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Abstract: The Dense Trajectories concept is one of the most successful approaches in action
recognition, suitable for scenarios involving a significant amount of motion. However, due to
noise and background motion, many generated trajectories are irrelevant to the actual human activity
and can potentially lead to performance degradation. In this paper, we propose Localized Trajectories
as an improved version of Dense Trajectories where motion trajectories are clustered around human
body joints provided by RGB-D cameras and then encoded by local Bag-of-Words. As a result,
the Localized Trajectories concept provides an advanced discriminative representation of actions.
Moreover, we generalize Localized Trajectories to 3D by using the depth modality. One of the
main advantages of 3D Localized Trajectories is that they describe radial displacements that are
perpendicular to the image plane. Extensive experiments and analysis were carried out on five
different datasets.

Keywords: action recognition; Dense Trajectories; Local Bag-of-Words; spatiotemporal features

1. Introduction

Human action recognition is an active research topic with several applications in surveillance and
security [1], healthcare and assisted living [2,3], and human-computer interaction [4]. Nevertheless,
due to large differences within the same class of actions, viewpoint variations, occlusions, and changes
in lighting conditions, action recognition remains a challenging problem.

Consequently, there is a wide variety of action recognition approaches in the literature. One way
to categorize them is based on the area features are computed on: global approaches, where the entire
image is used to generate features [5,6], and local approaches, where specific regions of interest are
selected to generate features. One of the most popular approaches belonging to the second category is
Dense Trajectories [7], in which every action is represented by a set of motion trajectories, along which
features are aligned and encoded using the Bag-of-Words (BoW) model [8].

Approaches based on Dense Trajectories are particularly effective when the amount of motion is
high [9]. This is mainly because images in a video are densely sampled and tracked for generating
the trajectories. However, Dense Trajectories, by definition, include trajectories of points that are
irrelevant for action recognition due to background motion and noise, thus resulting in the inclusion
of irrelevant information. Furthermore, Dense Trajectories are typically generated using optical flow
which fails to describe motion with radial orientation with respect to the image plane. Therefore,
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taking advantage of the availability of RGB-D cameras, we propose to redefine Dense Trajectories by
giving them a local description power. This is achieved by clustering Dense Trajectories around human
body joints provided by RGB-D sensors, which we refer to as Localized Trajectories henceforth.

The proposed approach offers two main advantages. First, since we only consider trajectories
that are localized around human body joints, our approach is more robust to large irrelevant motion
estimates. As a consequence, actions which have similar motion patterns, but involving different body
parts, are more easily distinguished. Second, our approach allows the description of the relationship
of “action—motion—joint”, i.e., an action is associated with both; a type of motion and joint location,
in contrast to classical Dense Trajectories described by the relationship “action—motion” where an action
is associated with a type of motion only. This is done by generating features around the Localized
Trajectories based on the concept of local BoWs [10]. One codebook is therefore constructed per group
of Localized Trajectories. Each codebook corresponds to a specific body joint.

For a better description of radial motion, we further propose to explore Localized Trajectories
using the three modalities provided by RGB-D cameras. Specifically, we introduce the 3D Localized
Trajectories concept, which requires the estimation of scene flow, the displacement vector field in 3D,
instead of optical flow. Coupling 3D Trajectories and the corresponding motion descriptors with
Localized Trajectories offers richer localized motion information, in both lateral and radial directions,
allowing better discrimination of actions. However, scene flow estimation is generally noisier resulting
in a less accurate temporal tracking of points. Thus, we propose to construct local codebooks by
sampling trajectory-aligned features based on confidence and ambiguity metrics [11].

This paper is an extended version of the work in [12]. Compared to our previous work, the main
contribution is the generalization of the proposed Localized Trajectories to 3D using RGB-D data.
This extension is combined with a novel codebook construction scheme, suitable for tackling noisy
feature samples. Moreover, an extensive comparison with state-of-the-art approaches is presented,
along with evaluation on multiple datasets and additional discussions and analysis.

