
sensors

Article

Implementation of a Depth from Light Field
Algorithm on FPGA

Cristina Domínguez Conde , Jonas Philipp Lüke * and Fernando Rosa González

Departamento de Ingeniería Industrial, Universidad de La Laguna, Apartado 456, 38200 La Laguna,
S/C de Tenerife, Spain
* Correspondence: jpluke@ull.es

Received: 4 July 2019; Accepted: 9 August 2019; Published: 15 August 2019
����������
�������

Abstract: A light field is a four-dimensional function that grabs the intensity of light rays traversing
an empty space at each point. The light field can be captured using devices designed specifically
for this purpose and it allows one to extract depth information about the scene. Most light-field
algorithms require a huge amount of processing power. Fortunately, in recent years, parallel
hardware has evolved and enables such volumes of data to be processed. Field programmable
gate arrays are one such option. In this paper, we propose two hardware designs that share a common
construction block to compute a disparity map from light-field data. The first design employs serial
data input into the hardware, while the second employs view parallel input. These designs focus
on performing calculations during data read-in and producing results only a few clock cycles after
read-in. Several experiments were conducted. First, the influence of using fixed-point arithmetic
on accuracy was tested using synthetic light-field data. Also tests on actual light field data were
performed. The performance was compared to that of a CPU, as well as an embedded processor.
Our designs showed similar performance to the former and outperformed the latter. For further
comparison, we also discuss the performance difference between our designs and other designs
described in the literature.

Keywords: light field; disparity estimation; FPGA

1. Introduction

1.1. The Light Field and How It Encodes Depth

The light field is a 4D function that grabs the light information in a scene. It is a reduced version
of the plenoptic function proposed in [1]. The plenoptic function is a 7D function parameterized by
(Vx, Vy, Vz, θ, φ, λ, t), where (Vx, Vy, Vz) is a point in 3D space, (θ, φ) are the incidence angles of a ray
traversing that point, λ is the wavelength of light and t represents time. This representation models
the light in a scene. In [2] and [3], it was proposed to reduce the plenoptic function to four dimensions
for the case of light in free space. This reduction is based on two assumptions: first, we can omit t and
λ to simplify the notation, and, second, the radiance along a line in free space is constant, so one only
needs to parameterize that line instead of all points on it. The reduced version can be parameterized
in several ways, but the two-plane parameterization is the most common. The light field L(x, y, u, v)
grabs the intensity of rays in free space. To parameterize the rays, two parallel reference planes are
used, as shown in Figure 1. The cut point with the u− v plane and the cut point with the x− y plane
define a ray. Varying the coordinates (x, y) while maintaining (u, v) as fixed defines a conventional
2D image from a certain viewpoint. On the other hand, fixing (x, y) and varying (u, v) retrieves
the intensity of all the rays impinging on the point (x, y) from different directions parameterized by
(u, v). As the acquisition is done with a digital device, each dimension captures a discrete set of data.
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The number of pixels in the x and y dimensions are given by Nx and Ny respectively, while the number
of viewpoints in (u, v) is Nuv × Nuv.
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L(x,y,u,v)

Figure 1. Two-plane parameterization of a light field.

The light field encodes depth information in the structure of intensity values [4]. In the case of a
Lambertian scene (no intensity change with direction), the depth for each point relates to all views in
the following way:

L(x + s u, y + s v, u, v) = c, ∀(u, v) (1)

where c is the constant intensity of the point and s is the disparity. With this information at hand,
the extraction of depth information converts into detecting this structure or, in other words, into the
problem of estimating s from a set of views (u, v). In a later stage, the depth z can be obtained using
the following expression:

z =
1

α + βs
(2)

where α and β are calibration parameters.

1.2. The Light-Field Pipeline

To capture real light-field data and use them in an application, the general pipeline depicted in
Figure 2 must be followed. First, raw light-field data are captured. After that, the raw data must be
decoded and rectified using the calibration data as input and then, finally, they can be processed to
obtain a useful data product. The following sections describe each of the stages of the pipeline and
analyse the different approaches described in the literature.

Capture
Decoding 

&
Rectification

Processing
Raw data Light field

Calibration parameters

OutputLight

Figure 2. General light-field pipeline

1.2.1. Capture

The light field is a mathematical concept that describes the light in a scene. To capture real
light-field data, several techniques can be used [5]. Most of them consist of taking images from different
viewpoints using an optical setup. In general, four categories of capture methods are distinguished:
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• Camera arrays: This technique consists of placing a set of cameras on a plane at equally spaced
distances. Examples of this capture technique can be found in [6,7]. These kinds of devices were
initially considered to be very bulky and difficult to operate, but with the advent of smart phones,
the size of cameras has been considerably reduced and a portable camera array design is not
so unrealistic.

• Plenoptic cameras (spatial multiplexing): The plenoptic camera is the most well known light-field
capturing device [8–11]. It consists of a microlens array placed between the main lens and the
sensor of a conventional camera. The microlenses spread the spatial information and the angular
information contained in the light field over a 2D sensor. The main advantage is the compactness,
since it is similar in size to a conventional camera. However, it has the drawback of having to
trade-off between spatial resolution and angular resolution, because both are spread over the
same sensor [12]. This means that the spatial resolution is reduced in comparison to conventional
cameras.

• Temporal multiplexing: This technique consists of one camera that moves to different positions
over time using a robotic arm or a gantry [2,13]. The main drawback of this approach is that it
works only for static scenes.

• Frequency multiplexing and compressive sensing: This approach uses a single camera with an
optical mask [14–17]. The raw data must then be decoded using a computationally expensive
process to obtain a light field.

