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Abstract: In this paper, we introduce an in-depth application of high-resolution disparity map 
estimation using stereo images from Mars Curiosity rover’s Mastcams, which have two imagers 
with different resolutions. The left Mastcam has three times lower resolution as that of the right. 
The left Mastcam image’s resolution is first enhanced with three methods: Bicubic interpolation, 
pansharpening-based method, and a deep learning super resolution method. The enhanced left 
camera image and the right camera image are then used to estimate the disparity map. The impact 
of the left camera image enhancement is examined. The comparative performance analyses showed 
that the left camera enhancement results in getting more accurate disparity maps in comparison to 
using the original left Mastcam images for disparity map estimation. The deep learning-based 
method provided the best performance among the three for both image enhancement and disparity 
map estimation accuracy. A high-resolution disparity map, which is the result of the left camera 
image enhancement, is anticipated to improve the conducted science products in the Mastcam 
imagery such as 3D scene reconstructions, depth maps, and anaglyph images. 
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1. Introduction 

Due to hardware limitation in data storage, scarce bandwidth in data downlink and cost of 
sensor, different imagers have chosen to have different priorities with respect to image resolution. As 
an example, onboard the Mars rover Curiosity, there are two mast cameras (Mastcam), which act as 
eyes for the rover [1]. The Mastcams have different spatial resolutions and is a perfect example for 
demonstrating the fusion of two images with different resolutions. The left Mastcam has three times 
wider field of view than that of the right. However, the right Mastcam has three times better 
resolution. Although the two cameras work independently, stereo images can still be formed from 
them for the Mastcam image pairs that have overlapping views [2].  

There are several research papers that discuss about using Mastcams for anomaly detection, 
rock composition estimation, classification and finding interesting destinations for the rover. In [3], 
the right and left Mastcam band images which have different wavelengths have been registered, and 
the stacked and co-registered bands are used for anomaly detection. In [4], both the left and right 
Mastcams images are used to generate a set of multispectral signatures for a few selected pixel 
locations, and these multispectral signatures are used to investigate the composition and mineralogy 
of materials. There is also a growing interest in adapting augmented and virtual reality tools to Mars 
rover missions [5–7]. As an example, NASA and Microsoft have developed a software called OnSight 
that enable scientists to work virtually on Mars using wearable technology called the Microsoft 
HoloLens [8]. The OnSight software uses imagery acquired by the Curiosity rover and creates a 3D 
model of the Mars terrain. This enables the users and scientists to explore the actual dunes and valleys 
explored by the rover in 3D creating the feeling for scientists as if they are in the field. The 3D scene 
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reconstruction using rover imagery including Mastcam stereo images can thus have both an 
educational and scientific impact for current and future Mars exploratory missions. The disparity 
maps are important since they provide depth information from the 2D stereo images. In recent years, 
disparity map estimation using monocular images was also studied in a number of works [9–11]. In 
these works, the objective is to estimate the disparity map from a single-color image only using deep 
learning architectures. This is a more challenging research problem in comparison to estimating 
disparity maps from stereo image pairs since there is a single image instead of an image pair to 
estimate the disparity map. Disparity maps are utilized in 3D reconstruction, robot navigation, 
obstacle avoidance, and target tracking. Due to the differences in image resolutions of the Mastcam 
images, a generic disparity map estimation using the original Mastcam images may not result in full 
utilization of the high-resolution image that is available only in the right Mastcam but is dependent 
on the low-resolution left camera image. A more accurate and detailed 3D scene reconstruction could 
be possible if a high-resolution disparity map is available.  

In this paper, we introduce an in-depth application of image resolution enhancement to the low-
resolution left camera image in the Mastcam image pair and evaluate the impact of the left camera 
image enhancement on the disparity map estimation quantitatively. The motivation of this work is 
to have a disparity map in higher resolution than before by enhancing the low-resolution image in 
the image pair and estimating the disparity map using this enhanced left image and the high-
resolution right image. To the best of our knowledge, even though stereo images had been generated 
using the Mastcam instruments [12], examining the impact of the image enhancement on the 
disparity map estimations has not been studied and we consider this paper as a first along this 
direction. 

For the low-resolution left camera image enhancement, we used the bicubic interpolation [13] 
as the benchmark technique. A second investigated image enhancement method [2,12] is an 
adaptation of the two-step image registration technique in [3] with pansharpening [14–18]. We will 
call this method the pansharpening-based image enhancement method in this paper. Unlike bicubic 
interpolation, the pansharpening-based image enhancement method requires the stereo image pair 
for enhancement. In recent years, a significant amount of research work had been published using 
deep learning-based image super resolution techniques [19–21]. For the third investigated 
enhancement method, we used a deep-learning based method, which is known as enhanced deep 
super resolution (EDSR) [22]. After the left camera image enhancements with these three methods, 
the disparity maps are estimated using the enhanced left camera images and the impact of the left 
camera image enhancement on the disparity map estimations are examined quantitatively. 

This work demonstrates that a high-resolution disparity map estimation is possible for stereo 
image pairs with different camera resolutions such as the case in Mars Curiosity rover’s Mastcams. 
This is the main contribution of this work. It is shown that this can be achieved by enhancing the low-
resolution left camera image. The right camera image content is utilized for enhancement with the 
pansharpening-based method and EDSR. For the demonstrations, 20 Mastcam stereo image pairs and 
a stereo image pair from the Middlebury dataset were used. Among the three investigated methods, 
overall, the deep learning-based method, EDSR, is found to perform better than others in the image 
enhancement and in accurate disparity map estimation performance. The extensive comparison 
study using actual Mastcam imagery in this paper is considered as another contribution of this work.  

