, respectively, where i is the number of IMFs.
3. Compute the ith mode of x(t) by averaging the corresponding modes: IMFi =(

IMFi(+) + IMFi(−)
)

/2.
4. The original signal is eventually decomposed into multiple IMFs and residual signal rI by CEEMD:

x(t) = ∑I
i=1 IMFi + rI .

This scheme has an obvious suppression effect on noise in the reconstructed signal, which will be
verified later. Similar to EMD, CEEMD is a data-driven adaptive decomposition approach, which is a
sifting process based on the local time scale. In order to ensure that each IMF has physical meaning,
the fixed sifting number in this paper is set to 12 according to [23].

3.2. Improved CEEMD Denoising Method Based on the l2-Norm Measure between the PDFs

For a noiseless signal z(t) contaminated by an additive noise n(t):

x(t) = z(t) + n(t) (11)

The purpose of CEEMD as a filter is essentially obtaining a reconstructed and denoised signal
x̃(t) based on relevant modes. The selection of the effective mode is an open question, which has a
decisive influence on the denoising effect of the original signal. The relevant modes can be selected
by a given standard that differentiates the modes carrying potential information relevant to the main
structures of the original signal. The reconstructed and denoised signal is given by:

x̃(t) =
I

∑
i=kth

IMFi + rI (12)

where kth denotes the order of partial reconstruction. One method to determine kth is to calculate the
correlation coefficient between the residual of each mode and the original signal. The order of the
mode removed from the original signal is defined as:

l = kth − 1 (13)
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The residual of each mode can be expressed as:

rl(t) = x(t)−
l

∑
i=1

IMFi (14)

The correlation coefficient between x(t) and rl(t) is as follows:

ρ(l) =
N

∑
t=1

x(t)rl(t)/


√√√√ N

∑
t=1

x2(t)

√√√√ N

∑
t=1

r2
l (t)

 (15)

where N is the length of data. In order to determine kth, a threshold M should be determined based on
the prior information. According to the analysis in [17], Equation (16) can be obtained.

uth =
max(ρ(i))

10×max(ρ(i))− 3
(16)

where ρ(i) denotes the correlation coefficient between each IMFi and x(t); uth represents the threshold
of the uncorrelated IMFs. In this section, the threshold M is determined by uth is 0.75. The kth can be
obtained by Equation (17).

kth = arg f irst
1≤l≤I

{ρ(l) ≤ M} (17)

in which “ f irst” means the first value less than M in set {ρ(l)}. To analyze the performance of the
CEEMD denoising method based on the Correlation coefficient (CEEMD-COR), 50-times Monte Carlo
(MC) simulations were conducted in different Signal-to-Noise Ratio (SNR) signals. Figure 3 shows
some results of CEEMD-COR denoising with −2 dB and 4 dB SNR noise signals. It can be seen that
this method is sensitive to some noisy signals with different SNR.

Figure 3. Reconstructed signals for the different noise signals: (a) −2-dB SNR noise signals; (b) 4-dB
SNR noise signals.

Inspired by [21], the selection of kth can be tackled by the similarity measure between the PDF
of the original signal and each IMF instead of the correlation coefficient. On the basis of Bayesian
interpretation, a PDF contains complete information about the signals of interest, rather than merely
the oscillation amplitude. The characteristics of PDF make it possible to identify the IMFs dominantly
carrying the features of x(t) by a PDF similarity measure. The information-theoretic measures and the
metrics-based measures are the two main categories of the similarity measure. It has been proven that
geometric similarity measurement based on the l2-norm has the best effect in [22].
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For given original data x(t) and the result of decomposition by CEEMD
(

IMF1, . . . , IMFI),
the l2-norm is defined by:

∥∥∥pi − P
∥∥∥

2
=

(∫ +∞

−∞

(
pi(z)− P(z)

)2
dz
)2

(18)

where pi and P are the PDFs of IMFi and x(t) obtained by the kernel density estimator. The similarity
measure between pi and P by the l2-norm can be expressed as:

D(i) = dist
1≤i≤I

[
pi, P

]
(19)

where “dist” stands for the distance between two PDFs according to Equation (18). The order of partial
reconstruction, kth, can be described as follows:

kth = arg f irst
1≤i≤I

{D(i) < D(i− 1)} (20)

in which “ f irst” means the first order that the distance starts to be smaller than that of the
previous order.

