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Abstract: In this paper, we consider water surface object detection in natural scenes. Generally,
background subtraction and image segmentation are the classical object detection methods. The
former is highly susceptible to variable scenes, so its accuracy will be greatly reduced when detecting
water surface objects due to the changing of the sunlight and waves. The latter is more sensitive to the
selection of object features, which will lead to poor generalization as a result, so it cannot be applied
widely. Consequently, methods based on deep learning have recently been proposed. The River
Chief System has been implemented in China recently, and one of the important requirements is to
detect and deal with the water surface floats in a timely fashion. In response to this case, we propose
a real-time water surface object detection method in this paper which is based on the Faster R-CNN.
The proposed network model includes two modules and integrates low-level features with high-level
features to improve detection accuracy. Moreover, we propose to set the different scales and aspect
ratios of anchors by analyzing the distribution of object scales in our dataset, so our method has good
robustness and high detection accuracy for multi-scale objects in complex natural scenes. We utilized
the proposed method to detect the floats on the water surface via a three-day video surveillance
stream of the North Canal in Beijing, and validated its performance. The experiments show that the
mean average precision (MAP) of the proposed method was 83.7%, and the detection speed was
13 frames per second. Therefore, our method can be applied in complex natural scenes and mostly
meets the requirements of accuracy and speed of water surface object detection online.
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1. Introduction

In recent years, object detection technology has attracted a great deal of attention within the
computer vision community [1–5], as an important component of many human-centric applications.
Generally, object detection methods include background subtraction [6], frame difference [7], Hough
transform [8], optical flow [9,10] and so on. These methods require hand-crafted models to extract
specific features, and the extracted features have deficiencies in representativeness and robustness,
which leads to poor generalization ability as a result. Therefore, object detection methods based on deep
learning have emerged and been successfully applied in self-driving vehicles [1], face recognition [2],
and pedestrian detection [11]. The methods based on deep learning models have stronger expressive
ability than the classical methods.

The problem of water environmental pollution is serious in some countries. Floats such as plastic
bottles and bags affect water quality and the urban living environment, and a large number of floats
can have an impact on the passage of ships [12]. Hence, water surface floats, especially garbage,
should be detected and cleaned in good time. In China, the government began to focus on this, and
established the River Chief System, which requires the detection of water surface floats in a timely
fashion. The administration usually monitors the river situation, relying on video surveillance or
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on-the-spot inspections by inspectors and cleaners [13–15]. This is time-consuming and not intelligent.
Many classical works [16–19] are devoted to water surface object detection and can be classified into
background subtraction and image segmentation. The former is highly susceptible to the variance of
the scenes, so its accuracy is greatly reduced when detecting water surface objects due to the variance
of the sunlight and waves. The latter is more sensitive to the selection of object features, which leads
to poor generalization as a result, so it cannot be applied widely. In the case of complex scenes, the
accuracy and robustness are greatly reduced. Faster R-CNN has strong generalization ability and high
detection accuracy in some fields. Therefore, we adopted this network model as the key element for
water surface object detection.

Our proposed method attempts to preprocess the negative effect of sunlight firstly via gamma
correction [20], and we propose a deep learning network model based on Faster R-CNN, in which
we integrate high-level features with low-level features in order to improve the detection accuracy.
There are different receptive fields in different layers of a CNN, and the larger receptive fields often
contain a great deal of useless background noises for small-scale objects. Therefore, we selected the
proper convolutional layers for feature fusion based on the receptive field. In addition, we did not
use the uniform standard to set the scales, aspect ratios, and numbers of anchors in Faster R-CNN.
In this paper, we propose to set the scales, aspect ratios, and numbers of anchors by analyzing the
size distribution of water surface objects in our dataset, solving the object detection of different scales.
Experiments on our collected dataset verified that the proposed method in this paper could achieve an
excellent performance in multi-scale water surface object detection in complex scenes.

2. Related Work

The classical methods for water surface object detection mainly include background subtraction
and image segmentation. Jie Jiang et al. [16] proposed background subtraction and frame subtraction
based on mixture Gauss model to detect water surface floats, which solved the problem of manually
monitoring floats that the buoy requires. Youfu Wu et al. [17] proposed the adaptive Gaussian
mixture model to model a complex background, which improved the accuracy of float detection.
These methods can achieve high detection accuracy in static background scenes. However, they are
susceptible to background such as the change of sunlight, rain, and surface fluctuation, which leads to
poor performance. Jianjun Zuo [18] segmented the floats by background difference, extracted object
color features, and finally classified and recognized the floats by a clustering algorithm. Rong Hu [19]
adopted the edge segmentation method and threshold segmentation method based on maximum
entropy to segment water surface objects. They compared the efficiency of BP (back propagation)
neural network, KNN (k-nearest neighbor) algorithm, and SVM (support vector machine) on image
classification and recognition. Finally, it was verified that the KNN algorithm had the highest
recognition accuracy in many applications. These methods are more sensitive to the selection of object
features, which leads to poor generalization ability. In addition, the high computing costs of these
methods make real-time performance a bottleneck.