In Section 2, a brief information is provided about the Mastcam instruments of the Curiosity 
rover and the different resolutions of the left and right Mastcams. In Section 3, we introduce the three 
image enhancement methods. In Section 4, the disparity map estimation processing steps applied in 
this work are outlined. Section 5 summarizes the low-resolution image enhancement and disparity 
map estimation results and observations for a Middlebury stereo image pair [23]. Section 6 
corresponds to the results and analyses when 20 Mastcam image pairs from the Mars Curiosity rover 
were used for the left camera image enhancement and disparity estimation using the enhanced left 
camera images. A total of six different image quality measures and an average absolute error measure 
for disparity map assessment are used in the performance comparisons of the three methods. Some 
practical issues such as the impact of image registration on the disparity map estimates of the 
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pansharpening-based method are discussed in this section as well. Finally, some concluding remarks 
are highlighted in Section 7. 

2. Mastcam Imagery for High Resolution Stereo Image and Disparity Map Generation 

The two Mastcams of Curiosity are shown in Figure 1. There are several other imagers for 
navigation, landing (MARDI), obstacle avoidance (Hazcams and Navcams), chemical composition 
analysis (Chemcam). The left Mastcam imager has three times lower resolution than that of the right. 
The left is usually used for long range image acquisition and the right camera is for near field data 
collection. 

 
Figure 1. Mars rover Curiosity and its onboard cameras [24]. Mastcam imagers act as eyes of the 
rover for rock sample selection and rover guidance. 

The Mastcams are multispectral imagers with nine bands in each. Here, we only focus on the 
use of the RGB bands for stereo image and disparity map generations. The left and right cameras of 
the Mastcam imager have different resolutions. Moreover, the cameras are not calibrated for stereo 
image formation, as they normally work independent of each other. To generate stereo images from 
these two cameras with different resolutions, a common practice is to downsample the high-
resolution right camera image to the same as the lower one. After that, the stereo images are formed 
by following some standard procedures. It is well known that the downsampling of the high-
resolution camera image is more economical but less effective, as the resulting stereo images will 
have lower resolution. The resulting disparity map derived from the resulting stereo images also has 
a low resolution. The motivation of this work is to improve the disparity map estimation by 
enhancing the low-resolution image and then estimating the disparity map using the enhanced left 
camera image and the right camera image. 

3. Image Enhancement Methods  

We briefly introduce the three image enhancement methods applied to enhance the low-
resolution left camera image in this work. These three methods are: 

• Bicubic interpolation [13]; 
• Pansharpening-based method [2,12]; 
• EDSR (Deep-learning based image super resolution method) [22]. 

3.1. Bicubic Interpolation  

Bicubic interpolation is provided as an image resizing tool in image editing programs like 
Photoshop [25]. In image resizing with bicubic interpolation, the color information of the to-be 
inserted pixels is approximated using the values of the surrounding pixels, which is the 4x4 
neighborhood of the pixel. In the approximation, closer pixels are given a higher weighting. Even 
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though bicubic interpolation preserves fine detail and sharpness better than the bilinear interpolation 
algorithm, it might create image artifacts like blurring or zigzag on edges [26]. Bicubic interpolation 
is used as the benchmark method in this paper. One can refer to [13] for other technical details of 
bicubic interpolation. 

3.2. Pansharpening-Based Image Enhancement Method 

The pansharpening-based image enhancement method [2,12], of which its block diagram can be 
seen in Figure 2, is the adaptation of the two-step image registration technique [3] with 
pansharpening. Pansharpening is the common name given to the process of merging high-resolution 
panchromatic and lower resolution color images to create a high-resolution color image. In the 
pansharpening-based image enhancement method, the right camera image is aligned to the 
upsampled left camera image using the two-step image registration technique [3]. The block diagram 
of the two-step image registration technique can be seen in Figure 3. The first step of the two-step 
image registration technique is a coarse alignment of the right camera image to the upsampled left 
camera image using the RANSAC (Random Sample Consensus) technique [27] with speeded up 
robust features (SURF) [28] extracted from the stereo image pair. SURF features are scale and rotation 
invariant interest points and extensively used to find correspondences in image pairs with the same 
scene [28]. The second step of the two-step image registration technique [3], which is known as 
diffeomorphic registration, fine-tunes the first step’s coarse registration.  

The aligned right camera image from the diffeomorphic registration step of the two-step image 
registration technique becomes the high-resolution panchromatic (pan) image and it is used to 
enhance the low-resolution left camera image using the Gram–Schmidt Adaptive (GSA) 
pansharpening technique [29]. Different from [2,12], in this work, a histogram matching processing 
step [30] is incorporated to the pansharpening-based image enhancement method to match the 
histogram of the pansharpened left camera image to the histogram of the low-resolution left camera 
image as can be seen in the block diagram in Figure 2. It is observed that this step improves the scores 
of some of the image quality measures such as peak signal to noise ratio (PSNR) and root mean Square 
error (RMSE).  

 
Figure 2. Block diagram of the pansharpening-based image enhancement method. 
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Figure 3. Block diagram of the two-step image registration technique [3]. 

