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Abstract: Though accelerometers for condition diagnosis of a bearing is preferably placed at the
nearest position of the bearing as possible, in some plant equipment, the accelerometer is difficult
to set near the diagnosed bearing, and in many cases, sensors have to be placed at a location far
from the diagnosed bearing to measure signals for diagnosing bearing faults. Since, in these cases,
the measured signals contain stronger noise than the signal measured near the diagnosed bearing,
bearing faults are more difficultly to be detected. In order to overcome the above difficulty, this paper
proposes a new fault auto-detection method by which the signals measured by an accelerometer
located at a far point from the diagnosed bearing can be used to simply and accurately detect the
bearing faults automatically. Firstly, the hybrid GA (the combination of genetic algorithm and tabu
search) is used to automatically search and determine the optimum cutoff frequency of the high-pass
filter to extract the fault signal of the abnormal bearing. Secondly, the bearing faults are precisely
diagnosed by possibility theory and fuzzy inference. Finally, in order to demonstrate the effectiveness
of these proposed methods, these methods were applied to bearing diagnostics using vibration signals
measured at the far point of the diagnostic bearing, and the efficiency of these methods was verified
by the results of automatic bearing fault diagnosis.

Keywords: condition diagnosis; bearing faults; hybrid-GA; noise cancelling; fuzzy inference

1. Introduction

The bearing is the most important component to support the rotating mechanical shafting [1].
Bearing failures can be classified into initial failures (point injuries caused by local spalling),
medium-term failures (large-scale peeling of inner and outer rings), and final failures (fracture
of rolling elements and cages) [2,3]. The final failure of the bearing often leads to the failure of the
rotating shaft and causes a major accident. Therefore, it is very important to effectively detect the
bearing failure as soon as possible before the final bearing failure.

After the bearing is damaged, a pulsating vibration occurs due to the rolling element passing
through the damage [4]. This kind of pulsating vibration is the characteristic resonance of the inner
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or outer ring of the bearing. The frequency of this characteristic resonance is also called the “ringing
frequency”. The ringing frequency is generally in the high frequency band, higher than several
thousand Hz, depending on the type and Size of bearing [5]. To detect incipient bearing abnormality by
vibration diagnosis, it is important to sense this impulsive vibration wave in the high frequency band
and cancel noise by high-pass-filter (HPF) [6]. Several filter parameters optimization methods have been
summarized to extract fault feature from signals of the bearing with incipient fault [7,8]. Wang et al.
proposed a complex Morlet wavelet filter which parameters are optimized by simplex-simulated
annealing [9]. Jia et al. constructed a high-pass filter based on banded matrices to diagnosis incipient
bearing fault efficiency [10]. A motor fault diagnosis method based on a simple nonlinear observer
was proposed, and the effectiveness of the method is confirmed by the experiment with a permanent
magnet direct current (DC) motor [11]. It was evidenced that in the fault diagnosis methods based on
principal components analysis(PCA), the number of the principal components to be retained and the
data matrix is important which will affect the performance of the algorithm [12]. Deep Boltzmann
machines, deep belief networks and stacked auto-encoders were applied to diagnose the fault of the
rolling bearing [13]. The authors pointed out that feature extraction of the vibration signal is a necessary
step for the deep neural networks based (DNN -based) classifiers which can incline the reliability and
effectiveness of the fault diagnosis method. The above fault diagnosis methods have certain effects in
an off-line diagnosis system. However, when diagnosing bearing faults, if there is a strong noise in
the diagnostic signals, such as an early bearing abnormality, or the sensor cannot be placed near the
diagnostic object bearing to measure signals, etc., how to extract weaker fault signal from strong noise
signal, and how to deal with ambiguous diagnostic information in real plant diagnosis still have many
problems to be solved. Furthermore, because when the bearing has an early abnormality (spot injury),
it takes a long time (usually several days to several months) to progress to the mid-term anomaly stage
(inner and outer ring flaking), so online real-time diagnosis is not required when diagnosing a bearing
fault. As long as the fault can be detected after measuring a vibration signal, then the fault type can be
identified. Therefore, this paper proposes a method for data training and a fuzzy diagnostic algorithm
that can be embedded in the offline bearing diagnostic system.