1.2.2. Decoding and Rectification

Once raw light-field data have been captured, they must be decoded and rectified to provide
adequate input for the processing algorithms. This process includes tasks like colour demosaicing,
denoising and others that improve data before further processing [18–24].

1.2.3. Processing

The decoding and rectification produce a properly parameterized light field. The light field can
then be processed with different techniques to obtain different output data products. The processing
algorithms can be classified into different categories depending on the output they generate. In the
bullets that follow, we describe the different types:

• Light-field rendering: This type of algorithm computes a new 2D image or a set of such images
from light-field data. Isaksen et al. [25] proposed a reparameterization to generate images on a
general surface from light fields. However, the most prominent algorithm in this category, which
is used for the computation of the focal stack, was proposed in [26]. The main drawback of this
focal-stack algorithm is the low spatial resolution of the outcoming images. To overcome this
drawback, superresolution algorithms were proposed [27–32]. Other authors have also proposed
techniques to accelerate the computation or to make it more accurate [33,34].

• Depth from light field: The goal of depth from light field algorithms is to extract depth information
from the light field and provide a depth or disparity map that can be sparse or dense. Several
approaches can be adopted to perform this processing task. One strategy is to convert the light
field into a focal stack (that is, a set of images focused at different depths) using light-field
rendering techniques and then estimate depth by applying a depth from focus algorithm [35–37].
Another group of techniques is based on the computation of the variance focal stack to extract
depth information [28,34,38]. Berent and Dragotti [39] decided to use image segmentation
techniques on light fields to detect the plenoptic structures that encode the depth information, as
mentioned in Section 1.1. Other authors use differential operators to detect the slope of plenoptic
structures [8,40–42]. In [43], robust PCA is used to extract depth information from plenoptic
structures. On the other hand, Kim et al. [44] developed a depth estimator for high spatial angular
resolution light fields, while Jeon et al. [45] present an accurate method for depth estimation
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from plenoptic camera. In [46], the authors proposed a pipeline that automatically determines
the best configuration for the photo-consistency measure using a learning-based framework.
Recently, the use of convolutional neural networks to estimate depths from a light field has been
investigated [47–49].

• Wavefront sensing: The purpose of this approach is to extract an estimation of the wavefront
phase in the scene. This technique has been widely explored in astrophyshics to perform adaptive
optics in telescopes [50–54].

• Tracking and pose estimation: As the light field encodes 3D information about the scene, it can
be used in visual odometry and navigation. In [55], theoretical developments to extract pose
information from light fields were presented. In [56], some algorithms for visual odometry were
given. Further explorations in this application field can be found in [57–59]. Also some studies
focused on using the technology in space applications [60,61]. The light field features in scale
space and depth proposed in [62] can also be included in this category of algorithms.

1.3. Light-Field Processing on FPGA

The main issue with light field processing algorithms is the enormous amount of data that must
be processed. Each captured light field has a shape of Nx × Ny × Nuv × Nuv. For instance, the light
fields used by [26] have a shape of 292× 292× 13× 13 , which is about 15 megarays. To achieve
real-time performance, parallel or specific hardware architectures must be used. The most common
choice in this case has been GPUs (Graphics Processing Units). The implementation of light-field
algorithms on an embedded system is very difficult when real-time performance needs to be reached.
In recent years, the trend has been to make use of SoC (System on Chip) approach, which integrates
all parts of a computation system on a single chip. Most often, a SoC is composed of a CPU and
specialised processing units such as GPUs, MPUs and DSPs. These are are surrounded by other
peripherals, such as memories, GPIOs or buses. It is also possible to implement custom hardware
components in reprogrammable devices, such as FPGAs (Field-programmable gate arrays). FPGA
manufacturers have their own product lines consisting of programmable hardware that is connected
to a CPU and other peripherals [63,64]. This configuration allows system designers to decide which
parts of the system should run on the CPU and which should be outsourced to a hardware block via a
hardware-software co-design.

Only a few examples of light-field processing algorithms on FPGA exist in the literature. Some
light-field rendering algorithms have been implemented [65–67], and also some effort has been made
to implement wavefront phase estimation in real time [68,69]. One of the first examples of depth from
light field on FPGA can be found in [70], where the authors proposed an architecture that implements
the belief propagation algorithm and used it on light-field data. On the other hand, Chang et al. [71]
provided a pixel-based implementation of a depth from light field algorithm. They used a modified
raster scan and pipelining to improve the performance of their implementation.

1.4. Goals and Contributions of This Paper

This paper addresses the design and implementation of a depth from light field algorithm on
FPGA. Data acquisition, decoding and rectification of light-field data are not in the scope of this paper.
In a more concrete fashion, we show the design of hardware components that run on FPGA to process
the incoming light fields and generate a disparity map as an output. Two sources of light-field data are
considered. The first employs input data provided by a plenoptic camera, and the second employs
input data provided by a camera array. Other input data sources were not considered because temporal
multiplexing is only suitable for static scenes and frequency multiplexing and compressive sensing
need a decoding step that is computationally heavy.

The contributions of this paper are two light field data processing architectures (one for each input
format) based on a common basic processing block. An array of such blocks is surrounded with the
control and adaptor logic needed to process each input format. Both architectures can process a light
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field during read-in and can produce a disparity map only a few clock cycles after the last pixel is read
in. Other architectures need a loading step to be completed before data can be processed. Furthermore,
with this approach the use of on-chip memory is reduced substantially in our designs compared to
other depth from light field designs on FPGA and it is not necessary to use off-chip memory. Finally,
the performance of each architecture is tested and discussed.