Consequently, AlexNET [21] has been successfully applied to image recognition and made great
breakthroughs in image classification tasks. With the extensive applications of deep learning in
computer vision, object detection based on deep learning has also made significant breakthroughs.
Ross Girshick et al. [22] developed the region-based convolutional neural network (R-CNN) object
detection algorithm to improve the accuracy. However, R-CNN performs convolution operations for
each object proposal without sharing computation, so it has a high cost. Subsequently, Ross Girshick [23]
proposed Fast R-CNN—a fast update based on R-CNN and SPPnet [24]. Compared to R-CNN, Fast
R-CNN improves the training and testing speed while increasing detection accuracy. However, Fast
R-CNN still retains the selective search strategy [25], making region proposal computation a bottleneck.
To solve this problem, Shaoqing Ren et al. [4] proposed Faster R-CNN, which introduced a region
proposal network (RPN) that shares the extracted features with the detection network, thus achieving
nearly cost-free generation of region proposals. The RPN also improves the quality of region proposals.



Sensors 2019, 19, 3523 3 of 17

The method enables object detection systems based on deep learning to run at near-real-time frame
rates. In order to further improve the detection speed, Joseph Redmon [26] proposed the YOLO
algorithm, which frames the object detection as a regression problem to improve the detection speed.
The advantage of this method is that it can detect dozens of frames per second, but the detection for
small objects is insensitive, which reduces the detection accuracy.

Recently, many studies have improved object detection by using multi-scale representation.
In [27,28], skip-layer connection is adopted to extract features. The information gained is especially
important for small objects. The results suggest that multi-scale representation can improve small-object
detection. Tsung-Yi Lin et al. [29] proposed feature pyramids based on Faster R-CNN. The strong
semantic and low-resolution features are fused with the high-resolution and weak semantic features
by a top-down pathway and lateral connections, thus building high-level semantic feature maps at all
scales. Jianan Li et al. [30] combined the global and local contextual information into region proposal
for object detection, which achieved better object detection performance.

3. Water Surface Object Detection Method

Due to the excellent performance of Faster R-CNN in object detection, we made it the key part in
our method to detect water surface objects. Our method can be summarized as follows:

(1) Image preprocessing: Variable sunlight leads to over-exposed or under-exposed images, which
makes it difficult to distinguish floats from the background. A gamma correction algorithm is adopted
to enhance the contrast of images.

(2) Constructing a network model: Our network model is an improved Faster R-CNN. Feature fusion
is utilized for feature extraction in order to improve the final detection accuracy. Besides, the different
scales, aspect ratios, and numbers of anchors in RPN are set by analyzing the distribution.

(3) Training of network: We adopt the alternating optimization method to train our network model.
(4) Detection: The trained network is used to detect the water surface objects and thus validate the

performance of our network model and our method.

3.1. Image Preprocessing

The variable sunlight in natural scenes will lead to over-exposed or under-exposed images. The
floats and background are difficult to distinguish, so the shape features of the floats are not clear, which
will affect the float detection. Therefore, we utilize the gamma correction algorithm to enhance the
contrast of images, while maintaining the integrity of image information.

Gamma correction is a non-linear operation used to encode and decode luminance or tristimulus
values in videos or images. Gamma correction is defined by the following formula:

Vout = AVγin, (1)

where the real input value Vin is raised to the power γ and multiplied by the constant A, to get the
output value Vout. In general, A = 1.

When the gamma value is greater than 1, the highlighted parts of the image are suppressed,
and the dark parts are simultaneously expanded. Conversely, when the gamma value is less than 1,
the highlighted parts of the image are be expanded and the dark parts are suppressed. It is difficult
to distinguish the floats from the background in the images, so the dark parts of the image need
to be expanded, and we set the gamma value to be less than 1. We tried different gamma values
for experiments, and the image was enhanced the best when the gamma value was 0.6. The image
contrasts produced by different gamma corrections are shown in Table 1, and the corrected images are
shown in Figure 1.
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Table 1. The comparison of different gamma corrections.

Image Original γ = 0.4 γ = 0.6 γ = 0.8 γ = 1.3

Contrast 25,092 24,983 25,965 25,357 24,399

 
(a) 

  
(b) (c) 

  
(d) (e) 

Figure 1. The corrected images with different gamma values. (a) Original image; (b) Corrected image 
when γ = 0.4; (c) Corrected image when γ = 0.6; (d) Corrected image when γ = 0.8; (e) Corrected 
image when γ = 1.3. 