When identifying the roller bearing anomaly of the field device by the vibration signal, there are
the following two problems:

(1) It is needed to decide a cutoff frequency of HPF to extract a fault signal. However, the ideal
cutoff frequency is different because the characteristic frequency of inner or outer rings of bearings
is different by the type or size of the bearings. Therefore, there is a need to establish a method for
automatically determining the optimum cutoff frequency that can be used in a bearing diagnostic
system, and the method must have versatility independent on the tested device.

(2) To catch abnormal vibration signals of bearings sensitively, it is necessary to set accelerometers
as near to the diagnosed bearings as possible. However, in some field equipment, it is difficult to set
accelerometers near the diagnose bearings, the vibration signals can only be measured at a position far
from the bearing. Since, in these cases, the measured signals contain stronger noise than the signal
measured near the diagnosed bearing, it is more difficult to diagnose the bearing faults.

In this research, to solve the problems described above, novel methods by which bearing faults
can be automatically, simply and precisely diagnosed using the signals measured by the acceleration
sensors at distant points from the diagnosed bearings was proposed as follows:

(1) In order to extract the characteristic signal of a fault bearing from the signal measured far
from the bearing as sensitively as possible, a method by which the optimal cutoff frequency of HPF is
automatically searched and decided by hybrid GA (the combination of genetic algorithm and tabu
search, GA+TS) is proposed.

(2) Since the noise in the measured signals for diagnosing the bearing cannot be completely
cancelled, and due to the influence of the degree of bearing damage, there is often an ambiguity when
diagnosing the bearing fault. In order to solve this problem, a sequential fuzzy diagnosis method is
proposed by which the bearing faults can be automatically and sequentially diagnosed.
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(3) In order to effectively carry out the sequential fuzzy diagnosis of a bearing, new symptom
parameters specific to diagnose bearing are defined, and the method of defining the membership
function of these symptom parameters by using possibility function is also proposed.

(4) Finally, these methods were applied to bearing diagnosis using the vibration signals measured
at distant points from the diagnosed rolling bearings, and the efficiency of these methods have been
verified by the results of the automatic bearing faults diagnosis.

2. The Principle of Bearing Diagnosis

2.1. Entire Flowchart

The genetic algorithm (GA) has a good global search ability, and the tabu search has a good
local search ability [14,15]. A number of fault diagnosis methods based on GA [16–18] and tabu
search [19,20] have been proposed. In the proposed method, in order to effectively extract a vibration
signal from an abnormal bearing, the cutoff frequency of a high-pass-filter is automatically optimized
by hybrid GA (genetic algorithm combining with tabu search algorithm). Moreover, bearing faults are
precisely diagnosed by fuzzy inference, in which the fault detection step and the fault isolation step
are included. The proposed methods were applied to bearing diagnosis using the vibration signals
measured at distant points from the diagnosed bearing, and the effectiveness have been verified by the
results of the automatic bearing fault diagnosis. A block diagram is shown in Figure 1 to explain the
entire process of the proposed methods.
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Figure 1. Flowchart of the diagnosis process proposed in this study.
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(1) Fault detection:
In the field of equipment condition diagnosis, fault detection also known as “simple diagnosis”

and refers to the use of methods to determine whether an equipment is normal or abnormal [21,22].
In the fault detection step of a bearing, the kurtosis shown in (1) is used to determine whether the

bearing is abnormal. Furthermore, the kurtosis is also used as an indicator to search the optimum
cutoff frequency of the HPF for extracting fault signal.

(2) Fault isolation:
The precision diagnosis is used to identify the type of abnormality after the equipment state is

monitored as abnormal by the fault detection. Since the noise in the measured signals for diagnosing
the bearing cannot be completely cancelled, and due to the influence of the degree of bearing damage,
there is often an ambiguity when diagnosing the bearing fault.

In order to precisely diagnose bearing faults, the symptom parameters specific to diagnose bearing
are defined, and the sequential fuzzy diagnosis is carried out by using these symptom parameters. The
membership functions of these symptom parameters are obtained by using the possibility function.

2.2. Fault Detection

In the fault detection of the bearing, the kurtosis shown in (1) is used to determine whether the
bearing is abnormal. Here, xi (i = 1~N) are time series discrete acceleration data. The kurtosis ratio (RK)
in the diagnosis stage and in normal status as shown in (4) is used to judge the state of the diagnosed
bearing. In order to cancel the noise from the measured signal for the diagnosis, a high-pass filter
(HPF) is used in the range between 0 and 40,000 Hz, and its optimum cutoff frequency can be decided
by using hybrid GA (GA and TS) to maximize the RK. That is to say, the RK is used as fitness when
exploring the optimum cutoff frequency with GA both in the learning phase and diagnosis phase.

