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Abstract: By the standard of today’s image-guided surgery (IGS) technology, in order to check and
verify the progress of the surgery, the surgeons still require divert their attention from the patients
occasionally to check against the display. In this paper, a mixed-reality system for medical use is
proposed that combines an Intel RealSense sensor with Microsoft’s Hololens head-mounted display
system, for superimposing medical data onto the physical surface of a patient, so the surgeons do
not need to divert their attention from their patients. The main idea of our proposed system is
to display the 3D medical images of the patients on the actual patients themselves by placing the
medical images and the patients in the same coordinate space. However, the virtual medical data
may contain noises and outliers, so the transformation mapping function must be able to handle
these problems. The transform function in our system is performed by the use of our proposed
Denoised-Resampled-Weighted-and-Perturbed-Iterative Closest Points (DRWP-ICP) algorithm, which
performs denoising and removal of outliers before aligning the pre-operative medical image data
points to the patient’s physical surface position before displaying the result using the Microsoft
HoloLens display system. The experimental results shows that our proposed mixed-reality system
using DRWP-ICP is capable of performing accurate and robust mapping despite the presence of noise
and outliers.
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1. Introduction

AR/MR (Augmented reality/mixed reality) is a field of study that is rapidly catching the interests
of researchers of medical and image processing technologies [1,2]. This study is on the use of AR in
the field of image-guided surgery [3], which seeks to reduce invasiveness by showing the doctor the
exact locations of the lesions on the skin surface of the patient. An important part of any AR-based
research is the problem of data registration; i.e., how to register two sets of data points, e.g., the image
data point and the physical object’s surface data points, in the same coordinate space using alignment
so as to superimpose two sets of data points accurately. The traditional method used for registration
is the ICP (iterative closest points) algorithm, introduced by Besl and Zhang [4]. It uses non-elastic
transformations to convert 3D data points from one coordinate system to another. The problems with it
include that it requires a good starting position to start the alignment in order to get a good result, and
any noise in the data could potentially corrupt the final alignment result. Later, Andriy et al. proposed
the coherent point drift (CPD) [5], the main idea of which is to initialize a Gaussian mixture model
and use the expectation-maximization calculation to move the centroid of the mixture. The CPD uses
a uniform distribution component to account for the outliers, and could also handle some noise in the
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data. However, the CPD does not consider the scaling factor, so there is a possibility of deformation
if there are distortions between the floating and reference datasets. The point cloud library-ICP
(PCL-ICP) [6] calculates iteratively using the least squares method to obtain a rotational matrix and
a displacement matrix in order to align the set of floating data points to the set of reference data
points, which are assumed to be in the same coordinate system. The CloudCompare-ICP (CC-ICP) [7]
implements the greedy four points congruent sets registration methods for coarse alignment then uses
the standard ICP and rigid transformations for refinement. Recently, Wu [8] presented an improved
ICP algorithm, the Improved-ICP, that uses weighting and perturbation to match a single floating data
set to the reference data set, but it does not consider the problem of noise and outliers. Generally, the
traditional ICP algorithm is considered fine to use for general purposes. However, the traditional
ICP has multiple issues: (1) If there are gaps in the floating data that do not correspond well to the
reference data, then a good match may not be achievable; (2) If the alignment process is started from
a random starting position, then it could result in a locally optimal result, so a global optimal solution
is not guaranteed; even the Globally optimal-ICP algorithm [9], which claimed that it can achieve
global optimal solutions, was shown in Wu’s paper [8] to be unable to reach better solutions without
performing initial coarse alignments; and (3) Outlier data points or noise in the original floating data
points may affect the final result of the alignment.

In this paper, we introduce the DRWP-ICP (Denoised-Resampled-Weighted-and-Perturbed ICP),
which has the advantages the other ICP-based method do not. It seeks to improve the traditional ICP
algorithm by preprocessing the floating datasets before alignment, in order to achieve a smoother, less
noisy and more uniform floating dataset. For each floating dataset, it first performs denoising (D)
to remove noisy data and outliers, then resample (R) the floating datasets set which results in
a better, smoother floating data set. It then performs line-search with proper weights (W) in the
floating data in order to find matching reference data, and uses perturbation (P) to escape from local
minima if the searching result is not below a small preset threshold in order to reach a better, near
optimal, solution. It will be shown in the results of comparison experiments in a later section that the
DRWP-ICP outperformed other ICP-based algorithms with greater accuracy and shorter running times.
So, the DRWP-ICP should result in a better match of the floating data sets to the reference data set more
quickly. It can be used in a medical AR system using HoloLens [10] and allows the surgeon to see his
patient at the same time as the pre-operatively obtained medical data by accurately superimposing
them, and allows the surgeon to focus his/her attention more on the patient during an image-guided
surgery (IGS) operation.

