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Abstract: As an important inertial sensor, the gyroscope is mainly used to measure angular velocity
in inertial space. However, due to the influence of semiconductor thermal noise and electromagnetic
interference, the output of the gyroscope has a certain random noise and drift, which affects the
accuracy of the detected angular velocity signal, thus interfering with the accuracy of the stability of
the whole system. In order to reduce the noise and compensate for the drift of the MEMS (Micro
Electromechanical System) gyroscope during usage, this paper proposes a Kalman filtering method
based on information fusion, which uses the MEMS gyroscope and line accelerometer signals to
implement the filtering function under the Kalman algorithm. The experimental results show that
compared with the commonly used filtering methods, this method allows significant reduction of the
noise of the gyroscope signal and accurate estimation of the drift of the gyroscope signal, and thus
improves the control performance of the system and the stability accuracy.
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1. Introduction

A photoelectric stability platform is a device that can effectively isolate the carrier disturbance
and keep the visual axis stable. As an important inertial sensor of photoelectric stability platform,
the gyroscope is mainly used for the angular velocity of the sensitive inertia space of each axis.
The measured angular velocity is fed back to the servo control system to form a speed closed loop,
thereby isolating the external disturbance and ensuring the stability of the platform. The MEMS
gyroscope is widely used in photoelectric stabilization systems due to its small size and low cost.
However, due to the influence of devices and environmental interference, the output of the MEMS
gyroscope has a certain noise and drift, which reduces the accuracy of the signal and affects the stability
of the system.

At present, there are many methods for processing gyroscope signal noise, which can be roughly
divided into two categories: one is the based on the model compensation method, that is, modeling the
random noise of the gyroscope and offsetting it in accordance with the model, e.g., the Kalman filter
method [1–3], statistical filtering, etc.; the other is the direct filtering method, which directly filters the
output signal of the gyroscope, e.g., low-pass filtering, Wavelet filtering [4–7], adaptive filtering [8],
and so on.

In the literature [9], based on the time series model of gyroscope zero drift data, the author uses
the Kalman algorithm to process the drift data. The simulation results show that the method can
effectively filter the static gyroscope signal, but the dynamic signal filtering effect is poor. Another
paper [10] proposes an analytical method to estimate the measurement noise variance in Kalman filter
and apply it to the Kalman filter in real time; experiments show that this method could carry out a more
accurate result in estimating the measurement noise variance and improve the accuracy of Kalman
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filter; however, it is not able to estimate the drift of the sensor. In the literature [11], Luming Li combines
Kalman filtering with neural networks to estimate the variance of the Kalman filter measurement
noise through neural networks, thus solving the problem of inaccurate selection of measurement noise
variance. Experiments show that the algorithm better suppresses the random noise of the gyroscope.
However, since this method is also based on time series modeling, the filtering effect on dynamic
signals is unsatisfactory. In the literature [12], the Kalman filter is used to fuse the two sensor signals
of the MEMS gyroscope and the accelerometer to suppress the gyroscope random noise, meanwhile
estimating the drift of the accelerometer. However, because the existence of the constant drift of the
gyroscope is not taken into consideration in this algorithm, there is a certain error with the actual
situation. In the literature [8], in order to eliminate the random noise of the fiber optic gyroscope,
the digital low-pass filtering, wavelet filtering, adaptive filtering, and variable-step adaptive filtering
methods are compared for filtering. The comparison shows that the variable step size adaptive filtering
method has the best filtering effect on the gyroscope random noise. However, this method cannot
simultaneously estimate the constant drift of the sensor.

For the estimation of gyroscope signals drift, the literature [13] uses six accelerometers placed
symmetrically on the UAV’s rotary axis to calculate the angular velocity. The Kalman filter algorithm
is used to fuse the angular velocity of the gyroscope output with the angular velocity calculated by
the accelerometer to estimate the constant drift of the gyroscope. The simulation results show that
the method can effectively compensate the constant drift of the gyroscope and has certain application
value. However, this method has only a certain effect in the simulation and has not been verified in
the experiment.