2. Implementation

2.1. The Algorithm

In this paper, we focus on local estimators because they are especially well-suited for
implementation on FPGA. These estimators aim to compute the depth for a point using a local
neighbourhood. Most local algorithms perform the estimation based on the gradient of the light
field [8,40–42], which makes this is a necessary previous step to estimate the disparity s. The light-field
gradients here are estimated using the method proposed by Farid and Simoncelli in [72], although
other derivative filters could be used. Farid and Simoncelli [72] proposed a set of optimised and
separable derivative filters for multidimensional signals. The 3-tap filter is composed of the two 1D
separable filters shown in Equation (3). The d filter is applied in the direction of the partial derivative,
while the p filter is applied in the other directions. Remember that a light field is a 4D signal, which
means the derivatives will be obtained by convolving with d in the direction of the derivative and
convolving with p in the other three directions. Of course, filter sizes other than 3 can be used.

~p = ( 0.229879 0.540242 0.229879)
~d = (−0.425287 0.000000 0.425287)

(3)

Once the derivatives along the four dimensions of the light field have been computed, a gradient
vector (Lx, Ly, Lu, Lv) can be composed. Now, to obtain an estimation of the disparity, [8] proposes
using the expression of Equation (4).

s =
∑P LxLu + LyLv

∑P L2
x + L2

y
(4)

where P is a 4D patch around the pixel for which we are computing the disparity. In this paper,
we reduce the cardinality of P to 1. We must note that other methods can be used to compute
disparity from derivatives, but they would require more resources on FPGA as they need trigonometric
operations [41,42].

Algorithm 1 shows the general structure of the algorithm to be implemented. Please note that
Step 1 is a 4D convolution that can be implemented using the separability of the filters, but we do
not exploit this approach here, as we only need 3-tap filters and symmetry allows us to reduce the
number of operations, as we explain later. The use of 3-tap filters makes h equal to 1, since the filtering
cannot be performed at the borders and the variables l, j, k, n are constrained to the set {−1, 0, 1}.
Furthermore, we restrict our study to 3× 3 views (Nuv = 3). This means we only will obtain a result
for the central image of the light field (u = 1, v = 1). Step 2 of the algorithm computes disparity values
from the gradients computed in Step 1 using Equation (4).
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Algorithm 1: Local depth from light-field algorithm.
Data: L(x, y, u, v)
Step 1. Compute light-field derivatives:
for x ∈ h . . . (Nx − h− 1) do

for y ∈ h . . . (Ny − h− 1) do
for u ∈ h . . . (Nuv − h− 1) do

for v ∈ h . . . (Nuv − h− 1) do
Lx(x, y, u, v) = ∑

l,j,k,n
d [l] p [j] p [k] p [n] L(x− l, y− j, u− k, v− n)

Ly(x, y, u, v) = ∑
l,j,k,n

p [l] d [j] p [k] p [n] L(x− l, y− j, u− k, v− n)

Lu(x, y, u, v) = ∑
l,j,k,n

p [l] p [j] d [k] p [n] L(x− l, y− j, u− k, v− n)

Lv(x, y, u, v) = ∑
l,j,k,n

p [l] p [j] p [k] d [n] L(x− l, y− j, u− k, v− n)

end
end

end
end
Step 2. Compute disparities:
for x ∈ h . . . (Nx − h) do

for y ∈ h . . . (Ny − h) do
for u ∈ h . . . (Nuv − h) do

for v ∈ h . . . (Nuv − h) do

s(x, y, u, v) = ∑P Lx(x,y,u,v)Lu(x,y,u,v)+Ly(x,y,u,v)Lv(x,y,u,v)
∑P Lx(x,y,u,v)2+Ly(x,y,u,v)2

end
end

end
end

2.2. System Architecture

The system to process the light field into a disparity map includes the three modules presented
in Figure 3. The mission of the derivative module is to compute the partial derivatives of the light
field taken as input. The derivatives (Lx, Ly, Lu, Lv) are then fed into a disparity estimation module
that computes a disparity value for each pixel of the light field’s central view. Each module must take
the data when they are available and produces an output only when a partial result can be given.
The process is controlled by a control module that generates the pertinent control signals fed to each
module. Fixed-point arithmetic is used (16 bits for the integer part and 16 for the fractional part).

Derivatives Disparity
estimation

Light field Disparity
map

Control

Figure 3. General system architecture.
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The light-field data can have different formats depending on the device used for capture or other
processing steps. In the next section, we discuss two different data formats.

2.3. Data Input Format Considerations

The decoding and rectification algorithm in the light-field pipeline generates a stream of pixels
corresponding to the intensity of the rays in the light field. However, pixels cannot be received in
parallel by a processing module. In addition, pixel ordering may be different depending on the type
of capturing device used. The processor must wait to receive the data needed to generate a certain
output pixel. The waiting time to generate one output pixel can be used to calculate partial results
for other output pixels, but this requires an intermediate memory to store partial results. Due to this
requirement, the timing and ordering of the input data stream strongly conditions the processor design.

Here two input formats are considered. First, we considered the data produced by a plenoptic
camera. In that case, pixels are read in a sequential manner and the ordering of the sequence is given
by i = y · Nx · Nuv · Nuv + v · Nx · Nuv + x · Nuv + u. Second, we considered input data provided by a
camera array. In that case, Nuv × Nuv pixels corresponding to the position (x, y) can be read-out in
parallel, at each clock pulse. The pixel order is given by i = y · Nx + x. We call the first input format
serial input and the second input format view parallel input.

As the first output pixel can only be produced when all the input pixels necessary to produce it are
available, the time instants and speed of the calculation depend on the input format. We implemented
both of our two input formats assuming that the light field comprises 3× 3 views (Nuv = 3), although
this could be changed in the future.