2. Method

A dummy head was used to simulate the patient’s head. A set of CT scans using Intel RealSense [11]
sensor were performed on the dummy head in order to obtain a stack of images which were processed
to build a 3D model of the dummy head, these constituted the reference set data, R. The Intel RealSense
RGB-Depth sensor was used to obtain the patient’s surface data points, and Point Cloud Library
was used to reconstruct the 3D information of the patient’s surface as the floating data point set F1.
This process was repeated again to obtain a second floating points set, F2. So we had the reference
dataset, R, and the floating data point sets, F1 and F2. The DRWP-ICP algorithm first performed
preprocessing of the floating datasets by denoising then resampling to achieve a more accurate floating
dataset, F. Then the DRWP-ICP performed a weighted line search scheme [12] to match each point in
the floating dataset to the reference dataset. The purpose of the weighting, which was proportional to
the distance of the corresponding points in the floating dataset and the target dataset, was to prevent
the accumulation of errors when multiple floating points match the same target point. However,
a weighted line search could still result in reaching local minima rather than the global minimum,
so a perturbation scheme was added to escape from the local minima. Once the floating dataset was
matched to the reference dataset, the resulting data points were displayed on the doctor’s HoloLens
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headwear by aligning and overlaying the virtual data to the actual patient’s skin surface. The flowchart
of the DRWP-ICP is shown in Figure 1 below.Sensors 2019, 19, x 3 of 15 
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Figure 1. The flowchart of the Denoised-Resampled-Weighted-and-Perturbed-Iterative Closest Points
(DRWP-ICP) algorithm.

The DRWP-ICP Procedure

Step 1. Data Input. The pre-operative medical/CT image was the set of reference points R, and the
patient’s surface data captured by the RGB-Depth sensor was the set of floating points, F1 and F2.

Step 2. Floating Data Processing by Denoising and Resampling. The main idea in the denoising
stage was to use a statistical filter on the neighborhood of each data point and remove points that
did not meet certain criteria. The sparse outlier removal method was based on the calculation of the
distance distribution from the point in the input data to the adjacent point. The statistical filter assumed
that the average distance between all points in the point cloud and the nearest K neighbors satisfies
the Gaussian distribution. According to the mean variance, a distance threshold can be determined.
When the average distance between a point and the nearest K points was greater than this the threshold,
the points beyond this threshold were then removed. First the average distance between each point
and its nearest K neighbors was calculated, and then the mean µ and standard deviation σ of all the
average distances were calculated. The distance threshold can be defined as:

dmax = µ + α × σ, (1)

where α is a constant known as the scale factor and its values depend on the number of neighbors.
Finally each point whose distance was greater than dmax was removed. In the resampling stage,
the main idea was to use a moving least squares surface reconstruction method [13] to smooth and
resample the noisy data. This algorithm attempted to reconstruct the missing portion of the surface by
high-order polynomial interpolation between surrounding data points. First, the corresponding surface
was obtained from the acquired point cloud data set, and then the surface normal was calculated
from the model. The solution for estimating the surface normal was simplified by analyzing the
eigenvectors and eigenvalues (or PCA—principal component analysis [14]) of the covariance matrix
from the nearest neighbor of the query point. The purpose of the surface normal estimation was to
first obtain the nearest neighbor element of point p and then calculate the surface normal n of point p.
Then we checked whether the direction of n was consistently pointing to the viewpoint. If not, it was
flipped. The viewpoint coordinates were preset to (0,0,0). The least squares method is a global method,
which cannot meet the requirements for localized processing, and it can cause difficulty in model
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setting and computational instability for a large number of point data. Therefore, this method used the
moving least squares method to solve the registration problem. The scatter adaptability also has the
advantages of local curve fitting, being adaptable to distributed difference characteristics, as well as
having a high precision. The moving least squares method divided the region into meshes, then looped
through each point in the mesh to compute the shape function at each node, then finally connected
the nodes to form a fitted curve surface. This was done for both floating datasets, then the data were
resampled from both datasets to generate a smoother, more accurate floating dataset, F.