3.2. Scale-Aware Network Model Based on Faster R-CNN 
Our proposed network model is composed of two modules. One is a deep fully convolutional 

network called an RPN (region proposal network), and the other is the Fast R-CNN detector. Figure 
2 shows our network model. Firstly, image feature maps are extracted by the CNN. Instead of using 
the last feature map of the CNN as the shared feature map, we propose to fuse the low-level feature 
maps with high-level feature maps. The RPN shares full-image convolutional feature maps with Fast 
R-CNN, and it outputs a set of rectangular object proposals with scores. At the same time, the position 
of each proposal is corrected by b-box regression, and some proposals with lower scores are deleted 

Figure 1. The corrected images with different gamma values. (a) Original image; (b) Corrected image
when γ = 0.4; (c) Corrected image when γ = 0.6; (d) Corrected image when γ = 0.8; (e) Corrected
image when γ = 1.3.
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3.2. Scale-Aware Network Model Based on Faster R-CNN

Our proposed network model is composed of two modules. One is a deep fully convolutional
network called an RPN (region proposal network), and the other is the Fast R-CNN detector. Figure 2
shows our network model. Firstly, image feature maps are extracted by the CNN. Instead of using
the last feature map of the CNN as the shared feature map, we propose to fuse the low-level feature
maps with high-level feature maps. The RPN shares full-image convolutional feature maps with Fast
R-CNN, and it outputs a set of rectangular object proposals with scores. At the same time, the position
of each proposal is corrected by b-box regression, and some proposals with lower scores are deleted by
non-maximum suppression (NMS). The proposals and shared feature maps are input into a region of
interest (ROI) pooling layer to extract the higher-level features of each proposal. These features are fed
into two fully connected layers, a box-regression layer and a box-classification layer, and finally the
classification score and object bounding box can be obtained.

by non-maximum suppression (NMS). The proposals and shared feature maps are input into a region 
of interest (ROI) pooling layer to extract the higher-level features of each proposal. These features are 
fed into two fully connected layers, a box-regression layer and a box-classification layer, and finally 
the classification score and object bounding box can be obtained. 

3
3

3

64

3
3

128

256

33

512
3

3

512

VGG16

3

3
3

RoIpoling

4096

FC
cls_score

bbox_pred

4096

FC

512
7

7

1
1

512

36

proposals

im_info

18

Softmax

reshape reshape

Region Proposal Network

3
3

512

Feature Fusion

 

Figure 2. The scale-aware network based on Faster R-CNN. 

3.2.1. Receptive Field 

The receptive field is one of the most important concepts in CNN, which originated from 
biological neuroscience. The process of the convolution operation in CNNs is similar to that of 
biological neurons acting on organs [31]. The receptive field is defined as the region size of a pixel on 
the feature map mapped to the original image in the CNN. Since most feature extraction networks 
consist of convolution layer and pooling layer cascades, the receptive field is determined by the 
kernel size and stride of each layer. The calculation formula is as follows: 𝑅𝐹 = 𝑅𝐹 + (𝐾𝑠𝑖𝑧𝑒 − 1) ∏ 𝑠𝑡𝑟𝑖𝑑𝑒 , (2) 

where 𝑅𝐹  is the receptive field of the i-th layer, 𝑅𝐹  is the receptive field of the (i - 1)-th layer, 𝑠𝑡𝑟𝑖𝑑𝑒  is the stride of the i-th layer, and 𝐾𝑠𝑖𝑧𝑒  is the kernel size of the i-th layer. 
According to Formula (2), we calculated the receptive fields in different layers of VGG16, as 

shown in Table 2. It can be seen that the receptive fields of the high-level layers were larger than those 
of the low-level layers. The reason is that the pooling layers make the extracted feature maps smaller, 
and thus a pixel is mapped to a larger area of the original image. In object detection tasks, the attention 
of the detector is affected by the receptive field. In CNNs, if the receptive field is far larger than the 
scale of the object, it will produce a great deal of useless background noise. If the receptive field is far 
smaller than the scale of the object, it will not be able to extract the overall features of the object, 
affecting the experimental results [32]. According to this, we propose to select the proper layer for 
feature fusion according to the receptive field in Section 3.2.2. 

Figure 2. The scale-aware network based on Faster R-CNN.