2.3.1. Serial Input

As the name implies, serial input data arrive serially, which means that not all pixels used to
produce an output are available at the same time. Here we explore the possibility of performing the
convolutions shown in Algorithm 1, calculating partial results as the data arrive. At each clock cycle,
only one pixel is available, but it still contributes to a set of outputs. Given a ray (x, y, u, v) the positions
of the derivatives it contributes to are those in Equation (5).

{(x + l, y + j, u + k, v + n) | l, j, k, n ∈ {−1, 0, 1}} (5)

Please note that the indices l, j, k and n are in {−1, 0, 1} because our implementation uses 3-tap filters.
Furthermore, if the intention is to perform the computation only for the central view, in the case of
Nuv = 3, the set in Equation (5) reduces to the set shown in Equation (6).

{(x + l, y + j, 1, 1) | l, j ∈ {−1, 0, 1}} (6)

Equation (5) means that each input pixel in the light field contributes to a 3× 3 neighbourhood
around its position (x, y) in the central view. In terms of code, this means that each time a ray arrives,
the actions shown in Algorithm 2 must be performed.

Algorithm 2: Computation of partial result for a given input pixel
Data: L(x, y, u, v)
for l ∈ {−1, 0, 1} do

for j ∈ {−1, 0, 1} do
Lx(x− l, y− j, 1, 1) += d[l] p[j] p[u− 1] p[v− 1] L(x, y, u, v)
Ly(x− l, y− j, 1, 1) += p[l] d[j] p[u− 1] p[v− 1] L(x, y, u, v)
Lu(x− l, y− j, 1, 1) += p[l] p[j] d[u− 1] p[v− 1] L(x, y, u, v)
Lv(x− l, y− j, 1, 1) += p[l] p[j] p[u− 1] d[v− 1] L(x, y, u, v)

end
end
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Algorithm 2 allows one to make the following interesting observations:

• The four derivatives can be performed in parallel.
• The ‘for’ loops may be performed in parallel as there is no dependency between iterations.
• Each time a pixel arrives, its product with a subset of 9 of 81 possible filter coefficients must

be calculated.

In exploring the symmetry and zeros in the filter coefficients, some simplifications can be carried
out. Please note that p[−1] = p[1], d[1] = −d[−1] and d[0] = 0. If the sign change in d is applied later,
then the possible non-zero values for the coefficients reduce to the four values listed in Table 1.

Table 1. Non-zero and distinct positive filter coefficients for serial input.

Coeff. Value

W0 p[0] p[0] p[0] d[1]
W1 p[1] p[0] p[0] d[1]
W2 p[1] p[1] p[0] d[1]
W3 p[1] p[1] p[1] d[1]

Each time a pixel comes into the system, the four values are multiplied by the pixel value. After
that, we still must decide where to add each product and if a change of sign must be performed.
Figure 4 shows the schematic diagram of the hardware implementation used to process one pixel.
The pixel goes into the weight multiplier block where the pixel value is multiplied by each of the four
non-zero weights mentioned before. The signs of the four values might change before they are added
to the corresponding partial result, which happens when they are fed into the accumulator-memory.
We describe the latter in Section 2.4.

xxx

x

x

x

W0

W1

W2

W3

L(x,y,u,v)

Lx

Ly

Lu

Lv

Weight multiplier Accumulator/memory

Control signals

Figure 4. Implementation of weight multipliers for serial input.

2.3.2. View Parallel Input

With the view parallel input format, the 3× 3 rays corresponding to a pixel position (x, y) are
available at the same time. This allows us to adapt Algorithm 2 to get Algorithm 3, whose hardware
implementation is shown in Figure 5. First, the product of the 3 × 3 values coming in with the
adequate filter coefficients is calculated in parallel. We then use a parallel adder tree with pipelined
architecture to get Du(x, y), Dv(x, y) and P(x, y). Then those values are multiplied by the coefficients
in Table 2, which were obtained using symmetry conditions in a similar manner as in the previous
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section. Please note that this approach only works with filters that are separable in (x, y) - (u, v). This
process results in eight values that are fed into the accumulator memory, whose implementation we
show in Section 2.4.

Algorithm 3: Computation of partial result for a given parallel input pixel set.
Data: {L(x, y, u, v)|u, v ∈ {−1, 0, 1}} with position x, y fixed
Compute Du(x, y) = ∑u,v d[u− 1] p[v− 1] L(x, y, u, v)
Compute Dv(x, y) = ∑u,v p[u− 1] d[v− 1] L(x, y, u, v)
Compute P(x, y) = ∑u,v p[u− 1] p[v− 1] L(x, y, u, v)
for l ∈ {−1, 0, 1} do

for j ∈ {−1, 0, 1} do
Lx(x− l, y− j, 1, 1) += d[l] p[j] P(x, y)
Ly(x− l, y− j, 1, 1) += p[l] d[j] P(x, y)
Lu(x− l, y− j, 1, 1) += p[l] p[j] Du(x, y)
Lv(x− l, y− j, 1, 1) += p[l] p[j] Dv(x, y)

end
end
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Control signals

Figure 5. Weight multiplier for view parallel input.

Table 2. Non-zero and positive distinct filter coefficients for parallel input.