Step 3. ICP Alignment. For any given point f in F, we found its nearest corresponding point r in
R by calculating the minimum distance between f and each possible r, d. Then weight values were
assigned to each pair in the same group of data that matches the same reference point, then the min
value was calculated according to the following:

αmin =
1

NB −NC

∑NB−NC

i=1
di (2)

where NB is the total number of points in the floating data set, and NC is the number of points to be
excluded. This number was determined after sorting di in order to reduce the overall complexity.
Then the weight was assigned as follows:

w =

 1
αmean
(di)

t

i f di < αmean

else
. (3)

After the assignments were completed, then the objective function which seeks to minimize the
root mean square (RMS) value, was calculated. The way to evaluate the objective function was similar
to gradient descent, so in order to speed up the search, the line search method was implemented,
which searched in the nonlinear space of the objective function, F, in order to arrive at a minimum
faster. If the solution was accepted, then a transformation matrix T’ was obtained by the ICP algorithm,
and if the RMS value calculated was less than the previous iteration, then T’ replaced the currently
optimal transformation matrix T, then automatically jumped to the perturbation stage. Otherwise,
whether the stop condition had been reached had to be determined first.

Step 4. Stop Condition. The stop condition was so that if the RMS value is less than a preset
threshold, or if the number of iterations so far was greater than a preset value, then the stop condition
was determined to be reached, and the algorithm stopped.

Step 5. Perturbation. If we let Tinit be the initialization transformation T before the ICP begins and
let the Ttemp be the transformation matrix for the converged solution, then the range to explore for
Ttemp would be in the range of r, where

r = | Tinit − Ttemp | (4)

since Tinit and Ttemp are both 4 × 4 transformation matrices, the range of r represents the range
of possible discrete 4 × 4 transforms. Now suppose Ttemp only reached a local minimum, then the
transformation for perturbation was chosen from the range of r, where probability of being selected was:

p(θ) =
{

αθ2

0
i f −αr < θ < +αr

otherwise
(5)

where α is the scaling factor to help expand the perturbation range if the current search range was not
sufficient to escape from a local solution.

The illustrations for the effects of denoising and resampling can be seen below in Figure 2.
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Figure 2. Simulated effects of denoising and resampling of the original floating data.

3. Experimental Results

In the experiments, a specially-designed marker was placed next to the patient’s head (dummy
head), so when the camera detected the marker plate, the built-in Vuforia image tracking SDK (Software
Development Kit) [15] would know the spatial position of the patient’s head so as to map the HoloLens’
coordinate system to the marker’s coordinate system, then the medical image data points were
aligned to the patient’s surface information via different ICP-based algorithms, including our proposed
method. The RMS (root-mean-squared) errors and alignment times were recorded as the performance
of DRWP-ICP was compared to other well-known ICP-based algorithms proposed in the literature.
The final results were then displayed in the HoloLens output. In this setup, each floating dataset was
composed of 48,596 points.

The hardware setup included a desktop running Windows with Intel® Core™ i5-4460 CPU,
an Intel® RealSense RGB-Depth sensor (Santa Clara, CA, USA), and the Microsoft HoloLens MR
system (Redmond, WA, USA). The software and user interface was developed using Unity [16]
and OpenCV [17]. In order to compare the DRWP-ICP’s accuracy with other ICP-based algorithms,
positional values of five references points were first obtained by using the MicroScribe G2X digitizer
coordinate tracking device [18]. The number of pre-measured reference points was chosen based on the
experimental setup in the Improved-ICP paper [8]. Figure 3 shows possible alignment results, where
Figure 3a is one of the alignment results through the use of the Improved-ICP algorithm (blue points
represent the reference dataset, the pink points represent the floating dataset (that are different from the
values of the reference dataset), and yellow points represent the five reference points whose positional
values are pre-measured); Figure 3b is one of the alignment results through the use of our proposed
DRWP-ICP algorithm (the blue points represent the reference dataset, the pink points represent the
floating dataset (that are different from the values of the reference dataset), and yellow dots represents
the five pre-measured reference points); and Figure 3c is the output taken using a regular camcorder,
without Hololens, with the areas representing floating data points marked in gray; and Figure 3d is the
outputs on the Hololens display, with the reference data points (in pink) overlaying the dummy. As it
can be seen, HoloLens provided an augmented display over the reality of the dummy head.