3.2.1. Receptive Field

The receptive field is one of the most important concepts in CNN, which originated from biological
neuroscience. The process of the convolution operation in CNNs is similar to that of biological neurons
acting on organs [31]. The receptive field is defined as the region size of a pixel on the feature map
mapped to the original image in the CNN. Since most feature extraction networks consist of convolution
layer and pooling layer cascades, the receptive field is determined by the kernel size and stride of each
layer. The calculation formula is as follows:

RFi = RFi−1 + (Ksizei − 1)
∏n−1

i=1
stridei, (2)

where RFi is the receptive field of the i-th layer, RFi−1 is the receptive field of the (i − 1)-th layer, stridei
is the stride of the i-th layer, and Ksizei is the kernel size of the i-th layer.

According to Formula (2), we calculated the receptive fields in different layers of VGG16, as shown
in Table 2. It can be seen that the receptive fields of the high-level layers were larger than those of the
low-level layers. The reason is that the pooling layers make the extracted feature maps smaller, and
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thus a pixel is mapped to a larger area of the original image. In object detection tasks, the attention
of the detector is affected by the receptive field. In CNNs, if the receptive field is far larger than the
scale of the object, it will produce a great deal of useless background noise. If the receptive field is
far smaller than the scale of the object, it will not be able to extract the overall features of the object,
affecting the experimental results [32]. According to this, we propose to select the proper layer for
feature fusion according to the receptive field in Section 3.2.2.

Table 2. The receptive fields (RFs) in different layers of VGG16.

Layer RF

conv1_2 5
conv2_2 14
conv3_3 40
conv4_3 92
conv5_3 196

3.2.2. Feature Fusion Layer

In the feature extraction stage, VGG16 is adopted as the backbone, which contains five convolution
blocks (Conv1, Conv2, Conv3, Conv4, Conv5). Max pooling with kernel size 2 × 2 and stride 2 is
used after each convolution block. Therefore, the resolution of the feature is decreasing continuously.
In addition, with the deepening of the network, the extracted feature becomes more abstract. In [33],
the results of CNN visualization show that high-layer features contain more semantic information but
less detail information, while low-layer features contain more detail information but suffer from the
problem of background clutter and semantic ambiguity. The experiments in [27,34] demonstrated that
the supplement of low-layer and high-layer features can improve the detection effect for multi-scale
objects. The information gained is an especially important supplement for small objects, which
require the higher spatial resolution provided by low-layer features. Inspired by them, we propose to
select the appropriate layer for feature fusion, instead of just using the last feature map for detection.
In Section 3.2.1, it is mentioned that for objects of different scales, the extracted features are affected by
the receptive field. In [35], the feature extracted from the layer where the receptive field matches the
object size is used to generate the region proposals for small objects. According to this idea, we believe
that for small objects, when the receptive field matches the object size, more effective details can be
extracted as a supplement to the high-level features.

By analyzing the scales of water surface floats in our dataset, we found that the scales of many
floats were about 100 × 40 or smaller. So, according to the receptive field in Table 2, the low-level
layer conv4_3 is quite proper. Therefore, we fuse the features of conv4_3 layer with the high-level
layer conv5_3. The feature fusion module is shown in Figure 3. As the sizes of the feature maps in
conv5_3 after the pooling layer are smaller than those of conv4_3, a deconvolutional operation is done
to conduct upsampling in conv5_3. Then, this is followed by normalization with different scales (i.e.,
10, 20). The Relu (Rectified Linear Unit) activation function is done before fusion. The fusion method
we adopt here is the similar to that [27], which is a concatenation. The feature maps from different
layers are concatenated along their channel axis. The size of the feature after fusion is unchanged,
while only the number of channels is increased. Finally, the fusion feature maps are generated by a
1× 1× 512 convolutional layer, which can reduce dimension as well as feature combination.
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Table 2. The receptive fields (RFs) in different layers of VGG16. 
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layer conv4_3 is quite proper. Therefore, we fuse the features of conv4_3 layer with the high-level 
layer conv5_3. The feature fusion module is shown in Figure 3. As the sizes of the feature maps in 
conv5_3 after the pooling layer are smaller than those of conv4_3, a deconvolutional operation is 
done to conduct upsampling in conv5_3. Then, this is followed by normalization with different scales 
(i.e., 10, 20). The Relu (Rectified Linear Unit) activation function is done before fusion. The fusion 
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Upsam
ple

512

Conv4_3

512

Conv5_3

Concat

Fusion Conv4_3 
Conv5_3

Conv 1 X 1 X 512
Fused feature maps

512

Norm
alization(20)

Relu
Relu

Norm
alization(10)

 
Figure 3. The feature fusion module. Figure 3. The feature fusion module.