In summary, the contributions of this paper are as follows:

1. A novel 2D Localized Trajectories concept is introduced, which utilizes body pose information in
order to spatially group similar trajectories together.

2. Localized Trajectories are extended from 2D to 3D thanks to the availability of depth data, which

are directly used for 3D motion estimation.

A novel feature selection concept for a robust codebook construction is introduced.

4.  An extensive experimental evaluation on several RGB-D datasets is presented to validate the
discriminative power of the proposed approach.

@

The remainder of the paper is organized as follows: in Section 2, a literature review of related
works is given, followed by a detailed overview of background material in Section 3. The proposed
approach is described in Sections 4 and 5. In Section 6, descriptions of different datasets, experimental
setups, and results are presented. Finally, Section 7 concludes the paper and provides a perspective on
future research directions.

2. Related Work

In this section, we present some of the state-of-the-art action recognition approaches. First, we
start by giving a general overview of RGB-D based action recognition approaches. Then, we focus on
representations inspired by Dense Trajectories that are directly related to our work.

2.1. Dense Trajectories Related Approaches

Initially introduced by Wang et al. [7], Dense Trajectories are classically generated by computing
motion and texture features around motion trajectories. Due to their popularity, many researchers
have extended this original formulation in order to enhance their performance [9,13-16].
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As a first attempt, Wang et al. [13] proposed to reinforce Dense Trajectories by using the Random
Sampling Consensus (RANSAC) algorithm to reduce the noise caused by motion. In addition to that,
they replaced the Bag-of-Visual-Words representation with Fisher Vectors.

Then, Koperski et al. [9] suggested enriching motion trajectories using depth information. They
proposed a model grouping the videos in two types: videos with a high level of motion and others
with a low amount of motion. For the first group, an extension of Trajectory Shape Descriptor [7],
which includes depth information has been used, while for the second group a novel descriptor called
Speeded Up Robust Features (SURF) has been introduced in order generate local depth patterns.

To further improve the accuracy of recognition, Wang et al. [14] proposed to use deep learned
features instead of heuristic spatiotemporal local ones such as Trajectory-Shape Descriptor (TSD) [7],
Histogram of Oriented Gradients (HOG) [17], Histogram of Optical Flow (HOF) [18], and Motion
Boundary Histogram (MBH) [7].

On the other hand, in [15], a novel approach to encode relations between motion trajectories
is presented. Global and local reference points are used to compute Dense Trajectories, offering
robustness to camera motion.

Finally, Ni et al. [16] had the idea of focusing on trajectory groups that contribute more importantly
to a specific action by defining an optimization problem. Towards the same direction, Jhuang et al. [19]
proposed the extraction of features around joint trajectories, increasing the discriminative power of the
original Dense Trajectories approach [7].

Although all the aforementioned methods have shown their effectiveness, they unfortunately
lack locality information related to the human body. This piece of information is crucial when actions
include similar motion patterns performed by different body parts. For this reason, we propose a novel
dense trajectory-based approach by taking into consideration the local spatial repartition of motion
with respect to the human body.

2.2. Action Recognition from RGB-D Data

With the recent availability of affordable RGB-D cameras, a great effort in action recognition using
both RGB and depth modalities has been made. For a more comprehensive state-of-the-art, we refer the
reader to a recent survey [20], where RGB-D based action recognition methods have been grouped into
two distinct categories (according to the nature of the descriptor), namely, learned representations [21-23]
and hand-crafted representations [11,24,25]. Since this work deals with the description of actions using
Dense Trajectories, we mainly focus on hand-crafted based approaches. In turn, they can be classified
as follows: depth-based approaches, skeleton-based approaches, and hybrid approaches.

The first class of methods extracts directly human motion information from depth maps [24,26-33].
The second group gathers approaches which make use of the 3D skeletons extracted from depth
maps. During the past few years, a wide range of methods has been designed using this high-level
modality [34—40].