To compare the performances of CEEMD-COR, the conventional EMD-PDF, and the proposed
CEEMD-l2PDF-based method, an MC simulation was performed with the same simulation parameters.
The SNR and the Normalized Percent Mean Square Error (NPMSE) were adopted as the measurements
of the noise-reducing efficiency [23]. Figure 4a,b shows the comparison of SNR and NPMSE after
denoising, respectively. As shown in Figure 4, EMD-PDF and CEEMD-l2PDF performed similarly,
but CEEMD-l2PDF showed a better denoising effect than the other two methods with various
noise signals. For 8-dB SNR and 10-dB SNR noise signals, the gain of CEEMD-COR was almost
equal to that of CEEMD-l2PDF, while CEEMD-COR behaved markedly worse than EMD-PDF and
CEEMD-l2PDF at other SNR levels. Figure 5 intuitively shows the denoising results of these methods
on −2-dB and 4-dB SNR signals in the simulations, respectively. In Figures 4 and 5, the same
conclusions can be drawn that CEEMD-l2PDF shows the best robustness and superiority over
CEEMD-COR and EMD-PDF on the reconstruction error and variance for signals measured by IMU.

Figure 4. Cont.
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Figure 4. Results after denoising on the noisy signals. (a) Mean of SNR after denoising; (b) mean of
Normalized Percent Mean Square Error (NPMSE) after denoising. CEEMD, Complementary Ensemble
Empirical Mode Decomposition (CEEMD); COR, Correlation.

Figure 5. Reconstructed signals by different methods: (a) −2-dB SNR noise signals; (b) 4-dB SNR
noise signals.
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4. Simulation and Experiment Results

To evaluate the performances of the proposed SINS self-alignment based on CEEMD-l2PDF,
the simulation and experiments on the swaying condition were carried out with the comparisons
between EMD-PDF, the method of the Finite Impulse Response (FIR) digital low-pass filter proposed
in [10], the method of alignment based on the velocity vector, and the proposed method. The procedure
of the proposed algorithm can be summarized as shown i Figure 6.

Figure 6. Process of the proposed algorithm.

4.1. Simulation Results

The initial conditions and simulation environment were the same as those described in Section 2.2.
To compare the filtering effect of EMD-PDF and CEEMD-l2PDF, the denoising results of f̃ b

z for IMU
measurement are plotted in Figure 7. The corresponding alignment errors are shown in Figure 8.
The mean and Standard Deviation (STD) of alignment errors were adopted to evaluate the alignment
effect during the final 10 s.

Figure 7. Denoising results of f̃ b
z in the simulation. (a) EMD-PDF method; (b) CEEMD-l2PDF method.
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Figure 7 shows that EMD-PDF and CEEMD-l2PDF had a similar filtering effect when denoising
the same signal. However, the slight fluctuation of the original signal can be reflected in the
reconstructed signal by CEEMD-l2PDF, which was not revealed in EMD-PDF.

Figure 8. The alignment errors of low-pass, velocity vector, EMD-PDF, and CEEMD-l2PDF
in simulation.

The curves in Figure 8 show that the horizontal attitude errors of all methods can achieve
the theoretical accuracy within 250 s, while only the yaw errors of CEEMD-l2PDF reached the
theoretical accuracy. The horizontal attitude errors of CEEMD-l2PDF, EMD-PDF, and the low-pass
filter method had similar trends. In addition, CEEMD-l2PDF showed superiority over other methods,
especially in convergence time. The alignment error of CEEMD-l2PDF converged to less than 2◦ in
about 46 s, while other methods reached 2◦ in roughly 230 s. Compared with EMD-PDF, the yaw
error based on CEEMD-l2PDF is reduced by 80.7% in Table 3, which greatly improved the accuracy of
coarse alignment. According to Figure 8 and Table 3, it can be concluded that the coarse alignment
under the swinging condition can be realized by the improved CEEMD-l2PDF denoising method.

Table 3. Means and STDs of the alignment errors in the simulation.