3.2.3. Region Proposal Network

An RPN is a fully convolutional network which simultaneously predicts object bounding box
and score at each position. The structure of the RPN is shown in Figure 4. The feature maps obtained
by feature fusing are used as the input of the RPN, and the points of the feature maps correspond
to the positions of the original image. A 3 × 3 sliding window is used to slide on the feature maps.
Each sliding window is mapped to a lower-dimensional feature. The center of each sliding window
corresponds to k anchors, and each anchor corresponds to a size and aspect ratio. The anchors are set
in different scales and aspect ratios to cover the objects of different scales. However, in the original
RPN, there is no method to determine the scales, aspect ratios and numbers of the anchors. If the
scales of anchors do not match the size of the objects in experimental dataset, the detection effect will
be affected. Hence, we propose to determine the scales, aspect ratios, and numbers of the anchors by
analyzing the distribution of the objects in our dataset.
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The distribution of the float scales in our dataset is shown in Figure 5. It can be seen that there 
were many small-scale floats and the width of the float was much larger than the height in our 
dataset. Therefore, according to the distribution, we assigned three aspect ratios {1:2, 2:5, 1:4} and 
four scales {322, 642, 1282, 2562} of the anchors, which were able to cover floats of different scales in 
our dataset. So, 𝑘 = 12 anchors will be produced at each sliding position in total. Then the box-
regression layer will produce 4 ∗ k outputs, which are the coordinates of the k boxes. The box-
classification layer will generate 2 ∗ k outputs, representing the probability that each box is an object 
or not.  
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The distribution of the float scales in our dataset is shown in Figure 5. It can be seen that there
were many small-scale floats and the width of the float was much larger than the height in our dataset.
Therefore, according to the distribution, we assigned three aspect ratios {1:2, 2:5, 1:4} and four scales
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{322, 642, 1282, 2562} of the anchors, which were able to cover floats of different scales in our dataset.
So, k = 12 anchors will be produced at each sliding position in total. Then the box-regression layer
will produce 4∗k outputs, which are the coordinates of the k boxes. The box-classification layer will
generate 2∗k outputs, representing the probability that each box is an object or not.

3.2.3. Region Proposal Network 

An RPN is a fully convolutional network which simultaneously predicts object bounding box 
and score at each position. The structure of the RPN is shown in Figure 4. The feature maps obtained 
by feature fusing are used as the input of the RPN, and the points of the feature maps correspond to 
the positions of the original image. A 3 × 3 sliding window is used to slide on the feature maps. 
Each sliding window is mapped to a lower-dimensional feature. The center of each sliding window 
corresponds to k anchors, and each anchor corresponds to a size and aspect ratio. The anchors are set 
in different scales and aspect ratios to cover the objects of different scales. However, in the original 
RPN, there is no method to determine the scales, aspect ratios and numbers of the anchors. If the 
scales of anchors do not match the size of the objects in experimental dataset, the detection effect will 
be affected. Hence, we propose to determine the scales, aspect ratios, and numbers of the anchors by 
analyzing the distribution of the objects in our dataset. 
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3.2.4. Loss Function

Our network model has two output layers (box-classification layer and box-regression layer),
which are both full-connection layers. Therefore, it follows multitask loss, and the loss function is
defined as (3) [23]:

L(
{
pi
}
, {ti}) =

1
Ncls

∑
i

Lcls
(
pi, p∗i

)
+ λ

1
Nreg

∑
i
p∗i Lreg

(
ti, t∗i

)
. (3)

The above formula was divided into two parts. The first part is the classification loss Lcls, and the
second part is the regression loss Lreg. Lcls

(
pi, p∗i

)
is the logarithmic loss of two classes (object and not

object), and Lreg
(
ti, t∗i

)
is the regression loss. They are shown in Equations (4) and (5):

Lcls
(
pi, p∗i

)
= − log

[
p∗i pi +

(
1− p∗i

)
(1− pi)

]
(4)

Lreg
(
ti, t∗i

)
= R

(
ti − t∗i

)
, (5)

where R is the smooth L1 function, i is the index number of the anchor, and pi is the prediction probability
of anchor i as the object. p∗i is the ground-truth label. ti =

{
tx, ty, tw, th

}
is a vector representing the

four parametric coordinates of the predicted bounding box, and t∗i is the coordinate vector of the
ground-truth box corresponding to the positive anchor. For bounding box regression, we adopt the
parameterizations of the four co-ordinates as in Equations (6)–(9): [22]:

tx =
x− xa

wa
, ty =

y− ya

ha
, (6)

tw = log
( w

wa

)
, th = log

(
h
ha

)
, (7)

t∗x =
x∗ − xa

wa
, t∗y =

h∗ − ya

ha
, (8)
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tw = log
( w

wa

)
, th = log

(
h
ha

)
, (9)

3.3. Dataset Construction

Training network models based on deep learning require a large number of datasets. If the number
of training samples is slightly less than the number of hyper-parameters, it will lead to over-fitting.
There are no open datasets for water surface objects such as floats, so we constructed some training
data manually and expanded the dataset by the data enhancement method. Data enhancement is
obtains more data through operations such as rotation, cropping, color disturbance, and so on. The
video surveillance stream for three days from the North Canal in Beijing was selected as our data
source. We obtained 1065 images by video frame interception. In this paper, we adopted the methods
of rotation and random clipping to expand the dataset, and finally obtained 2420 images, which were
divided into training and testing data with the ratio of 7:3. For example, an original image is shown in
Figure 6a, and the images after rotation and random clipping are shown in Figure 6b,c.