The experiments were designed for two groups of tests, identical except for the pre-alignment
process. In the first group, no initial coarse pre-alignment was performed for each ICP algorithm
under testing for their effectiveness under non-ideal conditions. In the second group of experiments,
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initial coarse pre-alignments were performed for each ICP algorithm (except Improved-ICP and
DRWP-ICP algorithms) before further testing. Each of these groups were divided into two subgroups
of experiments. Each of the subgroups had several sets of experiments to be performed: The first set of
experiments tested the efficacy of each ICP-based algorithm in the presence of sparse floating data.
The second set of experiments tested the efficacy of each ICP-based algorithm in the presence of additive
Gaussian noises. The third and final set of experiment tested the efficacy of each ICP-based algorithm in
the presence of outliers. Both averaged alignment time (excluding coarse alignment), and the average
RMS errors of five pre-measured reference points were recorded after multiple repeated experiments.
The ICP-based algorithms to be tested included the PCL-ICP, the CPD, the CC-ICP, the CC-ICP with its
denoise function enabled (CC-ICP+D), the Improved-ICP, and our proposed DRWP-ICP.Sensors 2019, 19, x 6 of 15 
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Figure 3. Sample alignment results. (a) Improved-ICP; (b) DRWP-ICP; (c) without HoloLens; and
(d) with HoloLens.

3.1. Without Coarse Alignment (Random Staring Position)

3.1.1. Sparse Data

In order to test the effect of sparse data, the cases included testing 100% of floating data used in
the alignment as reference, as well when only 70%, 50%, 25%, and 10% of the floating data points were
used. The searches all started from random positions, including random distance and orientation.
The following figure, Figure 4, shows examples of the floating data points in white and the reference
data points in gold. Tables 1 and 2 show the average, maximum and minimum errors; and alignment
times, respectively. Since the alignment times for CC-ICP and CC-ICP+D were almost the same,
no extra column was used for the CC-ICP+D alignment times.Sensors 2019, 19, x 7 of 15 
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Table 1. The Average, Minimum and Maximum of Reference Points’ Alignment Errors.

Average Root Mean Square (RMS) Errors of Five Reference Points of Different ICP-based Methods (mm)

Method/Sparsity DRWP-ICP Improved-ICP PCL-ICP CPD CC-ICP CC-ICP+D

100% (~48,596) 0.932 2.248 46.948 15.494 33.562 7.88

70% (~34,017) 1.308 3.314 46.954 15.58 49.52 7.93

50% (~242,980) 1.512 3.444 46.948 15.494 49.5 7.965

25% (~12,149) 1.806 3.262 46.920 15.656 49.516 8.156

10% (~4860) 1.82 3.644 47.026 15.46 49.502 8.04

Minimum of RMS Errors of Five Reference Points (mm)

Method/Sparsity DRWP-ICP Improved-ICP PCL-ICP CPD CC-ICP CC-ICP+D

100% (~48,596) 0.37 1.96 24.21 6.89 16.48 5.05

70% (~34,017) 0.77 2.61 24.13 6.86 25.09 5.04

50% (~242,980) 1.07 2.89 24.26 6.97 25.03 5.1

25% (~12,149) 1.44 2.79 24.33 7.16 24.99 5.23

10% (~4860) 1.36 3.16 24.03 6.94 24.77 5.04

Maximum of RMS Errors of Five Reference Points (mm)

Method/Sparsity DRWP-ICP Improved-ICP PCL-ICP CPD CC-ICP CC-ICP+D

100% (~48,596) 1.49 2.84 66.45 22.63 60.05 10.44

70% (~34,017) 1.77 3.74 66.54 22.59 75.77 10.56

50% (~242,980) 2.15 4.22 66.43 22.53 75.71 10.55

25% (~12,149) 2.29 3.75 66.32 22.69 75.75 10.81

10% (~4860) 2.51 3.99 66.73 22.77 75.98 10.71

Table 2. Alignment times (seconds).