Kurtosis =

N∑
i=1

(xi − x)4

Nσ4
(1)

x =

N∑
i=1

xi

N
(2)

σ =

√√√√√ N∑
i=1

(xi − x)2

N − 1
(3)

RK =
KurtosisUnknown
KurtosisNormal

(4)

Here, KurtosisNormal is the kurtosis in the normal state, and KurtosisUnknown is the kurtosis in the
diagnosis step. In the process of genetic algorithm optimization, the cutoff frequency is converted
to a binary number of length 8 as a gene, the gene number is 10, the mutation rate is 0.7, and the
crossover rate is 0.1. A tabu search (TS) is also introduced because the use of GA alone may lead to a
local optimal solution, and the method of combining GA and TS is called “Hybrid-GA” in this paper.
That is, the frequency near the optimum cutoff frequency obtained by the GA is searched under the
taboo condition that the frequency once selected is never selected again. In this case, in the ± 10,000 Hz
range of the optimum cutoff frequency searched by the GA, the search for a better cutoff frequency
(Figure 1) is carried out without repeating in step of 1,000 Hz (Figure 1), and if the RK at the cutoff

frequency exceeds the RK at the old optimum cutoff frequency, the new optimum cutoff frequency is
regained. Whether the bearing is normal or abnormal can be determined by whether the RK obtained
by the above method is greater than the threshold (how to determine the threshold will be described in
detail in Section 3.2).
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2.3. Fault Isolation

2.3.1. Flow of the Fault Isolation

Figure 2 shows the flowchart of the bearing fault isolation, and the detail process will be explained
in this section. In the learning phase: (1) Measuring vibration signals in various states (normal, outer
race flaw, inner race flaw and rolling element flaw), and the bearing flaws are caused by using wire
cutting. Learning data and the verification data are measured separately; (2) calculating the spectra of
the raw signals (Fast Fourier Transform, FFT); (3) using hybrid GA for searching the optimum cutoff

frequency to cancel noise; (4) calculating the envelope waveform of the signals after noise cancelling;
(5) calculating the spectra of the envelope waveforms; (6) calculating the symptom parameters for
bearing diagnosis (symptom parameters for bearing fault diagnosis on outer race, SPO and symptom
parameters for bearing fault diagnosis on inner race, SPI); (7) obtaining membership functions that are
used to identify the type of bearing fault by the possible functions of SPO and SPI.

Sensors 2019, , x FOR PEER REVIEW  6 of 17 

 

 

Figure 2. Detail flowchart of the proposed bearing fault isolation. 

 

(1 cos )
2

r

O

zf d
f

D
= −

 (Outer race flaw) 
(5) 

(1 cos )
2

r

I

zf d
f

D
= +

 (Inner race flaw)  
(6) 

2

2
(1 cos )

2

r

R

Df d
f

D
= −

 (Rolling element flaw) 
(7) 

Here, fr is the rotating frequency; z is the roller number, d is the diameter of roller; D is the pitch 

diameter; 𝛼 is the contact angle. 

The signal measured by an acceleration sensor set at a distance from the diagnosed bearing is 

filtered using the optimal high-pass filter searched by GA, and the waveform after envelope 

processing is used for fault isolation. Using the spectrum of the envelope waveform, a new dedicated 

symptom parameter for bearing diagnosis reflecting the path frequency component of the bearing 

flaw is proposed as the following equation, and an automatic fault isolation method (automatic 

identification method of fault type) by sequential fuzzy reasoning is proposed. 

Figure 2. Detail flowchart of the proposed bearing fault isolation.