Although the above researches have achieved certain results on the filtering and drift estimation of
the gyroscope signal, the filtering and drift estimation of the gyroscope noise often cannot be obtained
at the same time. Although some scholars also use gyroscopes and line accelerometers to achieve gyro
filtering and drift estimation, they ignore the existence of linear accelerometer drift, making the results
less accurate. Based on the summary of the current research results, this paper uses the Kalman filter
algorithm that combines the gyroscope signal and the accelerometer signal to process the gyroscope
signal and also estimate the accelerometer signal filtering and drift, thereby improving the detection
accuracy of the sensor.

2. Analysis of MEMS Gyroscope Error

2.1. Analysis of Noise Sources of MEMS Gyroscopes

The noise of MEMS gyroscopes is mainly caused by imperfect structure and environmental
interference. In order to identify and characterize the noise source that causes the gyroscope noise, the
Allan variance method is used to analyze the MEMS gyroscope signal. This method is characterized by
the ability to characterize and identify the statistical properties of the entire noise, meanwhile analyzing
the source of the identified noise term [8].

Let the length of the gyroscope signal be L and the sampling frequency be f, then the sampling
period is t0 = 1/ f . The average gyroscope signal is divided into K groups (K ≥ 2), then the data length
of each group is N = L/K and the length of each group of data is t = t0 ∗N, which is also called the
correlation time [14].

Calculate the average value ωk(N) of each group at each correlation time t, then

ωk(N) =
1
N

N∑
i=1

ω(k−1)∗N+iK = 1, 2, · · · , K (1)
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Then the Allan method at the relevant time t is defined as

σ2
A(t) =

1
2(K − 1)

K−1∑
j=1

[
ω j+1(N) −ω j(N)

]2
(2)

The Allan variance curve can be obtained by taking different correlation times t and calculating
the corresponding Allan variance σ2

A(t). The square root σA(t) of the Allan variance is called the Allan
standard deviation and the curve of σA(t) ∼ t in the double logarithmic coordinate system is called
the Allan standard deviation double logarithmic curve [15].

The random drift error of MEMS gyroscope mainly includes five noise sources such as quantization
noise, rate ramp noise, angular rate random walk noise, angular random walk noise, and zero offset
instability noise [16]. Since these noise sources are reflected in different correlation time regions,
the Allan variance method can analyze different noises of the gyroscope. The Allan variance of
the quantization noise is σ2

Q(t) = 3Q2/t2. The Allan variance of the angular random walk noise is

σ2
N(t) = N2/t. The Allan variance noise of the zero-bias instability is σ2

B(t) = 2B2ln2/π. The Allan
variance of the angular rate random walk noise is σ2

K(t) = K2t/3. The Allan variance of the rate ramp
noise is σ2

R(t) = R2t2/2. Among them, Q, N, B, K, and R are various error coefficients.
If the MEMS gyroscope contains these five noise sources and is statistically independent. Then

the Allan variance can be decomposed into the sum of the Allan variances of the noise sources.

σ2
A(t) = σ2

Q(t) + σ2
N(t) + σ2

B(t) + σ2
K(t) + σ2

R(t) (3)

σ2
A(t) =

3Q2

t2 +
N2

t
+

2B2ln2
π

+
K2t
3

+
R2t2

2
=

2∑
i=−2

ϕiti (4)

Using the least squares method, ϕi can be obtained and various error coefficients are obtained.
The relationship between each error coefficient and ϕi is

Q =

√
ϕ−2

3600
√

3
, N =

√
ϕ−1

60
, B =

√
ϕ0π

2ln2
, K = 60

√
3ϕ1, R = 3600

√
2ϕ2

In this paper, the static data of MEMS gyroscope is collected at the sampling frequency of 1 KHz.
The analysis results are shown in Figure 1.
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The error coefficients obtained by Allan analysis of variance are

Q = 5.4412× 10−7, N = 8.0041× 10−4, B = 0.0258, K = 3.973, R = 121.3356

As can be seen from the above figure, the noise composition of the MEMS gyroscope is mainly
composed of quantization noise and angular random walk noise. Therefore, the filtering of MEMS
gyroscope noise is mainly to filter the two noise sources.