 
(a) 

  
(b) (c) 

Figure 6. The results of data enhancement. (a) The original image; (b) The image after rotation; (c) The 
image after random clipping. 

In accordance with the format of the VOC2007 dataset, we used the LabelImg tool to annotate 
floats in each image. The object Was surrounded by a rectangular bounding box and its category 
name was given. After annotating, the coordinate information of rectangular bounding box and the 
category information of object were saved in the generated XML file. Then, the txt files “train”, 
“trainval”, “test”, and “val” were generated according to the XML file. 

3.4. Training 

We adopted the method of alternating optimization to train our network model: 

Step 1: Training RPN. The RPN is initialized by the model parameters obtained on the ImageNet 
classification network. Then, end-to-end training is used for the RPN. 

Step 2: Training Fast R-CNN. The proposals obtained by Step 1 are adopted to perform end-to-
end fine-tuned training of Fast R-CNN. 

Step 3: The RPN is finetuned by Fast R-CNN obtained in Step 2, while fixing the parameters of 
shared convolutional layers.  

Step 4: The region proposals obtained in Step 3 are used to fine-tune the fully connected layer 
of Fast R-CNN, while the shared convolutional layer is fixed. 

4. Experiments 

4.1. Setting 

All of the experiments were implemented on a single NVIDIA GeForce GTX 1080Ti with 8 GB 
memory. The operating system was Ubuntu 16.04. The network model was implemented based on 

Figure 6. The results of data enhancement. (a) The original image; (b) The image after rotation; (c) The
image after random clipping.

In accordance with the format of the VOC2007 dataset, we used the LabelImg tool to annotate
floats in each image. The object Was surrounded by a rectangular bounding box and its category name
was given. After annotating, the coordinate information of rectangular bounding box and the category
information of object were saved in the generated XML file. Then, the txt files “train”, “trainval”,
“test”, and “val” were generated according to the XML file.
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3.4. Training

We adopted the method of alternating optimization to train our network model:

Step 1: Training RPN. The RPN is initialized by the model parameters obtained on the ImageNet
classification network. Then, end-to-end training is used for the RPN.

Step 2: Training Fast R-CNN. The proposals obtained by Step 1 are adopted to perform end-to-end
fine-tuned training of Fast R-CNN.

Step 3: The RPN is finetuned by Fast R-CNN obtained in Step 2, while fixing the parameters of shared
convolutional layers.

Step 4: The region proposals obtained in Step 3 are used to fine-tune the fully connected layer of Fast
R-CNN, while the shared convolutional layer is fixed.

4. Experiments

4.1. Setting

All of the experiments were implemented on a single NVIDIA GeForce GTX 1080Ti with 8 GB
memory. The operating system was Ubuntu 16.04. The network model was implemented based on the
popular and publicly available Caffe platform. We adopted the weight attenuation of 0.0005 and the
momentum of 0.9. The training iterations were 50,000. We initialized the learning rate as 0.001 and it
decreased 10 times every 20,000 iterations. The training time of the model was about 8 h.

4.2. Evaluation Criterion

4.2.1. MAP

MAP (mean average precision) is an index to measure the recognition accuracy of the algorithm
on object detection. The detections of different objects have their own curves according to the accuracy
and recall rate. By integrating the curve function, the average precision (AP) of the area is obtained,
and the average detection accuracy of all classes is the MAP. In this paper, because there is only one
kind of object, the AP value of the algorithm is the same as the MAP value.

The precision represents the percentage of the number of objects correctly identified to the total
number of objects identified. The recall ratio represents the percentage of objects correctly identified to
the total number of objects. Their formulae are shown in Equations (10) and (11):

Precision =
TP

TP + FP
, (10)

Recall =
TP

TP + FN
, (11)

where TP represents the number of samples correctly classified as positive (i.e., the number of samples
that are actually positive and identified as positive by the model). FP represents the number of samples
that are incorrectly classified as positive (i.e., the number of samples that are actually negative but
identified as positive by the model). FN represents the number of instances that are incorrectly classified
as negative (i.e., the number of samples that are actually positive but are identified as negative by
the model).