Method/Sparsity DRWP-ICP Improved-ICP PCL-ICP CPD CC-ICPs

100% (~48,596) 3.85 6.21 80 184 10

70% (~34,017) 3.16 5.97 81 164 9

50% (~242,980) 3.01 5.1 77 162 8

25% (~12,149) 2.99 4.76 65 160 5.4

10% (~4860) 2.54 4.65 49 145 4.1

3.1.2. Noise

In this set of experiments, Gaussian noises of different variances, i.e., 1.0, 2.0, 5.0, and 7.0, were
added to the floating datasets. The following figure, Figure 5, shows examples of the floating data
points in green and the reference data points in gold. Tables 3 and 4 show the average, minimum,
maximum errors; and the alignment times, respectively.
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Table 3. The Average, Minimum and Maximum of Reference Points’ Alignment Errors.

Average RMS Errors of Five Reference Points of Different ICP-based Methods (mm)

Method/Noise DRWP-ICP Improved-ICP PCL-ICP CPD CC-ICP CC-ICP+D

Variance = 1.0 1.024 2.018 46.962 15.492 49.536 12.285

Variance = 2.0 1.048 2.114 46.902 15.492 49.4 9.534

Variance = 5.0 1.49 2.398 46.764 15.536 48.874 30.5

Variance = 7.0 1.662 2.644 46.61 15.536 48.538 31.35

Minimum of RMS Errors of Five Reference Points (mm)

Method/Noise DRWP-ICP Improved-ICP PCL-ICP CPD CC-ICP CC-ICP+D

Variance = 1.0 0.4 1.38 24.24 6.93 24.07 7.34

Variance = 2.0 0.43 1.42 24.28 6.95 25.00 5.74

Variance = 5.0 1.03 1.51 24.13 7.00 24.67 20.13

Variance = 7.0 1.1 1.49 23.58 7.02 23.90 21.2

Maximum of RMS Errors of Five Reference Points (mm)

Method/Noise DRWP-ICP Improved-ICP PCL-ICP CPD CC-ICP CC-ICP+D

Variance = 1.0 1.3 2.34 66.45 22.59 75.77 16.46

Variance = 2.0 1.5 2.41 66.4 22.53 75.71 12.86

Variance = 5.0 2.13 2.71 66.59 22.69 75.75 39.02

Variance = 7.0 2.49 3.27 67.01 22.77 75.98 39.94

Table 4. Alignment times (seconds).

Method/Noise DRWP-ICP Improved-ICP PCL-ICP CPD CC-ICPs

Variance = 1.0 4.34 4.14 169 360 20

Variance = 2.0 6.24 8.16 231 691 26

Variance = 5.0 9.24 14.74 308 782 35

Variance = 7.0 14.65 19.89 384 1440 35

3.1.3. Outliers

In this set of experiments, different numbers of outliers, i.e., 600, 1800, 3000, and 6000, were
deliberately added to the floating dataset. The following figure, Figure 6, shows examples of the
floating data points in pink and the reference data points in gold. Tables 5 and 6 show the average,
minimum, maximum errors; and alignment times, respectively.
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Table 5. The Average, Minimum and Maximum of Reference Points’ Alignment Errors.

Average RMS Errors of Five Reference Points of Different ICP-based Methods (mm)

Method/Outliers DRWP-ICP Improved-ICP PCL-ICP CPD CC-ICP CC-ICP+D

600 0.992 2.232 46.902 17.794 49.472 11.036

1800 1.018 3.856 46.836 15.572 49.328 9.338

3000 1.536 4.784 46.796 15.566 49.072 27.32

6000 1.55 4.832 46.474 15.594 48.686 10.454

Minimum RMS Errors of Five Reference Points (mm)

Method/Outliers DRWP-ICP Improved-ICP PCL-ICP CPD CC-ICP CC-ICP+D

600 0.37 1.71 24.19 13.81 25.0 7.22

1800 0.36 3.52 24.19 7.02 24.96 6.92

3000 1.03 3.45 24.29 7.07 24.83 16.4

6000 1.03 3.43 24.18 7.15 24.48 5.98

Maximum RMS Errors of Five Reference Points (mm)

Method/Outliers DRWP-ICP Improved-ICP PCL-ICP CPD CC-ICP CC-ICP+D

600 1.35 2.61 66.47 22.26 75.7 14.56

1800 1.51 5.91 66.52 22.69 75.54 12.33

3000 2.13 5.63 66.57 22.71 75.21 39.8

6000 2.16 5.8 66.37 22.74 74.82 14.49

Table 6. Alignment times (seconds).