Coeff. Value

W0 p[0] d[1]
W1 p[1] d[1]
W2 p[0] p[0]
W3 p[0] p[1]
W4 p[1] p[1]
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2.4. Accumulator Memory Grid

2.4.1. Basic Component

We first consider what is needed to get one of the partial derivatives at position (x, y) in the central
view. The obvious solution is an accumulator that adds the right value when arriving. In addition to
the accumulator, a module that decides which of the incoming values must be added (and inverted
if necessary) must be developed. Following with that strategy, to compute the derivative for all the
pixel positions, such a hardware device must be replicated as much times as pixels are in the light field.
However, it is also clear that each time a pixel arrives, only 3× 3 devices will be active because the
incoming values only affect their neighbour pixels rather than all pixels. Replacing the accumulator
with an accumulator with a memory component that can store partial results that are not currently
affected by the incoming value allows one to create a hardware architecture which is feasible in practice
and does not waste resources.

Figure 6 shows a detailed block diagram of the basic component, while Table 3 describes the I/O
signals. Including a memory allows the reuse of the component across different pixel positions. With
this approach, a grid of 3× 3 modules corresponding to the nine values updated every clock cycle
is needed.

+

MUX

Re
gi

ste
r

Memory

data_in

clock

clock

mem_reg
data_out

wr_addr

rd_addr

rd_en

reset

reset

wr_en

Figure 6. Block diagram of basic component.

Table 3. Description of I/O signals of basic component.

Signal Function

clock System clock, block receives one datum at each rising edge.

reset Restarts the system.

data_in Pixel × coefficient, after selection based on position and clock cycle.

mem_reg Indicates if data_in must be added to the value stored in the register
or the value read from memory.

wr_en Indicates that the block must write data to memory.

rd_en Enables reading from memory. If this signal is low, the memory output is zero.

rd_addr Read address

wr_addr Write address (one less than rd_addr)

data_out Output data

Figure 7 shows a time diagram that illustrates the working principle of the basic block for a serial
input. Please note that here the selection of the right input data has been left out and that we only focus
on the process of accumulation and output data generation. Suppose we are computing the derivative
of the point (1, 1, 1, 1) in a light field of size (99, 99, 3, 3). When the system starts, the basic component
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must accumulate all the values that contribute to the derivative at that point. The diagram in Figure 7
shows that, when the first value comes into the component through data_in, the memory is not enabled
and its output is zero (rd_en=0 and mem_reg=0). The effect of this configuration is that the value of
data_in will go directly to the register. At the second clock cycle, the new value must be accumulated
to the register, and nothing must be written to memory (rd_en=1, mem_reg=1, wr_en=1). The same
will happen for the other values until the tenth value arrives. This value corresponds to another x
coordinate, so the partial result in the accumulator must be stored (wr_en=0) and simultaneously
the register will be loaded with the value of data_in driving rd_en=1 and mem_reg=0. The partial
result for pixel (1, 1) will be stored at the memory position of the memory as indicated by wr_addr.
This process will repeat for the other values of the same row in the plenoptic image. When the next
row begins, it is time to recover the partial result for (1, 1) from memory (rd_addr=0, mem_reg=1)
and simultaneously the partial result for position 98 will be stored. This process must continue for
each pixel of the current row and the other six rows. When the first data value of the last row that
contributes to that derivative arrives, the partial result is recovered from memory and nine values are
accumulated. After that, the derivative at point (1, 1) is in the accumulator and is put into data_out.
Nine clock cycles later, a new result is produced by this component for position (1, 4) stored at address
position 1. (Intermediate pixels will be computed by other components in the grid, as we explain in
the next section).

clk

reset

data_in

mem_reg

wr_en

rd_en

rd_addr 0 1

wr_addr 98 0

data_out

98 0 1

97 98 0

N
ex

t r
ow

6 
ro

w
s l

at
er

98 0 1 2

97 98 0 1

out out

...

Figure 7. Simplified time diagram for using basic component with serial input.

A similar approach can be implemented for the parallel input. In that case, however, the space
between the load and storage operations is reduced to every three input values instead of nine.

2.4.2. Basic-Component Grid

With the basic component’s operational approach described in Section 2.4.1, the derivative is
computed only at certain positions of the light field. The intermediate positions must be computed
by other basic components. These comprise a 3× 3 grid indexed as (l, k). Figure 8 shows a light field
formatted as a plenoptic image. Each block of the grid is responsible for an area of the light field.
Except at border regions, the nine basic components must operate continuously on the incoming data.
Furthermore, the grid must be replicated four times, one for each derivative. In each clock cycle, one
of the basic components generates an output which must be multiplexed from each individual block to
the general output. Figure 9 shows the grid’s general structure.
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Figure 8. Area of plenoptic image processed by each basic component (l, k).
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Figure 9. Schematic diagram of grid structure.

Up to this point, we have not mentioned the connection between each basic block and the input
signals coming from the weight multiplier described in Section 2.3.1 for serial input and Section 2.3.2 for
view parallel input. Each of the grid’s basic components must be accompanied by a data selector that
selects the right ‘data × weight’ for each position and time instant. The decision is made based on a
set of modular counters and other control logic, as depicted in Figure 9, that allow each block to decide
which input to select. Obviously, the selection method differs depending on the input format (serial or
view parallel).

Finally, each block needs to channel its output to the general output. This is done with a
multiplexer governed with a control signal that decides which block will be forwarded to the general
system’s output.

2.5. Disparity Estimation

Once the derivatives have been computed, the disparities can be estimated using different
local methods [8,40–42]. An output adaptor was designed to estimate disparities from the gradient.
We chose to implement the disparity estimator presented in [8] because it does not use complex
mathematical operations, such as trigonometric functions or roots, which require a more complex
hardware implementation. The disparity estimator to be implemented is shown in Equation (4).
Taking into account that we use a light field of 3× 3 views, the summations in P disappear in the
angular dimension, because we only have partial derivatives of the central image. We also omitted the
summation in the spatial dimensions.