2.2. Influence of MEMS Gyroscope Error on Stable Platform System

The influence of the error of the MEMS gyroscope on the stable platform control system can be
expressed by the mean square error of the system output under the influence of the noise and drift of
the gyroscope. The system control model is shown in Figure 2.
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In Figure 2, C(s) is the controller of the stable loop, G(s) is the transfer function of the system
model, H(s) is the transfer function of the sensor, r(t) is the speed command entered by the system, v(t)
is the speed of the system output, and n(t) is the error of the gyroscope.

According to the Figure 2, the transfer function of the gyroscope error input to the system output is

Gc(s) = −
H(s)C(s)G(s)

1 + H(s)C(s)G(s)
(5)

From the linear system theory, the output power spectral density of a linear system is equal to the
product of the input power spectral density and the system power transfer function [17]. According to
the system shown in Figure 2, if the power spectral density of the gyro error is φr(ω). The transfer
function of the gyroscope noise input to the system output is Gc(s). The power spectral density of the
system output caused by the gyro noise input is

φv(ω) =
∣∣∣Gc( jω)

∣∣∣2φr(ω) (6)

According to Equation (6), the system mean square error caused by the gyroscope error is

ε2 =

∫
∞

−∞

∣∣∣Gc( jω)
∣∣∣2φr(ω)dω (7)

It can be seen from Equation (7) that the influence of the gyroscope error on the output of the
system is determined by the power spectral density of the gyroscope error and its transfer function in
the control system. When the transfer function of the control system is fixed, the larger the noise and
drift of the gyroscope, the larger the mean square error of the system output due to it.

In addition, in the platform stability control loop, due to the presence of gyro noise, the controller
parameters are often not further optimized, which limits the improvement of system control
performance. The existence of constant drift of the gyroscope will cause the system to have a smaller
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amplitude control output even when the platform is stable, which causes the platform to rotate slowly,
affecting its stability accuracy, and more serious may cause the system to not work properly.

Therefore, in order to reduce the influence of MEMS gyroscope error on the system and improve
the control performance of the system, it is necessary to process the noise and constant drift of
the gyroscope.

3. Design and Simulation of the Filter Algorithm

There are many filtering methods for gyroscopes, such as low-pass filter, Kalman filter, forward
linear filter, and wavelet filter. Considering the feasibility and real-time requirements, the Kalman
filter algorithm and forward linear prediction filter algorithm will be highlighted below. We compare
the filtering effects of the two algorithms to find the best filter algorithm.

3.1. Improved Kalman Filter Algorithm

3.1.1. Design of Kalman Filtering Algorithm Based on Information Fusion

Kalman filter is a filtering method based on the minimum mean square error criterion. It obtains
an estimate of the state value through an iterative calculation. And it is the best estimate for linear
systems with Gaussian white noise. Due to the high accuracy and good real-time performance of
Kalman filter, it has been widely used in signal processing.

The equation of state for the discrete time process of the Kalman filter is expressed as

xk = Axk−1 + Buk−1 + Fωk−1 (8)

The measurement equation is expressed as

yk = Cxk + Dvk (9)

In Equation (9), xk is the system state quantity at time k, uk−1 is the system control quantity at
time k − 1, A is the state transition matrix, B is the control matrix, C is the measurement matrix, and D
and F are the noise matrix. ωk is the system process noise, vk is the system measurement noise, andωk
and vk are mutually independent, normally distributed white noise.

ωk ∼ N(0, Q) (10)

vk ∼ N(0, R) (11)

Q and R are the covariance matrices of system noise and measurement noise, respectively.
The steps of the Kalman filter algorithm are as follows.
State one-step prediction:

xk|k−1 = Axk−1 + Buk−1 (12)

One-step prediction of covariance matrix:

Pk|k−1 = APk−1AT + Q (13)

Calculate the filter gain:
K = Pk|k−1CT

(
CPk|k−1CT + R

)
(14)

State estimation:
xk = xk|k−1 + K

(
yk −Cxk|k−1

)
(15)

Covariance matrix estimation:
Pk = (I−KC)Pk|k−1 (16)
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According to the motion relationship, when the angular velocity value vk and the angular
acceleration value ak of the system at time k are known, the angle and angular velocity of the system at
time k + 1 can be obtained as follows

xk+1 = xk + vk ∗ t +
1
2
∗ ak ∗ t2 (17)

vk+1 = vk + ak ∗ t (18)

According to the Formulae (17) and (18), it is possible to construct a state equation for Kalman
filtering using information such as angle, angular velocity, and angular acceleration. This avoids
the use of ARMA models or state equations of the original system that are difficult to obtain for
Kalman filtering.