In the diagnostic phase: (1) Measuring vibration signal for diagnosis; (2) performing FFT processing
on the original signal; (3) cancelling noise using the optimum cutoff frequency; (4) calculating the
envelope of the signal after cancelling noise; (5) calculating the spectrum of the envelope waveform; (6)
calculating the dedicated symptom parameters (SPO and SPI) for bearing diagnosis; (7) calculating
the possibility functions of SPO and SPI; (8) the fault type of the bearing is identified by sequentially
matching the possible functions of SPO and SPI with the membership functions of the bearing
fault types.
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2.3.2. Dedicated Symptom Parameters for Bearing Diagnosis

In order to precisely diagnose bearing faults, the spectrum components of path frequency of
shocking waveforms caused by bearing flaws are determined by the envelope spectrum of the vibration
waveform to identify abnormality types. The path frequencies of bearing flaws are calculated by
following formula [23].

fO =
z fr
2
(1−

d
D

cosα) (Outer race f law) (5)

fI =
z fr
2
(1 +

d
D

cosα) (Inner race f law) (6)

fR =
D fr

2
(1−

d2

D2 cosα) (Rolling element f law) (7)

Here, fr is the rotating frequency; z is the roller number, d is the diameter of roller; D is the pitch
diameter; α is the contact angle.

The signal measured by an acceleration sensor set at a distance from the diagnosed bearing is
filtered using the optimal high-pass filter searched by GA, and the waveform after envelope processing
is used for fault isolation. Using the spectrum of the envelope waveform, a new dedicated symptom
parameter for bearing diagnosis reflecting the path frequency component of the bearing flaw is
proposed as the following equation, and an automatic fault isolation method (automatic identification
method of fault type) by sequential fuzzy reasoning is proposed.

SPx =

N
M∑

i=1
S f xi

N∑
i=1

S j

(8)

Here, Sj is the value of spectrum at the j (Hz) frequency, and fxi is the ith harmonic frequency of the
pass frequency in x state. i = 1, 2, . . . , M (M > 2) and x = O, I, R (O: Outer race flaw, I: Inner race flaw,

R: Rolling element flaw).
N∑

i=1
S j represents the integral value of the entire spectral interval, and

M∑
i=1

S f xi

represents the sum of the harmonic frequency components of the pass frequency. The type of bearing
fault is distinguished by using the DSP and sequential fuzzy inference.

2.3.3. Membership Function for Fuzzy Inference

For fuzzy inference, the membership functions of SPx is necessary to identify the bearing states.
The membership function can be obtained from the probability density functions of the SPx using
possibility theory. For example, when the probability density function of SPx conforms to the normal
distribution, it can be changed to possibility functions P(SPx) by the following formulae [24,25].

P(SPx) =
N∑

k=1

min{λi,λk} (9)

here, λi can be calculated as follows;

λi =

∫ SPxi

SPxi−1

1

σSPx
√

2π
exp

− (x− SPx)
2

2σSPx2

dx (10)

Here, σSPx means the standard deviation, SPx means the mean value of SPx, and SPx = SPx− 3σspx ∼

SPx + 3σspx.
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An example of a probability density function and a possible function is shown in Figure 3. The
membership function obtained by this method is objective because the membership function is obtained
based on the mean and standard deviation of the actual field data.
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As shown in Figure 4, the fault type of a bearing can be precisely diagnosed by sequential fuzzy
inference. The membership functions for identifying fault types can be obtained by the possibility
functions. The membership functions µO and µO for identifying that the state is outer race flaw or not
are defined as follows.

µO(SPO) =

 P(R)(SPO)∪ P(I)(SPO) SPO ≥ max(SP(I)
O , SP(R)

O )

1.0 SPO < max(SP(I)
O , SP(R)

O )
(11)

µO(SPO) = 1− µO(SPO) (12)

Here, the meanings of possibility function P(R)(SPO), P(I)(SPO), SP(I)
O and SP(R)

O to identify outer race
flaw are as shown in Figure 5.
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Figure 5 also shows the membership functions obtained with signals measured by two sensors
(CH1 and CH2), and the details will be discussed in the next section.

The membership functions µI and µI for identifying that the state is outer race flaw or not are
defined as follows.

µI(SPI) =

 P(R)(SPI)∪ P(O)(SPI) SPI ≥ max(SP(O)
I , SP(R)

I )

1.0 SPI < max(SP(O)
I , SP(R)

I )
(13)
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µI(SPI) = 1− µI(SPI) (14)

Here, the meanings of possibility function P(R)(SPI), P(I)(SPI), SP(I)
I and SP(R)

I to identify inner race
flaw are shown in Figure 6. Figure 6 also shows the membership functions obtained with signals
measured by two sensors (CH1 and CH2), and the details will be discussed in the next section.
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2.3.4. Sequential Fuzzy Diagnosis

The state set is Cx, here, Cx = O: Outer race flaw, Cx = I: Inner race flaw and Cx = R: Rolling
element flaw. The state of the bearing to be determined is denoted as Cy, and as shown in Figure 4, the
rule of sequential diagnosis inference for identifying the state Cy is shown as follows.