3.3. EDSR (Deep Learning-Based Super Resolution Method) 

In recent years, image super resolution using deep neural networks, also known as deep 
learning, has gained a lot of attention [19–22]. Through extensive training with many images, deep 
learning can achieve good performance. One advantage of deep learning methods is that, once the 
model is learned, it can be used to enhance a given low resolution image without a panchromatic 
band. EDSR is one of these deep-learning methods which gained reputation by winning the 2017 
super resolution challenge [22]. The deep learning network architecture in EDSR has similarities with 
the conventional ResNet architecture. However, some common ResNet architecture modules, which 
are deemed as unnecessary by the authors, are removed from the EDSR architecture [22]. The EDSR 
architecture (single scale baseline) can be seen in Figure 4a. The body of the EDSR architecture 
consists of several residual blocks (ResBlock). A single residual block architecture can be seen in 
Figure 4b.  

  
(a) Enhanced deep super resolution (EDSR) architecture (single-scale) (b) Residual block 

Figure 4. Single scale EDSR architecture and a residual block in EDSR [22]. 

The single-scale baseline EDSR architecture is used in this work. The components of the EDSR 
baseline architecture and the parameters for these components can be seen in detail in Table 1. A total 
of 16 residual blocks and 64 feature maps are used in the baseline EDSR architecture. 
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Table 1. Components of the single-scale baseline EDSR architecture. 

Head: Sequential( 
      (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) 
    ) 
Body: 16 x ResBlock 
ResBlock( 
  (body): Sequential( 
    (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) 
    (1): ReLU(inplace) 
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) 
  ) 
) 

     Tail: Sequential( 
      (0): Upsampler ( (0): Conv2d(64, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) 
                       (1): PixelShuffle(upscale_factor=2)) 
      (1): Conv2d(64, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) 

          ) 

When training an EDSR model for Mastcam images, the corresponding high-resolution right 
camera images of the test images (low-resolution left camera images) are used in the training dataset. 
The down-sampled high-resolution right camera images at the image resolution scale of interest, 
which is two (×2), are used in training a model as well. Once the EDSR model is trained, the testing 
is straightforward by feeding the test low-resolution left camera image into the deep learning 
network with the trained EDSR model. The simplified block diagram of the processing steps of EDSR 
is shown in Figure 5. 

 

Figure 5. Processing steps of EDSR (training and testing). 

4. Disparity Map Estimation 

In this section, we outline the processing steps to estimate the disparity map using the enhanced 
left camera image and the right camera image. A block diagram of the disparity map estimation 
processing steps can be seen in Figure 6. A disparity map, which is used for depth detection, consists 
of the distance information between the matched points in the stereo image pair. Overall, the 
disparity map can be thought of an intensity image with brighter pixels in the map denoting lesser 
depth and greater distance (or motion) between the matched points with respect to the brighter pixel 
area in the stereo image pair. Darker pixels in the disparity map correspond to greater depth and 
smaller distance (or motion) between the matched points with respect to the darker pixels area. In 
the disparity map estimation, for each point in the left image, the corresponding point in the right 
image is found. This is a challenging task and known as the correspondence problem [31]. In this 
work, to estimate the disparity map, an image rectification process is applied on the enhanced left 
camera image and the right camera image. Matching between the points can be done more efficiently 
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in accurately rectified image pair since the matching becomes a one-dimensional search after 
rectification [31]. The image rectification process consists of a number of processing steps, one of 
which is the fundamental matrix estimation. The fundamental matrix is necessary for the rectification 
transformations. For fundamental matrix estimation, SURF features [28] are extracted from the stereo 
image pair and the extracted SURF features from each image are matched. The SURF feature pairs 
that do not meet the epipolar constraint are removed from the fundamental matrix estimation. In a 
stereo image pair, for each point in one of the stereo images, there is a corresponding epipolar line in 
the other image. Suppose x is a point in the stereo image of the first camera, for this point, the epipolar 
line in the second stereo image can be considered as the projection of the ray from point x to the center 
of the first camera to the second camera image. Any point x' in the second stereo image that matches 
to the first camera image must be on this epipolar line [32] and this is the epipolar constraint. The 
mapping from points in one stereo image to the epipolar lines in the second stereo image is 
represented by the fundamental matrix [32]. After transformation with the fundamental matrix, the 
resultant rectified left and right camera images are used to the estimate the disparity map. In the 
disparity map estimation, the semi-global block matching method [33] is applied to the rectified 
image pair. This method computes disparity by comparing the sum of absolute differences (SAD) of 
each block of pixels in the image while also checking similar disparity on the neighboring blocks [33].  

 
Figure 6. Processing steps of the disparity map estimation. 

5. Results and Analyses for a Middlebury Stereo Image Pair 

The low-resolution camera image enhancement and disparity map estimation are first 
demonstrated using an image section from the motorcycle image pair in the Middlebury stereo 
dataset [23]. The technical specifications of the cameras used for capturing of the motorcycle image 
pair can be found in [23]. This image pair is used to show that a high-resolution disparity map can be 
estimated for a hypothetical case in which one of the stereo camera images has lower resolution than 
the other camera image in the pair. 

5.1. Low-Resolution Left Camera Image Enhancements  

To imitate the different resolution stereo image pair scenario in the Middlebury motorcycle 
stereo image pair, the original left camera image is intentionally down-sampled four times (×4) and 
this down-sampled image is used for image enhancement with the three methods. It is worth 
mentioning that since the left and right camera images in the Middlebury stereo image pair are 
already rectified, no rectification process is applied and the disparity map is estimated directly from 
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the stereo image pair. For the EDSR model training, no custom EDSR model is trained and the 
authors' baseline training model for a scale of four (×4) [22] is used. 