Since both the gyroscope and the accelerometer have noise and drift, in order to improve the
algorithm’s effect on sensor noise reduction and estimation of sensor drift, the state of the Kalman

filter is augmented as X =
[

x v ∆v a ∆a
]T

. Where x is the angle information, v is the
angular velocity information, ∆v is the angular velocity drift of the sensor, a is the angular acceleration
information, and ∆a is the angular acceleration drift of the sensor. Therefore, the system equations and
observation equations after the amplification state are{

Xk|k−1 = AXk−1 + BWk−1
Yk = CXk + Vk

(19)

where

A =


1 T −T T2

2 −
T2

2
0 1 0 T −T
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


, B =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


, C =


1 0 0 0 0
0 1 0 0 0
0 0 0 1 0


where T is the sampling time.

The angle information can be solved by the gravity component to which the linear accelerometer
is sensitive. The angular velocity information is measured by a gyroscope. The angular acceleration
information is measured by a linear accelerometer. It can be shown in Figure 3.
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In Figure 3, two linear accelerometers are placed symmetrically about the axis of rotation. G is the
acceleration of gravity; a1 and a2 are the output values of the two linear accelerometers, respectively; d
is the distance of the line accelerometer from the axis of rotation; θ is the angle at which the platform
rotates; and α is the angular acceleration of the platform rotation. According to the relationship, you
can get

a1 = αd−Gcosθ (20)
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a2 = −αd−Gcosθ (21)

The above formula is combined
α =

a1 − a2

2
(22)

θ = arccos(−
a1 + a2

2G
) (23)

Thus the angle and angular acceleration of the platform can be obtained.
It can be deduced from the above that the improved Kalman filter algorithm can not only filter

the gyroscope signal and estimate its constant value drift, but also filter the acceleration signal and
estimate the constant value drift of the accelerometer. The processing of the acceleration signal is to
better achieve the algorithm’s filtering of the gyroscope signal and the estimation of the gyroscope drift.

3.1.2. Proof of Stability of Kalman Filter Algorithm Based on Information Fusion

The stability problem of the Kalman filter is related to its application in practical engineering.
Therefore, the stability of the filter should be verified after the filter is designed. The filter stability
problem requires studying the influence of the initial value of the parameters on the filter stability.
That is, as the filtering time increases, the estimated value of the state and the error variance matrix are
not affected by the selected initial value [18]. To prove the stability of the filter, the following theorem
is used:

Filter stability theorem: If the system is fully controllable and fully observable, the Kalman filter
is uniformly progressively stable [19,20].

Among them, the observability and controllability criteria of linear systems are as follows.
(1) Linear system controllability criteria: For linear constant discrete system

x(k + 1) = Ax(k) + Bu(k) (24)

The necessary and sufficient condition for complete controllability is that the rank of the matrix[
B AB · · · An−1B

]
is n.

(2) Linear System Observability Criterion: For linear constant discrete system{
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + v(k)
(25)

The necessary and sufficient condition for complete observability is that the rank of the matrix[
C CA · · · CAn−1

]T
is n. Where n is the dimension of the state vector.

According to Equation (17),

rank
[

B AB A2B A3B A4B
]
= 5 (26)

rank
[

C CA CA2 CA3 CA4
]T

= 5 (27)

As can be seen from the above equation, the Kalman filtering algorithm proposed in this paper is
completely controllable and fully observable. According to the filter stability theorem, the algorithm
is stable.

3.2. Forward Linear Prediction Filter Algorithm

The principle of the forward linear predictive filter algorithm is to multiply the previous gyroscope
signal by the corresponding weight to predict the gyroscope signal at the current time. The algorithm
begins with an initial value and then calculates the difference between the current gyroscope actual
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value and the predicted value. The weight vector is adjusted according to the minimum mean square
error algorithm to converge to a stable weight [21].

x̂(n) =
K∑

i=1

aix(n− i) = ATX(n− 1) (28)

X(n− 1) = [x(n− 1) x(n− 2) · · · x(n−K)]T is the vector of the gyro signals from the first K
moments; ai is the weight and K is the order of the filter.