Method/Outliers DRWP-ICP Improved-ICP PCL-ICP CPD CC-ICPs

600 5.17 35.24 248 318 12

1800 6.1 36.24 288 399 26

3000 7.17 38 352 581 33

6000 13.41 45.34 395 602 37

3.2. With SAC-IA Coarse Pre-Alignment

In this subgroup of experiment a preliminary coarse pre-alignment, the sampling consensus initial
alignment (SAC-IA) [19], was first performed for each ICP-based algorithm. However, no coarse
alignments were performed for the Improved-ICP algorithm, because its authors indicated no coarse
alignment is necessary. Also, no coarse alignment was performed for our proposed DRWP-ICP, because
we also believe that it is not necessary. Their values in the tables below are exactly the same as their
values in the first group of experiments and are listed for reference purposes only. The figure below,
Figure 7, illustrates the process of coarse alignment, where the green points represents the floating
data and the red points represent the reference data. Table 7 displays the average RMS errors after the
coarse alignment for the five reference points.

Table 7. Average RMS errors of five reference points after coarse-Alignment for original data (mm).

Reference Point Point 1 Point 2 Point 3 Point 4 Point 5 Average of Five Points

Average Error 17.13 14.42 16.80 13.78 15.82 15.59
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3.2.1. Sparse

Again, in order to test the effects of different ICP-based algorithm in the presence of sparse data,
only 70%, 50%, 25%, and 10% of the floating data points were used. The original 100% of the data was
also used for reference purposes. Tables 8 and 9 show the average, minimum, maximum errors; and
alignment times, respectively (not including the times taken for coarse pre-alignments).

Table 8. The Average, Minimum and Maximum of Reference Points’ Alignment Errors.

Average RMS Errors of Five Reference Points of Different ICP-based Methods (mm)

Method/Sparsity DRWP-ICP Improved-ICP PCL-ICP CPD CC-ICP CC-ICP+D

100% (~48,596) 0.932 2.248 1.832 2.134 7.47 0.904

70% (~34,017) 1.308 3.314 1.9 2.376 7.556 0.928

50% (~242,980) 1.512 3.444 2.262 2.406 7.588 0.852

25% (~12,149) 1.806 3.262 4.338 7.742 7.824 0.822

10% (~4860) 1.82 3.644 9.284 8.28 11.838 0.904

Minimum RMS Errors of Five Reference Points (mm)

Method/Sparsity DRWP-ICP Improved-ICP PCL-ICP CPD CC-ICP CC-ICP+D

100% (~48,596) 0.37 1.96 1.04 1.34 4.86 0.23

70% (~34,017) 0.77 2.61 1.12 2.16 4.86 0.24

50% (~242,980) 1.07 2.89 1.71 1.61 4.93 0.28

25% (~12,149) 1.44 2.79 3.3 3.88 5.09 0.26

10% (~4860) 1.36 3.16 4.45 4.54 6.68 0.21

Maximum RMS Errors of Five Reference Points (mm)

Method/Sparsity DRWP-ICP Improved-ICP PCL-ICP CPD CC-ICP CC-ICP+D

100% (~48,596) 1.49 2.84 2.29 3.01 9.54 1.27

70% (~34,017) 1.77 3.74 2.32 2.53 9.99 1.27

50% (~242,980) 2.15 4.22 2.69 2.95 9.99 1.26

25% (~12,149) 2.29 3.75 5.74 10.75 10.3 1.29

10% (~4860) 2.51 3.99 13.61 11.01 15.94 1.22
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Table 9. Alignment times (seconds).

Method/Sparsity DRWP-ICP Improved-ICP PCL-ICP CPD CC-ICPs

100% (~48,596) 3.85 6.21 65 175 5

70% (~34,017) 3.16 5.97 64 159 5.8

50% (~242,980) 3.01 5.1 61 154 5.5

25% (~12,149) 2.99 4.76 57 151 4.8

10% (~4860) 2.54 4.65 49 145 3.9

3.2.2. Noise

In this set of experiments, Gaussian noises of different variances, i.e., 1.0, 2.0, 5.0, and 7.0, were
added to the floating datasets. The mathematical expression of Gaussian distribution is:

ƒ(x) =
1

σ√2π
e−

(x−µ)2

2σ2 (6)

where µ is the sample mean and the σ is the sample standard deviation. Tables 10 and 11 show the
average, minimum, maximum errors; and alignment times, respectively.