The high resolution left and right camera images of the motorcycle image pair are shown in 
Figure 7a,b, respectively. Figure 7c shows the hypothetical low-resolution left camera image (which 
is the four times down-sampled version of the original high-resolution left camera image). An 
expanded right camera image is shown in Figure 7d which is used by the pansharpening-based image 
enhancement method when aligning the right camera image to the left camera image. Figure 7e–g 
show the resultant left camera image enhancements with the three methods. According to the results 
in Figure 7, the enhanced left camera image by EDSR is found to be visually quite appealing. For 
assessing the image quality of the enhanced left camera images with the three methods, we applied 
five image quality measures. These are root mean square error (RMSE), structural similarity index 
measure (SSIM) [34], peak signal to noise ratio (PSNR), human visual system (HVS) [35] and human 
visual system with contrast sensitivity function and noise masking (HVSm) [36].  

When computing the image quality measures, we used the original high-resolution left camera 
image as the reference (ground truth) image. The grayscale versions of the images are used when 
computing SSIM and RMSE scores. Table 2 summarizes the resultant five measures for the three 
methods. It is worth mentioning that higher values in SSIM, PSNR, HVS, and HVSm, and lower 
values in RMSE correspond to better image quality. The results in Table 2 clearly show that EDSR 
provides the best enhancement performance in all five measures followed by the pansharpening-
based method. Bicubic interpolation performs the worst among the three.  

(a) High resolution left camera image. (b) High resolution right camera image. 

 
(c) Low resolution left camera image (it is 
assumed that this is the input left camera image 
which will be enhanced by the three methods). 

 
(d) High resolution right camera image 
(expanded view which is used by the 
pansharpening-based enhancement method). 
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(e) Low resolution left camera image enhanced 
by bicubic interpolation. 

 
(f) Low resolution left camera image enhanced 
by the pansharpening-based method. 

 
(g) Low resolution left camera image enhanced by EDSR. 

Figure 7. A section of the motorcycle stereo image pair and the enhanced left camera images with the 
three methods. 

Table 2. Performance metrics for the enhanced left camera images with the ground truth left camera 
image as the reference image (the grayscale versions of the images are used in computing SSIM and 
RMSE). Bold format indicates the method providing better results. 

Method  SSIM RMSE PSNR HVS HVSm 
Bicubic interpolation 0.8844 9.3966 28.6328 23.2014 24.6190 

Pansharpening-based method 0.9215 7.7628 30.2594 25.9768 27.0790 
EDSR (Deep learning-based) 0.9443 5.8523 32.6983 28.2295 30.5052 

5.2. Disparity Map Estimation 

After generating the enhanced left camera images with the three methods, the disparity maps 
are estimated using the enhanced left camera images and the original right camera image. Figure 8a 
corresponds to the disparity map obtained by using the original left camera image. We use this 
disparity map as the ground truth disparity map when conducting performance assessments.  

For comparing the disparity map estimation performances, an “average absolute error” measure 
is used to compare the accuracy of the estimated disparity maps of the three methods with respect to 
the ground truth disparity map. The ground truth disparity map is obtained using the original left 
and right camera images. Suppose ሼ𝑔ଵ, 𝑔ଶ, … , 𝑔ேሽ is the set of ground truth disparity map pixel 
values that are used for performance assessment of the three methods where N is the total number of 
pixels in D. The location of the pixels in ሼ𝑔ଵ, 𝑔ଶ, … , 𝑔ேሽ correspond to the overlapping area of the 
compared disparity maps from the three different image enhancement methods. Suppose ሼ𝑏ଵ, 𝑏ଶ,… , 𝑏ேሽ is the set of the corresponding N disparity map pixel estimates for the applied method 

B. The "average absolute error” for method B is computed as: 
1

(g )
N

i i
i

abs b N
=

− 
 
 
 . 
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Figure 8b–d show the resultant disparity maps for the three methods. Additionally, in Figure 8e 
the mask used for computing the average absolute error in the disparity maps is shown. Only the 
pixels highlighted in this mask are used in the average absolute error computation. Since the left and 
right camera images have different views, the overlapping scene from the left and right camera 
images, thus the disparity map, is smaller than the original size of the enhanced left camera image. 
When the disparity maps from the three methods are visually examined, it can be noticed that the 
bottom part of the pansharpening-based method’s estimation quite differs from the ground truth 
disparity map.  

 
(a) Disparity map obtained by using the high 
resolution left and high-resolution right camera 
image (this is considered as the ground truth 
disparity map). 

 
(b) Disparity map obtained by using the bicubic 
interpolation enhanced left camera image and 
high-resolution right camera image. 

 
(c) Disparity map obtained by using the 
pansharpening-based enhanced left camera 
image and high-resolution right camera image. 

 
(d) Disparity map obtained by the EDSR 
enhanced left camera image and high-resolution 
right camera image. 

 
(e) Mask for computing the average absolute error. 

Figure 8. Disparity map estimations with the three methods and the mask for computing average 
absolute error. 



Sensors 2019, 19, 3526 11 of 25 

Table 3 shows the resultant average absolute error values for the disparity map estimations with 
the three methods. The average absolute error is found to be the lowest for EDSR. It is noticed that 
the average absolute error for the pansharpening-based method is significantly high (meaning it is 
worse) when compared to the other two methods. This was also visually noticed from the disparity 
map estimation plot in Figure 8c. 

Table 3. Average absolute error on disparity maps for motorcycle image section (pixels that have 
negative values in the ground truth disparity map are excluded from the analysis, pixels with negative 
values in the estimated disparity maps are set to zero). Bold format indicates the method providing 
better results. 