The difference between the current gyroscope actual value and the current gyroscope predicted
value and the cost function are

e(n) = x(n) − x̂(n) (29)

J(n) = E
(
e2(n)

)
(30)

According to the theory of minimum mean square error, J(n) should take the minimum value if
the best weight is to be obtained. Therefore, the weight adjustment equation is

A(n + 1) = A(n) + µE[e(n)X(n− 1)] (31)

In the actual calculation, in order to reduce the amount of calculation, the above equation is
simplified as

A(n + 1) = A(n) + µe(n)X(n− 1) (32)

In the equation, µ is the step factor, which is generally a smaller value greater than zero [22].

3.3. Simulation Analysis of Filter Algorithm

For the filtering algorithm designed above, the closed-loop control system shown in Figure 4 is
built for simulation analysis. Where r(t) is the angular velocity command signal, G(s) is the transfer
function of the platform system, and C(s) is the controller of the system speed closed loop. The angular
velocity noise signal vn(t) added by the system is a white noise signal with a variance of 1 (deg/s)2

and an average of 0.5 deg/s. The added acceleration noise signal an(t) is a white noise signal with

a variance of 5
(
deg/s2

)2
and an average value of 1

(
deg/s2

)2
.
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3.3.1. Analysis of Static Filtering

Set the angular velocity command to zero. The acquisition of the gyroscope raw signal, the Kalman
filtered signal, and the forward linear filtered signal are shown in Figures 5–9.
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It can be seen from Figures 5–9 that the Kalman filter algorithm and the forward linear filter
algorithm have the effect of reducing the gyroscope noise level when the gyroscope noise level is
constant. Among them, the Kalman filter algorithm reduces the variance of the noise from 1 (deg/s)2

to 0.0056 (deg/s)2. The forward linear filtering algorithm reduces the variance of the noise from
1 (deg/s)2 to 0.0119 (deg/s)2. It can be seen that the Kalman filter effect is better than the forward linear
filter effect. Moreover, the Kalman filter algorithm can estimate the constant drift of the gyroscope more
accurately. In addition, the Kalman filter algorithm can simultaneously filter the angular acceleration
signal and estimate the constant drift of the accelerometer.

The power spectrum is estimated for the angular velocity signals before and after filtering.
The result is shown in Figure 10.

As showed from the Figure 10, from the perspective of the frequency domain, the noise after
forward linear filtering is 15 dB lower than the power spectrum of the original noise. The noise after
the Kalman filtering is reduced by up to 25 dB compared to the power spectrum of the original noise.
Therefore, the Kalman filter algorithm can better reduce the gyroscope noise.
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3.3.2. Analysis of Dynamic Filtering

Set the sine angular speed command signal with amplitude 2 deg/s and frequency 1 Hz. The filtered
result is shown in Figures 11 and 12.
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It can be seen from Figures 11 and 12 that both the Kalman filter algorithm and the forward linear
filter algorithm can reduce the noise level in the case of dynamic commands. Among them, the Kalman
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filter algorithm reduces the variance of noise from 1 (deg/s)2 to 0.02 (deg/s)2. The forward linear
filtering algorithm reduces the variance of the noise from 1 (deg/s)2 to 0.093 (deg/s)2. Therefore,
the filtering effect of the improved Kalman algorithm is significantly better than that of the forward
linear algorithm. Moreover, the convergence process of the Kalman filter algorithm in the simulation is
also faster.

4. Comparison and Analysis of Experimental Results

The experimental test system consists of a computer, a dSpace semiphysical simulation system,
and a stable platform. The schematic diagram of the experimental system is shown in Figure 13.
The DA interface outputs control commands, which drive the platform motor through the drive.
The AD interface receives the accelerometer signal and the gyroscope signal, which is used for filtering
and constructing feedback for stable control. The stable platform device is shown in Figure 14. It is
a two-axis and two-frame structure which is equipped with sensors such as a MEMS gyroscope and
linear accelerometers. The MEMS gyroscope is used to measure platform angular velocity information.
Linear accelerometers are used to measure platform acceleration information. Linear accelerometers
use symmetrical placement to eliminate the effects of gravitational acceleration.
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Figure 14. Diagram of the stable platform.