Figure 10 shows a block diagram for the disparity computation. We use four parallel multipliers,
two adders and one dedicated divider. The divider is designed with a pipeline architecture to achieve
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one result per clock cycle. After a latency period related to the length of pipeline, a result is obtained
every clock cycle.

Multiplier
Lx

Lu

Ly

Lv

reg

reg

reg

reg

Divider

+

+

Disparity

clk

data_valid

Multiplier

Multiplier

Multiplier

Figure 10. Block diagram of disparity estimation module.

3. Experiments and Testing

3.1. Material

The implementation of hardware accelerators was done using the ZYBO development board [73].
The board includes a Zynq Z-7010 FPGA that is integrated with a dual-core ARM Cortex A9 processor.
Although an accelerator is already implemented in hardware, the processor will be used for testing
purposes. The processor runs a Petalinux operating system[74] and can directly communicate with the
developed hardware over different system buses. The hardware development was done using VHDL
language and VIVADO 14.4 [75].

3.2. Testing Methods

We employed two testing methods during the hardware implementation: simulation and actual
execution. In the first method each design was tested using a testbench that read light-field data from
a file and provided it to simulated hardware design. This allowed us to obtain the quantitative data
shown in Section 4. Simulations were carried out with the ISIM included in ISE design suite 14.7 [76].
Using this procedure, we numerically compared the processing results and obtained a precise run-time
estimation. In the second test phase, the design was implemented in real hardware and connected to
the ARM processor embedded in Zynq. We ran a program on the processor to gather the light-field
data over a TCP/IP socket from the PC and then send it to the implemented hardware accelerator.
The results were read back by the ARM and sent to the PC for evaluation.

3.3. Test Data

To check the proper functioning of the developed designs, we generated several synthetic light
fields using Blender [77] such that each light field was accompanied by the corresponding disparity
ground truth. To do so, we used our own customised Blender plug-in.

As we focused on local algorithms, to ensure the disparity estimation algorithm works,
the disparity range was constrained as much as possible to the range of [−1, 1] pixels/view. This
enforces to situate the scene between a minimum distance and a maximum distance corresponding to
the disparity limits. Following this constraint, a set of light fields with corresponding ground truths
was created. Each light field comprised 3× 3 views with a distance of 0.1m between them. The sensor
size was 32mm. Table 4 shows the size of each view and the scenes’ disparity range. Please note that
some parts of the scene fall out of the specified disparity range to test the effect on accuracy. In Figure
11, the central images of the synthetic light fields can be observed. Five scenes were considered. The
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cone scene is a scene with its disparity range slightly out of the algorithm’s working range. The cubes
scene falls within the range. The plane scene again falls out. Finally, the mirror and semi scenes have
some reflective elements included. This allowed us to test the algorithm’s robustness against such
situations.

Table 4. Summary table of light-field generated.

Name Size
Disparity

Focal Length
Min. Max.

cone 300× 198 −1.77 1.33 35 mm
cubes 798× 600 −0.98 0.95 50 mm
plane 1023× 768 −1.36 1.21 35 mm
mirror 798× 600 −1.22 1.19 35 mm
semi 798× 600 −1.25 1.03 35 mm

c
o
n
e

c
u
b
e
s

p
l
a
n
e

m
i
r
r
o
r

s
e
m
i

Figure 11. Central images of synthetic test light fields.
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We also used a set of real light fields acquired via temporal multiplexing. The images were
captured with a Nikon D-60 camera with a AF-S Nikkor 18–55 mm 1:3.5–5.6G lens. The displacement
between viewpoints is 500 µm. The raw images have 3872× 2592 pixels. However, the acquired
images were cropped and downsized, obtaining three light fields with different shapes as specified in
Table 5. The central images these light fields are shown in Figure 12.

Table 5. Actual light-field data set.

Light Field Shape

wool ball 648× 435× 3× 3
flowers 726× 567× 3× 3
turtle 534× 402× 3× 3

wool ball flowers turtle

Figure 12. Central images of actual test light fields.

4. Results

4.1. Logical Resources and Execution Times

Table 6 shows the resources needed to implement the two design alternatives considered in
Section 2 to process a light field of 99× 99× 3× 3. The designs require the number of view points to
be Nu × Nv = 3× 3. The spatial resolutions may vary. A change in the spatial dimensions, Nx and
Ny, does not significantly affect the resources required. The maximum achievable clock frequency is
102 MHz for the serial design and 38 MHz for the parallel.

Table 6. Comparison of resources employed.

Resource Serial Input Parallel Input

# % # %

Slice registers 2436 6% 3386 9%
Slice LUTs 6086 34% 6227 35%

LUT-FF pairs 1235 16% 1675 21%
BUFG/BUFGCTRLs 1 3% 1 3%

BlockRam 36 60% 36 60%
DSP48E1s 8 10% 58 72%

Both designs were able to generate gradients and the disparity estimations during data input.
Table 7 shows the achievable frame rates as a function of the light-field shape to be processed. We also
show the frame rates achieved for a C++ implementation running a Intel R© Core TMi3-4130 CPU at
3.40 GHz. That implementation was done on a GNU/Linux using a single thread and compiled with
code optimisation (-O3). Furthermore, the convolution operation was implemented taking advantage
of the filters’ separability property (this was the optimal way to implement the operation). A second
test was run on the embedded processor on a Raspberry Pi3 Model B+ board, which includes a
Broadcom BCM2837B0 Cortex-A53 64-bit SoC with a clock frequency of 1.4 GHz [78].
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Table 7. Frame rates for serial and parallel input designs.