 Average Absolute Error 
Bicubic interpolation 8.7456 

Pansharpening-based method 17.5770 
EDSR (Deep learning-based method) 5.1492 

To better visualize the differences in the estimated disparity maps of the three methods with 
respect to the ground truth disparity map and see how the errors relate to the scene, we generated 
four plots as shown in Figure 9. Figure 9a shows the left camera image for the considered overlapping 
disparity map pixels. Figure 9b–d show the absolute disparity map difference between the ground 
truth disparity map and the disparity map obtained with using any of the three investigated methods. 
When the ground truth disparity map and the disparity map estimated by the pansharpening-based 
method are compared (Figure 9b vs Figure 9c), some significant differences can be observed in the 
bottom part. When the motorcycle image section that corresponds to the disparity map area, which 
can be seen in Figure 9a, is examined, it can be seen that the bottom part corresponds to the 
background section of the image. Due to camera view differences in the left and right images for the 
background area, the pixel registration performance of the two-step image registration technique 
used within the pansharpening-based method is poor for the background section and is relatively 
better in the foreground section of the image. We repeated the image quality score and average 
absolute error for disparity map estimation computations for the foreground part of the image only. 
This image part can be seen in Figure 10. Table 4 shows the five image quality measure values and 
Table 5 shows the average absolute error values for the disparity map estimation with the three 
methods for the foreground image section. As can be seen in Table 5, the average absolute error for 
the disparity map estimation with the pansharpening-based method is quite low for the foreground 
image section. Even though the pansharpening-based method still cannot outperform EDSR, it 
performs better than the bicubic interpolation both in the left camera image enhancement scores and 
also in the disparity map estimation when the foreground image is used only.  

  
(b) Absolute disparity map difference between 
the ground truth disparity map and the disparity 
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(a) Corresponding left camera image for the 
overlapping disparity map area used in 
comparisons and error metric computation. 

map obtained by using the bicubic-enhanced left 
camera image (average absolute error = 8.7456). 

 
(c) Absolute disparity map difference between 
the ground truth disparity map and the 
disparity map obtained by using the 
pansharpening-enhanced left camera image 
(average absolute error = 17.5770). 

 
(d) Absolute disparity map difference between 
the ground truth disparity map and the disparity 
map obtained by using the EDSR-enhanced left 
camera image (average absolute error = 5.1492). 

Figure 9. Absolute disparity map differences between the ground truth disparity map and the 
disparity maps obtained with the three methods and the corresponding left camera image for the 
overlapping disparity map area. 

 

Figure 10. Foreground image section of the motorcycle image. 

Table 4. Image quality measures for the foreground image part of the enhanced left camera images. 
Bold format indicates the method providing better results. 

Method  SSIM RMSE PSNR HVS HVSm 
Bicubic interpolation 0.8600 10.6346 27.5653 22.1325 23.5467 

Pansharpening-based method 0.9332 7.5230 30.5221 26.2792 27.7185 
EDSR (Deep learning-based) 0.9343 6.6221 31.6408 27.1654 29.4234 

Table 5. Average absolute error on disparity maps for the foreground image part of the motorcycle 
image section. Bold format indicates the method providing better results. 
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Method Average Absolute Error 
Bicubic interpolation 6.0159 

Pansharpening-based method 3.2810 
EDSR (Deep learning-based method) 3.2040 

6. Results and Analyses for Mastcam Stereo Image Pairs 

6.1. Original Left Mastcam Image Enhancements 

We enhanced the 20 original low resolution (LR) left camera images with the three methods. The 
list of the Mastcam image pairs used in this study can be seen in Table 6. These Mastcam image pairs 
can be downloaded from the website in [37] and the Mastcam specifications used for capturing these 
images can be found in [38].  

Table 6. List of 20 Mastcam image pairs used. 

Mastca
m 

Image 
Pair no 

Left Camera Image Filename Right Camera Image Filename 

1 0013ML0000120000100169E01_DRCX_0P
CT.png 

0013MR0000120000100039E01_DRCX_0P
CT.png 

2 
0013ML0000120070100176E01_DRCX_0P

CT.png 
0013MR0000120070100046E01_DRCX_0P

CT.png 

3 
0023ML0001140700100703C00_DRCX_0P

CT.png 
0023MR0001140700100600C00_DRCX_0P

CT.png 

4 
0150ML0008420000104432E01_DRCX_0P

CT.png 
0150MR0008420000201218E01_DRCX_0P

CT.png 

5 
0172ML0009240020104881E01_DRCX_0P

CT.png 
0172MR0009240020201683E01_DRCX_0P

CT.png 

6 0174ML0009350000105177E01_DRCX_0P
CT.png 

0174MR0009350070201948E01_DRCX_0P
CT.png 

7 0183ML0009930000105284E01_DRCX_0P
CT.png 

0183MR0009930070202041E01_DRCX_0P
CT.png 

8 0184ML0009250350105335E01_DRCX_0P
CT.png 

0184MR0009250350202097E01_DRCX_0P
CT.png 

9 0192ML0010170000105681E01_DRCX_0P
CT.png 

0192MR0010170000202484E01_DRCX_0P
CT.png 

10 0269ML0011810000106129E01_DRCX_0P
CT.png 

0269MR0011810000203215E01_DRCX_0P
CT.png 

11 
0275ML0011960010106210E01_DRCX_0P

CT.png 
0275MR0011960010203447E01_DRCX_0P

CT.png 

12 
0290ML0012250030106375E01_DRCX_0P

CT.png 
0290MR0012250030203531E01_DRCX_0P

CT.png 

13 
0300ML0012410000106432E01_DRCX_0P

CT.png 
0300MR0012410000203739E01_DRCX_0P

CT.png 

14 
0301ML0012530020106447E01_DRCX_0P

CT.png 
0301MR0012530020203760E01_DRCX_0P

CT.png 

15 
0303ML0012610000106474E01_DRCX_0P

CT.png 
0303MR0012610000203818E01_DRCX_0P

CT.png 

16 
0308ML0012730400106645E01_DRCX_0P

CT.png 
0308MR0012730400204006E01_DRCX_0P

CT.png 
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17 
0508ML0020000260202787E01_DRCX_0P