After that the equipment is installed and debugged, in order to achieve stable control of the stable
platform system, the gyroscope signal must be introduced into the feedback channel to form a feedback
closed-loop system. Then set different command signals according to different experiments and send
them to the driver and motor through dSpace. The gyroscope and line accelerometer are used to
acquire the motion signals of the stable platform to observe the corresponding experimental results.

4.1. Filtering Experiment

4.1.1. Static Filtering Experiment

Set the angular velocity command signal to zero. The gyroscope signal of the pitch axis of the
platform, the acceleration signal, and the filtered signal of the Kalman filter algorithm and the forward
linear filter algorithm are collected. The signals are as shown in Figures 15–19.
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It can be seen from Figures 15–19 that both the Kalman filter algorithm and the forward linear
filter algorithm can reduce the gyroscope noise level. The Kalman filter algorithm reduces the variance
of the noise from 0.323 (deg/s)2 to 0.061 (deg/s)2. The forward linear filtering algorithm reduces
the variance of the noise from 0.323 (deg/s)2 to 0.127 (deg/s)2. Moreover, the improved Kalman
filter algorithm can estimate the constant drift of the gyroscope more accurately. From the collected
gyroscope data, the constant drift of the gyroscope is about 0.45 deg/s, and the drift estimated by the
filtering algorithm fluctuates around 0.45 deg/s with an average error of 0.02 deg/s.

In addition, the Kalman filter algorithm can also filter the angular acceleration signal, which reduces

the variance of the acceleration noise from 176
(
deg/s2

)2
to 36

(
deg/s2

)2
. At the same time, it can

estimate the constant value drift of the accelerometer. The average error between the estimated value
and the actual value is 0.1 deg/s2.

Therefore, from the perspective of time domain signals, the filtering effect of the Kalman algorithm
is better than that of the forward linear algorithm.

The power spectrum is estimated for the angular velocity signals before and after filtering.
The result is shown in Figure 20.
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It can be seen from Figure 20 that in the frequency domain, both filtering algorithms can reduce the
power of signal noise, and as the frequency increases, the reduction amplitude is also larger. The noise
filtered by the forward linear algorithm is up to 20 dB lower than the power spectrum of the original
noise. The filtered noise of the Kalman algorithm is up to 30 dB lower than the power spectrum of the
original noise. Therefore, the Kalman filter algorithm has better noise reduction capability from the
frequency domain.

4.1.2. Dynamic Filtering Experiment

Set the angular velocity command to a sinusoidal signal with an amplitude of 2 deg/s and a
frequency of 1 Hz. The gyroscope signal of the platform’s pitch axis and the filtered signal are shown
in Figure 21.
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As can be seen from Figure 21, both the Kalman filter algorithm and the forward linear filter
algorithm can reduce the noise level in the case of dynamic commands. Among them, the Kalman

filter algorithm reduces the variance of noise from 0.56
(
deg/s2

)2
to 0.11

(
deg/s2

)2
. The forward linear

filter algorithm reduces the variance of the noise from 0.56
(
deg/s2

)2
to 0.31

(
deg/s2

)2
. Therefore,

the improved Kalman filter algorithm can better reduce the noise of the gyroscope.
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The movements in the above experiments are more conventional movements. In order to fully
test the performance of the filter, the platform is artificially rotated randomly without the command
signal control; the signal of the gyroscope and the filtered signal are shown in Figure 22.
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It can be seen from Figure 22 that in the case of random motion of the platform, the two filtering
algorithms still have better filtering effects. It is also apparent from the two filter curves in the figure
that the Kalman filter algorithm is superior to the forward linear filter algorithm.

To explore the response speed of the filtering algorithm to the signal in the case of random motion
of the platform, the Kalman filter algorithm, the forward linear algorithm, and the commonly used
low-pass filtering algorithm are compared. The low-pass filtering algorithm uses a second-order
low-pass filter with a bandwidth of 20 Hz. The comparison results are shown in Figure 23.
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As can be seen from Figure 23, the filtering effect of the low-pass filter with a bandwidth of 20 Hz
is similar to that of the Kalman filter. However, the response speed of the Kalman filter algorithm and
the forward linear filter algorithm is 0.01s faster than the low-pass filter with a bandwidth of 20Hz.
Therefore, the Kalman filter algorithm and the forward linear filter algorithm have better response
speeds to signals than the low-pass filters under the same filtering effect.
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4.2. Influence of Signal Filtering on System Control Performance

In order to test the improvement of the system control performance by the filtering algorithm,
the following experiments were performed on the system using the Kalman filter algorithm and the
system without the filter algorithm.