Rule 1:
Prerequisite 1: If SPO > SPO∗ then Cy is CO;
Prerequisite 2: If SPO < SPO∗ then Cy is CO;
Input: SPO = SPO′
Conclusion: Cy is CO or CO;
(If Cy is CO, then end of the inference.)

Rule 2:
Prerequisite 1: If SPI > SPI∗ then Cy is CI;
Prerequisite 2: If SPI < SPI∗ then Cy is CR;
Input: SPI = SPI′

Conclusion: Cy is CI or CR;

Here, SPO∗ and SPI∗ are the threshold values for state judgement as shown in Figures 5 and 6.
SPO′ and SPI′ are the values calculated with the signals measured for bearing state diagnosis.

The membership function of the SPx′ obtained in the diagnosis stage is expressed as µy(SPx′), and
the membership degrees (possibilities) of Ck and Ck obtained by µy(SPx′) are respectively expressed as
wk, wk; The possibilities are obtained using the formulae (15) and (16):

wk = ∨
{
µCk(PSx′)∧ µy(PSx′)

}
(15)

w
k
= ∨

{
µ

Ck
(PSx′)∧ µy(PSx′)

}
(16)

According to the flowchart in Figure 4, examples of bearing fault diagnosis results based on the
method proposed in this paper are shown below to illustrate the effectiveness of the proposed method.

3. Verification

3.1. Rotating Machine for Verification Experiments

Figure 7 shows a rotating machine for experiments, the rotating shaft of which has a maximum
rotational speed up to 2000 rpm. Bearings can be replaced with normal and abnormal bearings, and
abnormal bearing are outer race flaw, inner race flaw and rolling element flaw, as shown in Figure 8.
Two accelerometers (Fuji Ceramics, SA12SC, sensitivity: 10 mV/g) were installed for measuring
vibration signal, and CH1 was close to the bearing, and CH2, CH3 were 510 mm, 570 mm from the
bearing. Acceleration signals at 1800 rpm were acquired at CH1, CH2 and CH3 at 100 kHz sampling
frequency and 10s sampling time.
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3.2. Learning Phase

To decide the RK threshold value for the fault detection of bearing, the experiment of the learning
phase will be done in Sections 3.2.1 and 3.2.2.

3.2.1. Learning Step of Fault Detection

Table 1 shows the optimum cutoff frequency and RK obtained by the data sets of normal, outer
race flaw, inner race flaw, and rolling element flaw of CH3 as an example, because signals of CH3 are
collected at the point farthest from the fault bearing, which will increase the difficulty of diagnosis.
From Table 1, the threshold of RK was determined to be 1.2, in order to determine whether the bearing
is normal.

Table 1. Optimum cutoff frequency and kurtosis ratio (RK) of CH3 (learning phase).

State of the Bearing Optimum Cutoff Frequency RK

normal 23.4 kHz 1.02
outer race flaw 22.6 kHz 1.35
inner race falw 31.0 kHz 5.08

rolling element flaw 36.1 kHz 1.65

The optimum cutoff frequency and the change trend of RK in the case of the signals of the outer
race flaw measured at CH1 are shown in Table 2. These data show an example where even though the
result of the GA searching may be local extremum value, using hybrid GA to search again can jump
over the local extremum value to find the maximum value. Figure 9 shows the relationship between the
cutoff frequency and RK, and also shows a well example of the usefulness of hybrid GA (GA and TS).
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Table 2. Optimum cutoff frequencies and RKs in outer race flaw data at CH1.

Processing Optimum Cutoff Frequency Maximum RK

before GA 0 Hz 34.58
afetr GA 30.1 kHz 67.81

after hybrid-GA 38.8 kHz 70.14
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3.2.2. Learning Step of Fault Isolation

The process and results of learning and fault isolation according to Figure 4, Equations (8) to
(16), and fuzzy inference (rule1, rule 2) are illustrated below by taking the data measured at CH3
as an example. Table 3 shows the DSPs shown in (8) for bearing diagnosis using the acceleration
data measured at CH3 in the states of outer race flaw, inner race flaw and rolling element flaw. The
measured data is equally divided into eight sections, and eight values of the DSPs are obtained for
each fault type.