CT.png 
0508MR0020000260303151E01_DRCX_0P

CT.png 

18 
0514ML0020280000202963E01_DRCX_0P

CT.png 
0514MR0020280000303241E01_DRCX_0P

CT.png 

19 
0803ML0035130050400877E01_DRCX_0P

CT.png 
0803MR0035130050500252E01_DRCX_0P

CT.png 

20 0813ML0035700050401024E01_DRCX_0P
CT.png 

0813MR0035700050500419E01_DRCX_0P
CT.png 

For EDSR, a custom EDSR baseline model (×2 scale) with 16 residual blocks was trained for 300 
epochs. The 20 training images included in the training data set correspond to the high-resolution 
right camera images of the 20 low-resolution left camera images that are going to be enhanced. The 
loss plot from the EDSR training can be seen in Figure 11.  

 
Figure 11. The loss plot of the training for 300 epochs. 

Figures 12–14 show some cropped sections of three of the 20 left camera images (low resolution) 
and the resultant bicubic-enhanced, pansharpening-enhanced and EDSR-enhanced left camera 
images for the same image sections. Considerable improvements in the image quality can be noticed 
with the EDSR and especially with the pansharpening-based method when examined closely.  

(a) Original left camera image. 
 

(b) Bicubic-enhanced left camera image. 
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(c) Pansharpening-based method enhanced 
left camera image. 

 
(d) EDSR enhanced left camera image. 

Figure 12. Image enhancements on 0174ML0009350000105177E01_DRCX_0PCT.png. 

 
(a) Original left camera image. 

 
(b) Bicubic-enhanced left camera image. 

 
(c) Pansharpening-based method enhanced left 

camera image. 

 
(d) EDSR enhanced left camera image. 

Figure 13. Image enhancements on 0803ML0035130050400877E01_DRCX_0PCT.png. 
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(a) Original left camera image (b) Bicubic-enhanced left camera image 

(c) Pansharpening-based method enhanced 
left camera image. 

(d) EDSR enhanced left camera image. 

Figure 14. Image enhancements on 0183ML0009930000105284E01_DRCX_0PCT.png. 

Since the original left camera images in the 20 Mastcam image pairs are enhanced, there are no 
ground truth images to assess these enhanced images by the three methods. For this reason, a blind 
image quality assessment, natural image quality evaluator (NIQE) [39] is used instead. It should be 
noted that the lower the NIQE metric, the better the image quality is. Figure 15 shows the resultant 
NIQE values of the three investigated methods for the 20 enhanced original Mastcam left camera 
images. Additionally, in Figure 15, the NIQE scores of the original left camera images are included 
as well as a basis. According to the NIQE results in Figure 15, the pansharpening-based method 
outperforms the two methods and EDSR performs better than the bicubic interpolation. Moreover, 
the enhanced original left camera images by the pansharpening-based method yield significantly 
better NIQE scores than the original left camera images. This can also be visually noticed from the 
cropped image sections in the three image pairs in Figures 12–14. The pansharpening-based method 
generates visually more appealing images than the other methods. The third image in the plot in 
Figure 15 is quite interesting in the sense that the NIQE score difference between the original left 
camera image and the enhanced original left camera image by the pansharpening-based method is 
the largest. Figure 16 corresponds to a small section of this third image and its enhanced versions by 
the three methods. It can be seen that some small rocks which cannot be even noticed in the original 
left camera image can be easily seen in the enhanced left camera image by the pansharpening-based 
method. The pansharpening-based method in a way brings new information to the enhanced image 
since it exploits the aligned high-resolution right camera image in its enhancement. This explains 
why the NIQE scores are extremely good with the pansharpening-based method.  
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It is however worth mentioning that even though the pansharpening-based method provides 
the lowest NIQE values (best performance) and provides visually very appealing enhanced images, 
it is noticed that some pixel regions in the enhanced images do not seem to be registered in the sub-
pixel level. Since the NIQE metric does not take into consideration issues related to registration in its 
assessment, it clearly favors the pansharpening-based method over others.  

 
Figure 15. Natural image quality evaluator (NIQE) metric results for enhanced “original left Mastcam 
images” (scale: ×2) by the bicubic interpolation, pansharpening-based method, and EDSR (nresblocks 
= 16). 

 
(a) Original left camera image. 

 
(b) Bicubic-enhanced left camera image. 

 
(c) Pansharpening-based method enhanced left 

camera image. 

 
(d) EDSR enhanced left camera image. 
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Figure 16. Image enhancements on the third image 
(0023ML0001140700100703C00_DRCX_0PCT.png). 

6.2. Disparity Map Estimation Using Enhanced Downsampled Left Mastcam Images  

Similar to the investigation with the motorcycle image pair, the left camera images in the 20 
Mastcam image pairs are intentionally down-sampled by two times (×2) and the down-sampled left 
camera images are enhanced with the three methods and the disparity maps are estimated using the 
enhanced left camera images and right camera images. This enabled assessing the image 
enhancement performances with image quality measures such as PSNR, RMSE since the original left 
camera images are used as the ground truth image. Moreover, the disparity map estimation 
performances are also evaluated since the disparity map which is estimated using the original left 
camera image is considered as the ground truth disparity map.  