For the system with a filter, the classical controller parameters for speed closed loop are
KP = 0.15 and Ki = 1.5. This controller is also applied to the unfiltered system. For the above
two systems, the zero-angle speed command signal is given; the experimental results are shown in
Figures 24–26.
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As shown in Figures 24–26, in the case of using the same controller, there is no significant difference
in the angular velocity of the system with or without the filter. This is because the gyroscope is less
sensitive to the motion of the platform than the linear accelerometer. Therefore, it can be seen from
the line accelerometer signal that the acceleration output noise of the filtered system is significantly
smaller than the acceleration output noise of the unfiltered system which can also be seen from the
power spectrum of the angular acceleration signal. The power of the acceleration noise of the filtered
system is less than the unfiltered power spectrum; the difference is at most 2.5 dB at 250 Hz. During
the experiment, under the same controller and command signal, the unfiltered system will have slight
jitter, which is the cause of the above phenomenon.

The above phenomenon indicates that the controller parameters applied to the unfiltered system are
not suitable. Therefore, the controller parameters need to be re-adjusted for different systems. The more
reasonable parameters are: the controller parameters of the filtered system are KP = 0.15 and Ki = 1.5,
and the controller parameters of the unfiltered system are KP = 0.05 and Ki = 1. For the above two
systems, a square wave angular velocity command signal with a amplitude of 5 deg/s and a frequency
of 1 Hz is given. The experimental results are shown in Figure 27.
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Figure 27. The step response of a system with or without a filter.

As can be seen from Figure 27, for the step signal, both systems can better track the command
signal; the systems with filters have a faster step response speed than systems without filters.



Sensors 2019, 19, 3552 19 of 20

Since the stable platform is often affected by disturbances such as bumps, sway, and jitter of
the carrier during work, it is necessary to improve the ability of the stable platform to suppress the
disturbance. To compare the ability of the stable platform to suppress disturbances before and after
filtering, set the zero angular speed command signal, and apply an angular velocity disturbance of
ω = 2 sin(2πt) to the stable platform. The angular error of the platform obtained is shown in Figure 28.
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As can be seen from Figure 28, in the case of external disturbance, the variance of the angular error
of the system without filter is 0.004 deg2 and the variance of the angular error of the system with the
filter is 0.002 deg2. Therefore, the system with a filter has a stronger ability to suppress disturbances.

In summary, the controller parameters are optimized due to the filtering and compensation of the
sensor signal by the Kalman filter algorithm. Thereby the control performance of the system and the
system’s ability to suppress disturbances are improved.

5. Conclusions

In this paper, based on the large noise and drift of MEMS gyroscopes in engineering applications,
a Kalman filter algorithm based on information fusion is proposed. It is compared with the forward
linear filter algorithm in simulation and experiment. By comparison, it shows the following.

1. Both filtering algorithms can reduce the noise level of the MEMS gyroscope. However, the filtering
effect of the Kalman filter algorithm based on information fusion is better than that of the forward
linear filter algorithm, and its noise reduction capability can reach up to 30dB. And it can estimate
the constant drift of the MEMS gyroscope more accurately. The average error between the
estimated and actual values is 0.02 deg/s.

2. The Kalman filter algorithm based on information fusion can simultaneously reduce the noise
level of the accelerometer signal. It can also estimate the constant value drift of the accelerometer,
and the average error between the estimated value and the actual value is 0.1 deg/s2.

The processing of the gyroscope signal by the Kalman filtering algorithm based on information
fusion not only improves the detection accuracy of the gyroscope, but also optimizes the parameters of
the system controller. It also compensates for the drift of the gyroscope, which improves the system’s
slow rotation under stable control. The stability of the photoelectric stability platform and the ability to
suppress disturbances are improved as a whole, which has important practical significance in practical
engineering applications.
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