Table 3. The dedicated symptom parameters for bearing fault isolation of CH3 (learning step).

Fault Type SPO SPI SPR

Outer race flaw 1 7.4342 2.3796 2.9357
Outer race flaw 2 4.8949 1.5213 2.3050

. . . . . . . . . . . .
Outer race flaw 8 6.6856 3.1085 3.7700

Inner race flaw 1 4.0626 3.0314 1.4326
Inner race flaw 2 2.1924 2.9479 2.5816

. . . . . . . . . . . .
Inner race flaw 8 3.9636 4.3204 3.4328

Rolling element flaw 1 4.9868 3.1679 2.5710
Rolling element flaw 2 4.1288 1.7507 2.8610

. . . . . . . . . . . .
Rolling element flaw 8 3.0087 3.0356 2.7371

SPx and σSPx of SPx are calculated with the signals measured in each state in the learning step as
shown in Table 4. According to formulas (9), (11) and (12), the membership functions µO(SPO) and
µO(SPO) for identifying the outer race flaw are shown in Figure 10. In addition, according to formulas
(9), (11) and (12), the membership functions µI(SPI) and µI(SPI) are for identifying the outer race flaw
are shown in Figure 11.
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Table 4. SPx and σSPx calculated in each state of CH3 for learning.

Signal State SPO SPI SPR

SPO
(x) σSPO

(x) SPI
(x) σSPI

(x) SPR
(x) σSPR

(x)

Outer race flaw signal 6.6 1.0 2.8 0.6 3.1 0.8
Inner race flaw signal 3.3 0.8 4.3 1.1 2.6 0.7

Rolling element flaw signal 3.7 1.0 3.0 0.5 2.8 0.5
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(a) CH1                           (b) CH3 

Figure 10. 𝜇O(𝑆𝑃𝑂), 𝜇O̅(𝑆𝑃𝑂), and 𝜇𝑦(SPO’) for the judgement of outer race flaw. Figure 10. µO(SPO), µO(SPO), and µy (SPO’) for the judgement of outer race flaw.

Figure 12 shows the results of filtering and envelope processing for the outer race flaw data
measured at CH3 at 1800rpm. It can be seen from Figure 12d–f, that the noise in the low frequency
band is removed in Figure 12f, and the spectra corresponding to the passing frequency (128.2Hz)
and its harmonic frequencies caused by outer race flaw of the bearing are extracted. It also can be
seen from Figure 12a–c, after a high-pass filter with the optimized cutoff frequency, the base noise is
greatly eliminated, and the usefulness of the envelope process after the HPF using the optimum cutoff

frequency can be confirmed.
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Figure 12. Time waveforms and envelop spectra of outer race flaw signal at 1800rpm (CH3). (a)
Waveform of the raw data. (b) Waveform of the signal after high-pass filter with cutoff-frequency
1KHz. (c) Waveform of the signal after high-pass filter with the optimized cutoff frequency. (d) Envelop
spectrum of the raw data. (e) Envelop spectrum of the signal after high-pass filter with cutoff-frequency
1KHz. (f) Envelop spectrum of the signal after high-pass filter with the optimized cutoff frequency.

3.3. Diagnosis Phase

The data that was not used in the learning step are used to verify the bearing diagnosis process
discussed in Sections 3.3.1 and 3.3.2.

3.3.1. Diagnosis Step of Fault Detection

The results of fault detection in the verification step are shown in Table 5. From Table 5, it can
be seen that the RK in the normal bearing is smaller than the threshold value 1.3, and the RKs in the
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abnormal bearings are larger. By these results, the effectiveness of the fault detection method proposed
in this paper for roller bearing is verified.

Table 5. Optimum cutoff frequency and RK (verification step).

State Cut-Off Frequency RK

Normal 785 Hz 1.09
Outer race flaw 20.5 kHz 1.78
Inner race flaw 33.4 kHz 1.73

Rolling element flaw 32.1 kHz 2.41

3.3.2. Diagnosis Step of Fault Isolation

For fault isolation of the bearing in the verification step, the DSPs are calculated as shown in
Table 6. From Table 6, SPx and σSPx of SPx are calculated with the signals measured in each state as
shown in Table 7.