Regarding the EDSR method in this investigation, we fine-tuned its architecture with respect to 
the number of residual blocks to see which EDSR architecture would perform better. We considered 
the number of residual blocks for fine-tuning since the residual blocks make the most crucial parts in 
EDSR’s architecture. We trained three other EDSR models with four, eight and 32 residual blocks for 
scale two (×2). We used the same 20 high resolution right Mastcam images in training these EDSR 
models for 300 epochs. With the previously trained EDSR model of 16 residual blocks, there is a total 
of four different EDSR models. We enhanced the “down-sampled (×2) left camera images” with these 
four EDSR models. We then applied five image quality measures to the 20 enhanced images from 
four EDSR models. Table 7 shows the average of the image quality measures for the 20 enhanced 
“down-sampled (×2) left” camera images with the four EDSR models. It can be seen from Table 7 that 
among the four EDSR models, the one with eight residual blocks performs better than the other three 
EDSR models. For this reason, we used the model with eight residual blocks when using EDSR for 
enhancing the down-sampled left camera images. 

Table 7. Average of image quality measures for 20 enhanced “down-sampled (×2) left” camera images 
with four EDSR models. Bold format indicates the method providing better results. 

 EDSR Model 
(n_resblocks = 4) 

EDSR Model 
(n_resblocks = 8) 

EDSR Model 
(n_resblocks = 16) 

EDSR Model 
(n_resblocks = 32) 

SSIM 0.90674 0.908093 0.902667 0.901051 
RMSE 5.670515 5.632352 5.842843 5.898821 
PSNR 32.75032 32.79714 32.51517 32.42496 
HVS 35.16401 35.21195 34.80805 34.75265 

HVSm 42.06746 42.14309 41.29008 41.22219 

In the disparity map estimation investigation, we first used the 20 original left camera images to 
generate ground truth disparity maps that will be used in performance comparisons with the average 
absolute error measure. We then intentionally down-sampled the original left camera images by a 
scale of two (×2) and applied the bicubic interpolation, pansharpening-based method, and EDSR 
(nresblock = 8) to enhance these downsampled left camera images. We then estimated the disparity 
maps using these enhanced downsampled left camera images and the right camera images.  

The rectification process in the disparity map estimation changes the view of the rectified stereo 
images and each rectification by the three methods could have a slightly different geometric 
transformation. The view of the rectified images could thus vary for each of the three investigated 
methods and the groundtruth case. As a result of of registration issues in the pansharpening-based 
method, the variation in the view of the rectified images is even greater in the pansharpening-based 
method with respect to the other two methods. In order to have a fixed view that align the estimated 
disparity maps and also allow to conduct performance comparisons, the estimated disparity maps 
using the rectified images are warped to the left camera image view using the inverse rectification 
transformation matrix that was initially applied in the rectification process. The overlapping sections 
in the warped disparity maps (from the three methods and the groundtruth) to the left camera image 
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view are considered as a mask and the pixels in this mask are used only to compute the average 
absolute error measure for the disparity map. 

Since the two-step image registration in the pansharpening-based method utilizes the random 
sample consensus (RANSAC) algorithm [27], each simulation run with the pansharpening-based 
method could generate slightly different results. To reduce the effects of this slight variation when 
assessing the applied measures, for each of the 20 Mastcam image pairs, we repeated the simulations 
10 times and averaged the image quality scores and the average absolute errors (disparity map) with 
the pansharpening-based method. As a demonstration of the enhancements with the three methods, 
Figure 17a,b show the original left and right Mastcam images for one of the 20 investigated image 
pairs (Mastcam image pair 6). Figure 17c corresponds to the test image (down-sampled left camera 
image) which is going to be enhanced with the three methods and Figure 17d–f correspond to the 
enhanced left camera images with the three methods.  

 
(a) Original left camera image. 

 
(b) High resolution right camera image. 

 
(c) Down-sampled left camera image (test image 

that is going to be enhanced). 

 
(d) Enhanced left camera image with the bicubic 

interpolation. 

  
(f) Enhanced left camera image with EDSR. 



Sensors 2019, 19, 3526 20 of 25 

(e) Enhanced left camera image with 
pansharpening-based method. 

Figure 17. Mastcam image pair 6 (Sol 174) and the left camera image enhancements with the three 
methods. 

SSIM, RMSE, PSNR, HVS and HVSm values are computed for measuring the image quality of 
the enhanced “down-sampled left Mastcam images” with respect to the ground truth left camera 
image. Additionally, the NIQE measure is also applied. The plots of the six image quality values for 
20 enhanced “downsampled Mastcam left camera images” can be seen in Figure 18. Overall, EDSR 
performs better than the other two methods in five of the six measures with the exception of NIQE. 
One interesting observation is that with SSIM, there are three image pairs (out of 20) where the 
pansharpening-based method performed better than EDSR. As was earlier noticed in the motorcycle 
image pair, the pansharpening-based method’s performance is affected due to some image pixel 
sections not aligned well with the two-step registration technique. We also notice this from the low 
scores in the HVS and HVSm measures. Other than the registration issues with the pansharpening-
based method that affect some of these image quality measures negatively (except NIQE), it is also 
worth mentioning that because the original left camera images are used as the ground truth when 
computing the image quality measures and that the pansharpening-based method contains more 
detailed information in its enhanced left camera images which cannot be even visually noticed in the 
ground truth image (original left camera image), some of the applied image quality scores (except 
NIQE) for the pansharpening-based method look generally poor. Yet, in several of the image pairs, 
the RMSE and PSNR scores of the pansharpening-based method are still slightly better than the 
bicubic interpolation. With respect to the NIQE measure, the pansharpening-based method 
outperforms the other two significantly. This was predictable since the enhanced left camera images 
with the pansharpening-based method are more appealing to the eye with sharper details when 
compared to the EDSR and bicubic interpolation. This can be seen from the example images in Figures 
12–14, and also in Figure 16. 