Methods Parameter Pitch Error (◦) Roll Error (◦) Yaw Error (◦)

low-pass Mean −0.0012 0.0014 −0.3580
STD 0.0021 0.0027 1.9790

velocity vector Mean −0.0045 0.0011 −0.2450
STD 0.0029 0.0059 1.3584

EMD-PDF Mean −0.0012 0.0014 −0.1457
STD 0.0021 0.0026 1.8911

CEEMD-l2PDF Mean −0.0012 0.0015 −0.0277
STD 0.0021 0.0026 0.1231

4.2. Turntable Test Result

The swaying experiment of the Fiber Optic Gyroscope (FOG)-based SINS on a tri-axial turntable
is shown in Figure 9. Table 4 shows the parameters of the self-developed high precision FOG-based
SINS. The local latitude was 45.777◦.

To obtain the reference attitude, we firstly adopted the initial alignment of SINS on the static
turntable for 30 min. After that, the turntable began to swing, followed by 250-s coarse alignment.
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The attitude solution of SINS was regarded as an approximate reference attitude in the turntable
test. The bias error of IMU in alignment error was eliminated because of the output of the SINS,
which improved the alignment accuracy by the denoising method obviously. Figures 10 and 11 and

Table 5 illustrate the results of denoising for f̃ b
z and corresponding alignment errors in the turntable

test, respectively.

Figure 9. Experimental conditions of the turntable. (a) Self-developed SINS. (b) Three-axis turntable.

Table 4. The parameters of self-developed SINS.

Parameter Item Initial Alignment Mode Navigation Mode

Horizontal attitude <0.02◦ (1σ) <0.01◦/h (1σ)<0.05◦ (max)

Yaw <0.06◦ sec Φ (1σ) <0.01◦/h (1σ)<0.10◦ sec Φ (max)

Figure 10. Denoising results of f̃ b
z in the turntable test. (a) EMD-PDF method; (b) CEEMD-l2PDF method.
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Similar to the denoising results in simulation, Figure 10 shows a more significant filtering
difference between CEEMD-l2PDF and EMD-PDF. The signal filtered by CEEMD-l2PDF reproduced
two peaks of the original signal in about 25 s, but EMD-PDF could not implement it. This indicates that
the proposed method can retain more perfect features of the original signal compared with EMD-PDF.

Figure 11. The alignment errors of low-pass, velocity vector, EMD-PDF, and CEEMD-l2PDF in
the simulation.

Table 5. Means and STDs of the alignment errors in the turntable test.

Methods Parameter Pitch Error (◦) Roll Error (◦) Yaw Error (◦)

low-pass Mean −0.0003 −0.0028 0.3931
STD 0.0296 0.0327 3.0755

velocity vector Mean −0.0136 −0.0069 0.0462
STD 0.1848 0.2165 0.0994

EMD-PDF Mean −0.0002 −0.0028 0.0898
STD 0.0297 0.0323 3.0110

CEEMD-l2PDF Mean −0.0004 −0.0030 0.0238
STD 0.0305 0.0332 0.1847

Since the yaw error was one order of magnitude larger than the horizontal error during the
coarse alignment, the yaw error was mainly analyzed afterwards. As shown in Figure 11, GAM-based
alignment methods based on filtering have advantages in the horizontal alignment, which is consistent
with the results of the simulation. However, the method based on the velocity vector showed a
smoother and faster convergence than EMD-PDF and low-pass filter method in the azimuth alignment.
It took 46 s for the yaw error of the velocity-based method to converge to 3◦, which is close to that of
CEEMD-l2PDF (46 s). From Table 5, it can be seen that the yaw error of the CEEMD-l2PDF method
was reduced by 48.4% with respect to the velocity-based method. In addition, because the turntable
center did not completely coincide with the SINS center, the existence of the lever arm would cause
errors in the alignment results, such as the roll error caused by the acceleration of the lever arm effect in
Table 5. Actually, the lever arm error will be compensated by related algorithms. Figure 11 and Table 5
indicate that the CEEMD-l2PDF denoising method was helpful to improve the alignment errors in this
turntable test.
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4.3. Ship Mooring Experiment

The ship mooring experiment was carried out in South China Sea with two self-developed SINS
used in the turntable test. As shown in Figure 12, the GPS/SINS integrated navigation system was
used as the attitude reference. The installation error was corrected through the inertial navigation

mode. Because of the obvious fluctuation of f̃ b
x measured by IMU, Figures 13 and 14 illustrate the

performances of the CEEMD-based denoising methods for f̃ b
x and the low-pass filter method for f̃ ib0 .