Table 10. The Average, Minimum and Maximum of Reference Points’ Alignment Errors.

Average RMS Errors of Five Reference Points of Different ICP-based Methods (mm)

Method/Noise DRWP-ICP Improved-ICP PCL-ICP CPD CC-ICP CC-ICP+D

Variance = 1.0 1.024 2.018 1.96 3.086 8.056 0.916

Variance = 2.0 1.048 2.114 9.38 8.278 8.248 0.844

Variance = 5.0 1.49 2.398 9.436 10.16 9.666 1.12

Variance = 7.0 1.662 2.644 9.642 11.272 10.684 1.526

Minimum RMS Errors of Five Reference Points(mm)

Method/Noise DRWP-ICP Improved-ICP PCL-ICP CPD CC-ICP CC-ICP+D

Variance = 1.0 0.4 1.38 1.25 2.36 5.31 0.16

Variance = 2.0 0.43 1.42 3.94 4.42 5.42 0.49

Variance = 5.0 1.03 1.51 4.65 6.48 6.76 0.71

Variance = 7.0 1.1 1.49 3.29 7.35 8.08 1.2

Maximum RMS Errors of Five Reference Points (mm)

Method/Noise DRWP-ICP Improved-ICP PCL-ICP CPD CC-ICP CC-ICP+D

Variance = 1.0 1.3 2.34 2.46 5.14 10.54 1.37

Variance = 2.0 1.5 2.41 13.88 10.84 10.78 1.05

Variance = 5.0 2.13 2.71 13.78 13.03 12.51 1.63

Variance = 7.0 2.49 3.27 14.47 14.69 13.37 1.98

Table 11. Alignment times (seconds).

Method/Noise DRWP-ICP Improved-ICP PCL-ICP CPD CC-ICPs

Variance = 1.0 4.34 4.14 108 240 7

Variance = 2.0 6.24 8.16 198 480 7

Variance = 5.0 9.24 14.74 216 600 15

Variance = 7.0 14.65 18.89 247 1200 32
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3.2.3. Outliers

In this set of experiments, different numbers of outliers, i.e., 600, 1800, 3000, and 6000, were
deliberately added to the floating dataset. Tables 12 and 13 show the average, minimum, maximum
errors; and alignment times, respectively.

Table 12. The Average, Minimum and Maximum of Reference Points’ Alignment Errors.

Average RMS Errors of Five Reference Points of Different ICP-based Methods (mm)

Method/Outliers DRWP-ICP Improved-ICP PCL-ICP CPD CC-ICP CC-ICP+D

600 0.992 2.232 9.344 7.448 5.81 0.872

1800 1.018 3.856 9.336 19.878 9.478 0.874

3000 1.536 4.784 9.43 20.18 12.472 0.844

6000 1.55 4.832 10.038 20.194 14.028 0.848

Minimum RMS Errors of Five Reference Points (mm)

Method/Outliers DRWP-ICP Improved-ICP PCL-ICP CPD CC-ICP CC-ICP+D

600 0.37 1.71 4.64 3.29 4.3 0.19

1800 0.36 3.52 4.71 1.48 8.14 0.23

3000 1.03 3.45 4.63 3.51 9.1 0.28

6000 1.03 3.43 3.2 1.7 10.62 0.2

Maximum RMS Errors of Five Reference Points (mm)

Method/Outliers DRWP-ICP Improved-ICP PCL-ICP CPD CC-ICP CC-ICP+D

600 1.35 2.61 13.68 11.78 7.27 1.38

1800 1.51 5.91 13.64 32.53 11.33 1.31

3000 2.13 5.63 13.8 30.48 17.14 1.34

6000 2.16 5.8 15.15 33.2 18.32 1.38

Table 13. Alignment times (seconds).

Method/Outliers DRWP-ICP Improved-ICP PCL-ICP CPD CC-ICPs

600 5.17 35.24 194 215 11

1800 6.1 36.24 173 384 11

3000 7.17 38 181 391 13

6000 13.41 45.34 220 461 15

A final experiment using floating datasets with sparse data (10%), Gaussian noise (Variance = 7.0),
and outliers (6000) was tested in order to test the robustness of our proposed DRWP-ICP when all
three conditions exist. Table 14 below shows the average, maximum, and minimum alignment errors
of the five registration methods. Coarse alignments were performed for PCL-ICP, CPD, and CC-ICP.