4.2.2. Detection Speed

Detection speed is another important performance index for object detection. In many applications,
real-time detection is important. Frames per second (FPS), the number of pictures that can be detected by
the algorithm in a second, is a common indicator for evaluating the detection speed. When comparing
the FPS of different algorithms, object detection needs to be done under the same hardware conditions.
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4.3. Analysis

4.3.1. The Effect of Feature Fusion

We compared the detection results of feature fusion based on Faster R-CNN with non-feature
fusion. In the experiment, the scales and aspect ratios of anchors were set as four scales {322, 642, 1282,
2562} with three ratios {1:2, 2:5, 1:4}. The precision–recall curves for the water surface float detection
are shown in Figure 7, and the experimental results are shown in Table 3.

 
Figure 7. Precision–recall curves of Faster R-CNN with and without feature fusion. 

Table 3. The performance of Faster R-CNN with and without feature fusion. MAP: mean average 
precision. 

Model MAP Speed (FPS) 
Faster R-CNN 81.2% 13 

Faster R-CNN + Feature Fusion 83.7% 11 
 
As can be seen from Table 3, the model with feature fusion had the better detection performance. 

In addition, feature fusion made the model more sensitive to small-scale objects, which will improve 
detection accuracy. The detection speed of Faster R-CNN with feature fusion was 11 FPS—slower 
than Faster R-CNN. The reason is that the extra feature fusion layer in the feature fusion model needs 
additional computation. However, our method still basically met the speed requirement of float 
detection. Figure 8a shows the detection result of Faster R-CNN with feature fusion, and Figure 8b 
shows the detection result of Faster R-CNN without feature fusion. It shows that the model with 
feature fusion could detect the water surface floats whether large or small. Therefore, it is important 
to fuse the high-level and low-level feature maps. 

 

  

Figure 7. Precision–recall curves of Faster R-CNN with and without feature fusion.

Table 3. The performance of Faster R-CNN with and without feature fusion. MAP: mean average precision.

Model MAP Speed (FPS)

Faster R-CNN 81.2% 13
Faster R-CNN + Feature Fusion 83.7% 11

As can be seen from Table 3, the model with feature fusion had the better detection performance.
In addition, feature fusion made the model more sensitive to small-scale objects, which will improve
detection accuracy. The detection speed of Faster R-CNN with feature fusion was 11 FPS—slower
than Faster R-CNN. The reason is that the extra feature fusion layer in the feature fusion model needs
additional computation. However, our method still basically met the speed requirement of float
detection. Figure 8a shows the detection result of Faster R-CNN with feature fusion, and Figure 8b
shows the detection result of Faster R-CNN without feature fusion. It shows that the model with
feature fusion could detect the water surface floats whether large or small. Therefore, it is important to
fuse the high-level and low-level feature maps.

4.3.2. Experiments on the Different Anchor Settings

In Table 4 we investigate the detection of different anchor settings. It suggests that if just one
anchor was generated at each position, the MAP dropped by 4–5%. The MAP was higher if using three
scales with one aspect ratio or three aspect ratios with one scale. Using three scales {642, 1282, 2562}
with three ratios {1:2, 2:5, 1:4} was better than using three scales {1282, 2562, 5122} with three ratios
{1:1, 1:2, 2:1} that were set in Faster R-CNN. This demonstrates that the detection effect were better if
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the scales and aspect ratios of anchors were close to the object scales in our dataset. Besides, using
four scales with three ratios was better than using three scales with three ratios, suggesting that the
detection effect can be improved by increasing the number of anchors.
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Figure 8. Detection results of Faster R-CNN (a) with and (b) without feature fusion. 

4.3.2. Experiments on the Different Anchor Settings  

In Table 4 we investigate the detection of different anchor settings. It suggests that if just one 
anchor was generated at each position, the MAP dropped by 4%–5%. The MAP was higher if using 
three scales with one aspect ratio or three aspect ratios with one scale. Using three scales {642, 1282, 
2562} with three ratios {1:2, 2:5, 1:4} was better than using three scales {1282, 2562, 5122} with three 
ratios {1:1, 1:2, 2:1} that were set in Faster R-CNN. This demonstrates that the detection effect were 
better if the scales and aspect ratios of anchors were close to the object scales in our dataset. Besides, 
using four scales with three ratios was better than using three scales with three ratios, suggesting that 
the detection effect can be improved by increasing the number of anchors. 

Figure 8. Detection results of Faster R-CNN (a) with and (b) without feature fusion.
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Table 4. Detection results of different anchors.