Table 6. DSP for bearing fault isolation (verification step).

Fault Type SPO SPI SPR

Outer race flaw 1 10.128 1.9491 2.8082
Outer race flaw 2 10.298 1.6400 2.8070

. . .
Outer race flaw 8 8.2024 2.3197 2.4672

Inner race flaw 1 3.2607 4.1892 3.9748
Inner race flaw 2 2.9917 4.6307 2.6820

. . .
Inner race flaw 8 3.0646 5.5968 2.5874

Rolling element flaw 1 2.8921 1.9803 3.3640
Rolling element flaw 2 2.7422 4.1339 2.8054

. . .
Rolling element flaw 8 3.3151 2.7071 2.9271

Table 7. SPx and σSPx calculated in each state of CH3 for verification.

Signal state SPO SPI SPR

SPO
(O) σSPO

(O) SPI
(O) σSPI

(O) SPR
(O) σSPR

(O)

Outer race flaw signal 9.8 0.9 2.6 0.7 2.6 0.3
Inner race flaw signal 3.1 0.3 4.0 0.9 2.9 0.5

Rolling element flaw signal 3.2 0.3 3.1 0.9 2.7 0.4

According to formulas (11) to (14), the possibility function of the SPx obtained in the diagnosis
step is written as µy(SPx’), as shown in Figures 10 and 11. The possibility functions of µy(SPx’) shown
in Figures 10 and 11 are calculated using SPx and σSPx shown in Table 6 for the verification.

Tables 8 and 9 show the fuzzy reference results based on the fuzzy inference rule 1 and 2, formula
(15) and (16), Figures 10 and 11. It can be seen from these results that the abnormal states have all
been correctly diagnosed, and the validity of the bearing diagnosis method proposed in this paper
was verified.
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Table 8. Diagnosis results based on the Rule 1 of fuzzy inference

State of Verification Signal Possibility by µO(SPO) Possibility by µ ¯
O

(SPO) Judge

O wO = 1.0 wO = 0.0 O
I wO = 1.0 wO = 1.0 O
R wO = 1.0 wO = 1.0 O

Table 9. Diagnosis results based on Rule 2 of fuzzy inference

State of Verification Signal Possibility by µO(SPO) Possibility by µ ¯
O

(SPO) Judge

I wI = 1.0 wI = 0.0 I
R wI = 0.0 wI = 1.0 R

In order to analyze the performance of the proposed method, the recognition accuracy of the
proposed method is compared with the algorithms commonly used for fault diagnosis, such as artificial
neural network (ANN) [26], support vector machine (SVM) [27], k-nearest neighbors (KNN) [28]
and convolutional neural network (CNN) [29]. The comparison experiments are carried out by the
MATLAB Statistics and Machine Learning Toolbox 11.1, which included implementations of various
machine learning classifiers. The classifiers are trained by the measured signals and the verification
results are compared in Figure 13.
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4. Conclusions

This paper proposed a new fault auto-detection method for a roller bearing, by which the optimum
cutoff frequency for removing noise from the vibration signal measured for the bearing diagnosis
can be automatically searched and the state of the bearing can be automatically diagnosed. With this
method, even if the accelerometer cannot be placed near the diagnosed bearing and is located away
from the bearing to be diagnosed, it is also possible to diagnose the bearing fault more accurately.

In order to detect the bearing fault signals, a method of searching optimal cutoff frequency of
high-pass filter by hybrid GA combining GA and TS is proposed, and RK is used as the fitness of
GA, and the fault detection of the bearing is also carried out. In order to precisely determine the type
of the bearing fault, the symptom parameters specific for bearing diagnosis are proposed, and the
membership functions of the symptom parameters are established according to possibility theory for
fuzzy diagnosis. After the bearing is judged as abnormality by the fault detection, the membership
functions of the symptom parameters dedicated to bearing diagnosis and the fuzzy inference are used
to sequentially and precisely identify the type of the bearing fault, and it has been confirmed that the
feature vibration signal caused by bearing faults can be detected with an accelerometer set at a distant
point from the diagnosed bearing by using the proposed algorithms.

From now on, we will do the same research on sliding bearings, aiming to construct useful
high-precision sliding bearing diagnostic methods.
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