The coarse alignment results and corresponding errors of different methods are presented in Figures 15
and 16, respectively. The means and STDs of the alignment errors during the final 10 s are given in
Table 6.

Figure 12. Ship mooring experiment.

Figure 13. Denoising results of f̃ b
x in the ship mooring experiment. (a) EMD-PDF method;

(b) CEEMD-l2PDF method.
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Figure 14. Denoising results of f̃ ib0 in the ship mooring experiment.

Figure 13 shows that EMD-PDF method and CEEMD-l2PDF method can still effectively eliminate
most of the noise in practical applications. Moreover, the signals filtered by the two methods still had
different features, which will directly influence the performance of coarse alignment.

Figure 15. The alignment results in the ship mooring experiment.

In Figure 15, the velocity-based method had a smoother alignment process. However, when the
ship was disturbed by wind or waves, the roll of the velocity-based method became more volatile than
those of the other three methods.

It can be noticed that the alignment accuracy of the denoising methods in Figure 15 was greatly
improved when compared with that in the turntable test, because the amplitude and frequency of
the attitude fluctuation were much smaller than those of turntable test, which were mainly caused by
the irregular interferences from waves. Because of the linear velocity caused by the ship’s surge and
sway, the velocity-based method was inferior to the other methods. In Figure 15 and Table 6, the yaw
error of CEEMD-l2PDF showed slightly smaller alignment errors and smaller variance than other
methods. Compared with EMD-PDF, the mean and STD of CEEMD-l2PDF were improved by 41.3%
and 91.5%, respectively.
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Figure 16. The alignment errors in the ship mooring experiment.

Table 6. Means and STDs of alignment errors in the turntable test.

Methods Parameter Pitch Error (◦) Roll Error (◦) Yaw Error (◦)

low-pass Mean −0.0008 0.0004 −0.0878
STD 0.0019 0.0061 0.3396

velocity vector Mean −0.0039 0.0046 −0.4737
STD 0.0004 0.0024 0.0253

EMD-PDF Mean −0.0007 0.0009 −0.0242
STD 0.0015 0.0076 0.3665

CEEMD-l2PDF Mean −0.0007 0.0009 −0.0142
STD 0.0015 0.0142 0.0310

Figures 13 and 14 show that the whole coarse alignment can be divided into two stages: the stable
alignment phase with little wave interference in the first 190 s and the interfered phase with significant
wave-induced interference in the last 60 s. During the stable alignment, the yaw errors of low-pass
filter method, velocity-based method, EMD-PDF, and CEEMD-l2PDF reached 2◦ at 178 s, 27 s, 156 s,
and 11 s, respectively. In the subsequent interfered alignment, the maximum fluctuation amplitudes of
the yaw errors of these methods caused by wave disturbance were 3.849◦, 0.760◦, 2.411◦, and 0.253◦.
After that, they converged to 0.348◦, 0.649◦, 0.227◦, and 0.027◦ in 10 s, respectively. CEEMD-l2PDF
had strong robustness to interference, while the EMD-PDF and low-pass methods showed obvious
fluctuations. Thus, the improved GAM-based alignment algorithm using CEEMD-l2PDF would be
more convenient for practical applications.

5. Conclusions

Aimed at the problem caused by noise influence in the conventional GAM-based alignment
method, a novel denoising method combining the l2-norm with the similarity measure of the PDF
based on CEEMD was proposed in this paper. Unlike previous methods, it filters the signals based on
the intrinsic characteristics of the data by CEEMD. Moreover, the proposed CEEMD-l2PDF method
can overcome the distortion of reconstructed signal caused by mode mixing and the end effect. In
addition, it adaptively determined the effective IMFs using the similarity measurement between
each IMF and the original signal calculated by the l2-norm without any prior information. The
simulation and turntable test demonstrated the superiority of the proposed method in alignment
time and accuracy. Furthermore, the ship mooring experiment indicated that the proposed method
possessed better robustness and adaptability in the case of disturbance. Due to the computational
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complexity of the CEEMD algorithm, the application of the proposed method to real-time data
processing needs further study. Although the proposed method had great improvement in alignment
accuracy and anti-interference ability, its application in real-time data processing still needs further
research. In addition, how to improve CEEMD-l2PDF to reduce the computational complexity brought
by the CEEMD algorithm will be the focus of the follow-up work.
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