Settings Anchor Scales Aspect Ratios MAP (%)

1 scale, 1 ratio 642 1:2 79.5%
1282 1:2 78.9%

1 scale, 3 ratios 642 {1:2, 2:5, 1:4} 81.8%
1282 {1:2, 2:5, 1:4} 81.4%

4 scales, 1 ratio {322, 642, 1282, 2562} 1:2 81.7%
{322, 642, 1282, 2562} 2:5 82.0%

3 scales, 3 ratios {1282, 2562, 5122} {1:1, 1:2, 2:1} 81.2%

3 scales, 3 ratios {642, 1282, 2562} {1:2, 2:5, 1:4} 82.6%

4 scales, 3 ratios {322,642, 1282, 2562} {1:2, 2:5, 1:4} 83.7%

4.3.3. Comparison with Other Methods

In order to validate the proposed method, we compared it with Fast R-CNN and YOLOv3 in the
water surface float detection. The P–R curve of each model is drawn in Figure 9, and Table 5 shows
the performance of the three methods. It suggests that the proposed method increased the detection
accuracy by 8% compared with Fast R-CNN. Compared with YOLOv3, our proposed method increased
the MAP from 78.6% to 83.7%. However, in terms of detection speed, YOLOv3 achieved a frame-rate
of 35 FPS, which was faster than our proposed method. In the actual application scenario of this paper,
the detection speed of ours could basically meet the requirements.
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accuracy by 8% compared with Fast R-CNN. Compared with YOLOv3, our proposed method 
increased the MAP from 78.6% to 83.7%. However, in terms of detection speed, YOLOv3 achieved a 
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In addition, we computed the recall at different IoU (Intersection over Union) ratios with ground 
truth. The Recall–IoU metric can be used to evaluate the localization performance, which is related 
to the final detection accuracy [36]. As shown in Figure 10, our proposed method obtained a 
comparable recall rate to YOLOv3 and Fast R-CNN. When the IoU was greater than 0.5, our proposed 
method achieved the best performance. 
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Fast R-CNN 75.3% 4 

YOLOv3 78.6% 35 
Proposed method 83.7% 11 

Figure 9. Precision–recall curves of YOLOv3, Fast R-CNN, and the proposed method.

Table 5. Experiments of the proposed method, YOLOv3, and Fast R-CNN.

Method MAP (%) Speed (FPS)

Fast R-CNN 75.3% 4
YOLOv3 78.6% 35

Proposed method 83.7% 11

In addition, we computed the recall at different IoU (Intersection over Union) ratios with ground
truth. The Recall–IoU metric can be used to evaluate the localization performance, which is related to
the final detection accuracy [36]. As shown in Figure 10, our proposed method obtained a comparable
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recall rate to YOLOv3 and Fast R-CNN. When the IoU was greater than 0.5, our proposed method
achieved the best performance.

 
Figure 10. Recall–IoU curves of YOLOv3, Fast R-CNN, and the proposed method. 

Several detection results of our proposed method and YOLOv3 are visualized in Figure 11. It 
can be seen that many small-scale floats were lost while using YOLOv3. While using the proposed 
method, floats with different shapes and scales in different scenes could be marked with high 
confidence. 

  

  

  

Figure 10. Recall–IoU curves of YOLOv3, Fast R-CNN, and the proposed method.

Several detection results of our proposed method and YOLOv3 are visualized in Figure 11. It can
be seen that many small-scale floats were lost while using YOLOv3. While using the proposed method,
floats with different shapes and scales in different scenes could be marked with high confidence.

5. Conclusions

In this paper, we consider a water surface float detection based on an improved Faster R-CNN in
a natural scene. In response to the variance of sunlight, we use the gamma correction algorithm to
preprocess the images. In addition, there are different scales of floats in our dataset, and the high-level
feature maps only contain semantic features, which can lead to poor detection for small-scale objects.
Hence, we fuse high-level features with low-level features, selecting the appropriate layers for feature
fusion by analyzing the receptive fields of different layers. Moreover, we changed the scales and aspect
ratios of anchors and increase the number of anchors, making them close to the scales of floats. The
experimental results show that proposed method could achieve a MAP of 83.7% and a frame rate of 11
FPS on our dataset, which mostly meets the requirements of water surface float detection. This method
can be applied to the automatic detection for water surface floats, which is meaningful and helpful to
monitor river status.

However, our method still has some limitations. Firstly, existing datasets have a single category
of floating objects, which makes them have poor generalization ability in engineering applications.
We will collect various datasets, including common domestic garbage such as plastic bags, plastic
bottles, and so on. Secondly, the gamma correction algorithm we adopted needs to determine the
gamma value based on the dataset. Hence, we will study more effective image enhancement methods
with stronger generalization ability. Thirdly, extra computation is generated because of feature fusion,
which causes the detection speed to decrease. Therefore, the model needs to be further optimized, thus
improving the detection speed. Furthermore, for particularly large-scale floats, Mask R-CNN [37] will
be considered for semantic segmentation, thus quantifying the area of floats.
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