 
(a) SSIM (higher score is better). 

 
(b) RMSE (lower score is better). 
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(c) PSNR (higher score is better). (d) HVS (higher score is better). 

 
(e) HVSm (higher score is better). 

 
(f) NIQE (lower score is better). 

Figure 18. Enhancement comparisons with six image quality measures for the 20 Mastcam image 
pairs. 

Figure 19 demonstrates the disparity map estimations with the three methods for one of the 20 
Mastcam image pairs (Image pair 6). Figure 19a corresponds to the estimated disparity map obtained 
with using the original left camera image which is considered as the ground truth disparity map in 
the first iteration. Figure 19b–d show the resultant disparity maps with the three methods. Figure 19e 
corresponds to the mask used when computing the average absolute error values. In order to give an 
idea about the number of matched SURF features in Figure 19, Table 8 shows the number of matched 
SURF features used in the disparity map estimation for this image pair.  

 
(a) Ground truth disparity map. 

 
(b) Disparity map (Bicubic interpolation). 

 
(c) Disparity map (Pansharpening-based 

method). 

 
(d) Disparity map (EDSR). 
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(e) Mask for computing average absolute error. 

Figure 19. Disparity map estimations with the three methods and the mask for computing average 
absolute error. 

Table 8. Number of matching SURF features used in the disparity map estimation. 

Mastcam 
Image 
Pair no 

Groundtruth 
Bicubic 

Interpolation 
Pansharpening-

Based 

EDSR 
(nresblocks = 

8) 
1 49 46 44 36 
2 201 154 177 134 
3 79 58 69 44 
4 117 107 114 102 
5 200 162 197 159 
6 90 70 86 73 
7 80 71 82 33 
8 223 177 204 176 
9 155 119 159 117 
10 89 71 81 61 
11 97 81 88 68 
12 76 75 77 54 
13 229 165 188 172 
14 176 142 173 139 
15 238 179 215 165 
16 134 115 126 100 
17 344 269 327 277 
18 188 147 176 140 
19 114 104 114 109 
20 116 108 114 98 

Figure 20 shows the average absolute error value plots for the disparity map estimates of the 20 
Mastcam image pairs with the three methods. Among the three methods, the average absolute error 
value is lowest for the EDSR and the average absolute error values were found considerably higher 
for the pansharpening-based method. In only one image pair (out of 20) the pansharpening-based 
method provided the lowest average absolute error value. It can be seen that overall EDSR improves 
the left camera image quality better than the other two methods and the disparity map estimations 
using the EDSR enhanced left camera images are also better according to the average absolute error 
measure (in 19 of 20 Mastcam image pair EDSR performed better than the other two methods). EDSR 
works better than the other two methods since it does not have registration issues that the 
pansharpening method has and also does not have the blurring issues that the bicubic interpolation 
method has. From the viewpoint of its architecture, it is also based on ResNet with residual blocks in 
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its architecture. Deep learning architectures with residual blocks when compared to other 
architectures are found to show better generalization and better efficiency [40]. All these attributes of 
EDSR positively affect the SURF feature extraction process in the disparity map estimation and 
enables finding SURF features in the enhanced left camera image that match better to the SURF 
features extracted in the right camera images. However, it is our thinking that if the pansharpening-
based method had sub-pixel level registration for the whole image, it was highly likely that it would 
have performed better than EDSR since the enhanced left camera images by the pansharpening-based 
method look visually superior to the EDSR enhanced images.  

 
Figure 20. Average absolute errors for 20 Mastcam image pairs. 

7. Conclusions 

This paper introduced an in-depth study for the high-resolution disparity map estimation using 
the stereo Mastcam images with different resolutions acquired from the right and left Mastcam 
imagers of the Mars Curiosity rover. Among the three investigated methods, it is observed that the 
deep learning-based method, EDSR, had a better image resolution enhancement performance than 
the pansharpening-based method and bicubic interpolation. The impact of the low-resolution image 
enhancement on the disparity map estimation is examined and it is found out that a high resolution 
thus a more accurate disparity map estimation could be obtained after enhancing the low-resolution 
left camera image with EDSR. The pansharpening-based method, which is an adaptation of the two-
step image registration technique, is observed to provide visually very appealing images as this was 
also confirmed quantitatively from the resultant NIQE measures. However, the performance of the 
pansharpening-based method heavily depends on the registration accuracy of the stereo images, 
which can be difficult when the image scene in the stereo image pair has varying depth of field. Other 
than improving the quality of the stereo products and 3D scene reconstruction in the Mastcam 
imagery, this work can also benefit to cellphones with dual cameras. Enhancing the low-resolution 
camera image in a dual camera cellphone setup can certainly result in better quality 3D cell phone 
imagery while reducing the cost of the cellphone. That is, instead of using two sophisticated 
cellphone cameras, the cellphone manufacturers can use only one high-resolution camera while 
enhancing the cheaper low-resolution cellphone camera via image enhancement. 
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