Light-Field Shape CPU (fps) Embedded CPU (fps) Proposed Serial Input (fps) Proposed Parallel Input (fps)

640× 480× 3× 3 28.46 4.55 36.89 123.7
800× 600× 3× 3 18.69 2.89 23.61 79.17

1024× 768× 3× 3 11.65 2.06 14.41 48.32
1366× 768× 3× 3 8.77 1.50 10.8 36.22
1280× 1024× 3× 3 7.00 1.15 8.65 28.99

4.2. Gradient Estimation

As all the operations in our two designs used fixed-point arithmetic, we compared the
difference in the results of the designs via a reference implementation on a computer that uses
floating-point arithmetic. Table 8 shows the mean absolute differences with respect to the floating-point
implementation for the serial input design and Table 9 for the view parallel input design. An average
per derivative was also computed, as well as the global average of all derivatives. It must be noted
that the errors shown are for images with pixel values between 0 and 255. Although the error of the
parallel input design is greater than the error with serial input, in percentage terms the difference is
not significant.

Table 8. Mean absolute differences of serial input design with respect to reference implementation
using floating-point arithmetic. Pixel values range from 0 to 255.

Lx Ly Lu Lv

cone 0.948532 0.263783 0.892295 0.241141
cubes 0.172564 0.077751 0.431636 0.046296
plane 1.330916 0.276368 0.684091 0.260979
mirror 0.975316 0.773819 1.721000 1.059183
semi 0.679706 0.379349 0.488751 0.355860

AVERAGE
0.8214068 0.354214 0.8435546 0.3926918

0.602967

Table 9. Mean absolute differences of parallel input design with respect to reference implementation
using floating-point. Pixel values range from 0 to 255.

Lx Ly Lu Lv

cone 0.949253 0.264179 0.892603 0.241443
cubes 0.172618 0.077776 0.431746 0.046305
plane 1.331450 0.545600 2.070984 0.491962
mirror 0.975436 0.773956 1.721910 1.059512
semi 0.680080 0.379738 0.488941 0.356212

AVERAGE
0.821767 0.408250 1.121237 0.439087

0.697585

4.3. Disparity Estimation

This section presents the disparity results obtained using the output adaptor described above.
As we noted in Section 3, we used Blender to generate the light fields we used as references. Figure 13
shows the disparity maps for each light field. The first column shows the ground truth, the second
shows the result obtained with a floating-point implementation on a PC and third and fourth
columns show the results obtained with hardware accelerators for serial input and view parallel
input, respectively.

To provide quantitative insight, Table 10 shows the mean absolute differences between ground
truth and a floating-point implementation, the serial input accelerator and the view parallel input
accelerator. As can be seen, the second column shows greater errors than the first one and the third
shows greater errors than the second one due to the effect of fixed point arithmetic.
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Table 10. Mean absolute differences from ground truth. Disparity ranges for each scene are shown
in Table 4.

Scene F.P. Serial V. Parallel

cone 0.16977168 0.17220395 0.18224397
cubes 0.08242574 0.08350541 0.08484645
plane 0.11949781 0.12752187 0.12754149
mirror 2.36933125 2.36754665 2.37261304
semi 0.52248116 0.52360019 0.52364982

Ground truth floating point 32 serial input view parallel
input

cone

cubes

plane

mirror

semi

Figure 13. Disparity maps for the test images. Column 1: Ground truth. Column 2: Results with a
floating-point implementation. Column 3: Results with serial input hardware. Column 4: Results with
parallel input hardware. Warm colours are objects close to camera, while cold colours are objects far
from camera. Gray pixels are positions where the algorithm did not provide a valid result.

While the synthetic data might provide some insight on the accuracy because a ground truth is
available, it does not consider the effects that can appear in real data. For this reason, we conducted
some tests on real light-field data. Figure 14 shows the results obtained with both designs for the light
fields shown in Figure 12 and described in Section 3

It must be noted that the algorithm cannot provide a result in texture-less regions because divisions
by zero arise in Equation (4). These pixels are marked with gray values in Figures 13 and 14. They are
also excluded from the mean absolute differences in Table 10.
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Figure 14. Disparity maps obtained with real light-field data. Row 1: Results with serial input hardware.
Row 2: Results with parallel input hardware. Warm colours are objects close to camera while cold
colours are objects far from camera. Gray pixels are positions where the algorithm did not provide a
valid result.

5. Discussion and Conclusions

In this paper, we first compared the resources that both designs consume on the FPGA.
The results show that both designs use a similar amount of resources, except in the case of DSP48E1s.
This difference arises because with the view parallel input, the amount of data to be computed in
parallel increases in the first stage of the processing pipeline and this requires more logic.

Regarding the execution times shown in Table 7, it is clear that the input format plays an important
role because the view parallel input design allows one to achieve more than 28 fps for all tested image
sizes, while the serial input produces just 8 fps for a resolution of 1280× 1024 pixels. The table also
shows that the serial design’s achievable frame rates are comparable to those achieved running the
algorithm on a PC CPU. As can be observed, the performance is similar. However, if the comparison is
done using an embedded processor, the results show that a speed-up of 7.5 was achieved with the
serial input design and a speed-up considerably higher for the view parallel input design. None of the
tested light-field shapes achieved real-time performance on the embedded processor.

The next step in our analysis consisted of testing the influence of using fixed-point arithmetic
in the calculation. The derivatives were calculated using floating-point arithmetic on the computer.
Then the same derivatives were computed for both processing architectures. Table 9 shows the mean
absolute differences for the derivatives with respect to the floating-point implementation. It can be
observed that average error introduced is below the quantization level of the images. As pointed out
by Farid and Simoncelli in [72], the calculated derivatives suffer from systematic errors due to the use
of truncated derivative filters and random errors due to image noise.