Table 14. RMS errors of five reference points under all sparse, noisy, and outlier conditions (mm).

Method/Statistic DRWP-ICP Improved-ICP PCL-ICP CPD CC-ICP

Average 3.678 6.976 9.807 13.034 9.193

Minimum 3.57 6.49 6.94 7.74 8.05

Maximum 3.85 7.32 13.67 19.36 10.79

4. Discussion

The same observation as the Improved-ICP paper [8] can be drawn from the differences between
the RMS values of experiments with and without coarse alignment: that the performances of the
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PCL-ICP, CPD and CC-ICP algorithms can all be improved by a coarse pre-alignment. The results
from the experiments without alignments, seem to partially validate the claims by CPD, that is more
robust under noisy and outliers, because all of the RMS errors of CPD were less than those of the
PCL-ICP and the CC-ICP. However, in the experiments with coarse alignment, the performance of
CPD dropped below the other ICP-base methods when that data became too noisy, or had too many
outliers. Also in all the experiments the CPD took longer to terminate. Also, an obvious observation
can also be made: noisier data, or data that have more outliers, will take longer to align. In the case
of sparse data, the sparser the data, the less time it takes to perform alignment. Another interesting
observation concerns the effects of the additional coarse pre-alignment for PCL-ICP, CPD, and CC-ICP
algorithms. For example, by first performing coarse alignment, the alignment time for the PCL-ICP,
CPD, and CC-ICP algorithms took shorter times to achieve their respective, and better alignment
results, including sparse, noisy, and in most of the outliers cases. We believe that this is due to the
fact that CPD and the other ICP-based methods, except Improved-ICP, did not fully consider being
trapped into local minima, so when the floating data started from a random starting position, they
were trapped into sub-optimal solutions. Our study proposes a method to escape from local minima
even when the search appears to have converged. The coarse alignment reduced the search-space for
the other methods and allowing them to reach better solutions.

Another observation is that by including the pre-alignment operation, and without counting the
time for the pre-alignment, most of the alignment times for the PCL-ICP, CPD, and CC-ICP algorithms
actually decreased, even though they achieved better results with pre-alignments. This is an interesting
phenomena, however, because their performances still lag behind DRWP-ICP, it remains just a mildly
interesting phenomena.

The entries in the tables above show that in almost all of the test cases, including RMS errors
and running times, the proposed DRWP-ICP exhibited much better performances than the other
algorithms in the test group, even the Improved-ICP algorithm. However, it is also observed that the
CC-ICP with denoise function turned on can perform better. This is even more obvious with our coarse
alignment, CC-ICP with denoise function was able to also reach near optimal solutions. This shows
the importance of a good coarse alignment for the CC-ICP algorithm. So, these results combined show
that the operations of denoising and resampling do affect the final results of alignment, and implies
that DRWP-ICP algorithm is not only more accurate but also more robust than the other algorithms
tested in the experiment for point set registration/alignment. This observation is valid since the original
coarse alignment algorithm included in CC-ICP was not sufficient for it to reach near optimal solutions.
The results in Table 14 show that it is superior even when all three conditions exists; i.e., noisy, sparse,
and having outliers. It is also clear that the DRWP-ICP algorithm also does not require pre-alignment
in order to reach near globally optimal solutions, so there is no need to consider pre-alignment in
order to improve DRWP-ICP, which is makes it more efficient than the other algorithms that require
pre-alignments in order to achieve better results.

5. Conclusions

In this work, a mixed-reality system for aiding the surgeons during image-guided surgeries is
proposed. The pre-operative medical images are first taken and then superimposed on the patient
through the use of the DRWP-ICP algorithm, which was shown by experiments to be superior both in
performance and robustness when compared to other ICP-based algorithms in the presence of sparse
data, noisy data, outlier data, or a combination of them. The aligned results are then displayed on
the Microsoft’s HoloLens display as the medical data are superimposed on the patient. The use of
the proposed MR system implies that the surgeon does not need to remove his focus from the patient
during the operation in order to ascertain the progress of the operation, and that the surgeon can have
full confidence that the medical data will be accurately displayed over the patient.
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