Table 10 shows the mean absolute error of a floating-point implementation with the disparity
ground truth. It also shows these errors for both proposed architectures. The differences begin at
second or third fractional digit. This means that errors increase less than 0.01 pixels/view which we
do not consider significant. The conclusion is that errors are mainly due to the algorithm’s inherent
limitations and not to implementation. In [79], an analysis of the influence of systematic errors
and random errors in the final disparity estimation is provided. Here, an additional error source
is introduced because of the truncation in fixed-point arithmetic. To know the effect of truncation
requires further analysis because it depends on the concrete implementation. Another point that might
be considered is the optimisation of the filter coefficients taking into account the limitations in numeric
precision, but this study falls outside the scope of this paper.

Figure 13 compares the results obtained with a floating-point implementation on a computer to
the results obtained with both input designs. No significant differences can be observed. We also
tested both designs with the set of real light fields described in Section 3. The results of these tests are
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shown in Figure 14. Again, there is no significant difference between the results for the two designs.
Furthermore, the results show that one can apply the designed system to real data, as we expected.
These results could be further improved by fusing multiple depth maps or applying a refinement
technique in a later processing stage, as in [42].

We also want to highlight the differences between our designs and other depth from light field
approaches published in the literature. Table 11 compares some features of our proposed designs to
other approaches. The approach presented in [70] shows an implementation on FPGA of the belief
propagation algorithm used in stereo systems. The main drawback with that approach is that a
Nx × Ny × K cost volume must be generated to extract the optimal value between K candidate values
at each of the Nx × Ny pixels of the output disparity map. The generation of the cost volume is not
addressed in the paper. Furthermore, the design requires the storage of the volume in the on-chip
memory of the FPGA, which could be an important limitation when high resolutions are desired.
Regarding processing times, it must be remembered that the belief propagation is an iterative process,
so the processing time would depend on the number of iterations that must be carried out. According
to the time analysis presented in [70], the number of clock cycles to refine one output is W×H

2 ×N_iter.
Both of our proposed designs show better processing times. Furthermore, our designs also require less
internal memory. On the other hand, with the proposed designs, the outputs are calculated at same
time as the input is read in, and the result is produced only a few clock cycles after read-in is finished.
The design proposed in [71] allows one to output a Hout ×Wout disparity map with K disparity levels.
Here an off-chip memory was used and the authors proposed an adequate caching scheme that uses
on-chip memory but do not specify the concrete dependency from the input data shape. This design
needs time to transfer the data to memory and then it performs processing. This is not the case for the
our proposed designs, where the output is generated simultaneously with the data read-in. We have
also calculated the achievable frame rates to obtain a disparity map of 640× 480 pixels with a clock
frequency of 100 MHz, which seems to be a realistic assumption for all the designs except the view
parallel. The results show that the proposed designs outperform the others described here and use
less on-chip memory. From a qualitative point of view, it must also be highlighted that the proposed
designs are not limited by the number of disparity levels because the algorithm does not consider a cost
volume. Instead, they make the calculation continuous while restricting it to a short disparity range.

Table 11. Comparison with other depth from light field implementations on FPGA.

Proposed Serial Design Proposed View Parallel Design Magdaleno et al. [70] Chang et al. [71]

Output size Nx × Ny Nx × Ny Nx × Ny Hout ×Wout

Colour channels Intensity Intensity – Intensity

Processing time
(clock cycles) Nx × Ny × Nuv × Nuv Nx × Ny

Nx×Ny
2 × (N_iter+1) K× Hout ×Wout + 3

On-chip memory 4× 3× 3× (Nuv/3)×Nx 4× 3× 3× (Nuv/3)× Nx ∝ K× Nx × Ny Not specified

Off-chip memory Not used Not used Not used Required

Delay (clock cyles) 5 9 Nx × Ny × K Nuv× 3×Nuv×Nx ×Ny

Frame rate (fps) @
100 MHz clock and
output size: 640× 480

∼36 ∼ 347 (@38 MHz 123 fps) ∼25 (N_iter = 25) ∼27 (K = 12)

The current implementations have some limitations that must be pointed out. Currently,
the number of views is fixed to 3× 3. However, an extension to more views would be straightforward
and would not likely require a significant increase in the use of logical resources. Depending on
the shape of the light field, more memory blocks could be needed. In our designs, the derivative
filter size is also fixed to 3× 3× 3× 3, which is the minimum. If a greater filter size is desired, more
basic components must be added to the grid. However, we think it would be more interesting as an
alternative to increasing filter size to add the averaging operation shown in Equation (4). Another
alternative would be to generate multiple disparity maps that have to be fused in a later stage, as
proposed in [42].
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In conclusion, we presented two architectures that share a common construction block and make
it possible to obtain a disparity map nearly simultaneously with the camera read-out. The view
parallel architecture seems to be more attractive since it allows one to achieve a higher degree of
parallelism and increases the performance to real time, even for high resolution images, on a low-range
FPGA. Compared to other designs, both proposed architectures seem to outperform others when
operating at the same clock rate. The performance of the serial input design is very similar to that of
a conventional CPU, while the view parallel design clearly outperforms it. The main advantage of
both architectures is that they can be integrated into an embedded processing system based on SoC in
which a processor and an FPGA are available. If the goal is to achieve real-time performance on an
embedded system, the algorithm should be implemented on FPGA or other processing alternatives,
such as mobile GPUs. Direct implementation on embedded processors seems not to be a suitable
alternative. The implementation on FPGA also allows integration with other subsystems, such as
capture or decoding and rectification. The produced output could also be fed into other subsystems
implemented on the same FPGA.
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