Compared to depth-based descriptors, skeleton-based descriptors require low computational
time, are easier to manipulate and can better discriminate local motions. However, they are more
sensitive to noise since they widely depend on the quality of the skeleton. Thus, to reinforce action
recognition, a third class of methods called hybrid makes use of more than two modalities. These
approaches usually exploit the skeleton information to compute local features using RGB and/or
depth images. These local RGB-D based features have shown noteworthy potential [11,25,41]. Inspired
by this relevant concept which aims at computing local depth-based and RGB-based features around
specific joints, we propose to adapt the same idea to Dense Trajectories which have been proven to be
one of the most powerful action representations.

3. Background: Dense Trajectories for Action Recognition

Dense Trajectories were initially introduced by Wang et al. [7]. They are constructed by densely
tracking sampled points over an RGB video stream and constructing representative features around
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the detected trajectories. As mentioned in Section 1, Dense Trajectories have been proven to be very
effective in action recognition. They mainly owe their success to the fact that they incorporate low-level
motion information. Below, we overview the Dense Trajectories approach.

Let V be a sequence of N images. Subsequently, representative points are sampled from each
image grid with a constant stepping size—we denote each sampling grid position at frame ¢ as
pt = (¢, y¢). The point py is then estimated in the next frame using a motion field (u, v¢), derived by
the optical flow estimation [42] such that:

Prr1 =Pt + K- (U, 0t), (1)

where « is a median filter kernel at the position p;11. As a result, large motion changes between
subsequent frames are smoothed. Furthermore, to avoid drifting, trajectories longer than the assigned
fixed length are rejected. Applying Equation (1) on L frames results a smoothed trajectory estimation
of the point p; = (xt, y¢). We denote the mth dense trajectory as:

"= {P?;,---/P?;+L}, 2)

with T = [tg,tp + L] C [1,N], m € {1,..., M}, ty the first frame of the sequence V and M the total
number of generated trajectories.

The set of M trajectories generated in Equation (2) is used to construct descriptors aligned along
a spatiotemporal volume. In [7], four types of descriptors are used: TSD [7], HOG [17], HOF [18],
and MBH [7]. Each of the above descriptors is designed to capture distinctive spatiotemporal features
of the occurring motion. As a final step, all of the descriptors are aggregated and encoded using
BoWs—one codebook of visual words per descriptor is constructed using K-means clustering so that
the final features are represented by a unified histogram of word appearances.

One of the main drawbacks of Dense Trajectories is that points on the image grid are
sampled uniformly, which potentially leads to the inclusion of a significant amount of noise.
Furthermore, the generated Dense Trajectories do no take into account the spatial human body
structure. Thus, actions with similar motion patterns can potentially be confused during classification.

4. Localized Trajectories for Action Recognition

To enhance their robustness to irrelevant information, a reformulation of Dense Trajectories is
proposed, called Localized Trajectories. The general overview of our approach is illustrated in Figure 1.
The main idea of this new approach consists in attributing Dense Trajectories a local description: (1) to
track the motion in specific and relevant spatial regions of the human body, more specifically around
the joints; and (2) to remove redundant and irrelevant motion information, which can negatively affect
the classifier performance.

To that end, the pose information through estimated 3D skeletons is used as prior information
to estimate an optimal clustering configuration, as depicted in Figure 2. Let us consider the human
skeleton extracted from RGB-D cameras composed of | joints and let us denote the trajectory of each
skeleton joint j as QO = {ql, . qN} Note that we assume that the joints are always well detected. We
use the distance proposed by Raptis et al. [43] to group Dense Trajectories of an action around joints.
Given a pair of dense and joint trajectories, respectively, P™ and Q/, which co-exist in the temporal
range T, the spatiotemporal distance between two given trajectories is expressed using;:

d(P™, Q) = maxs - Z iy 3)

ter
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such that s; = ||p}* — q]t| |2 is the spatial distance and r; = ||(p}" — p}" ;) — (q]t — qi_l) |2 is the velocity
difference between trajectories P™ and Q/. Then, an affinity matrix is computed between every pair of
trajectories (P™, Q/) using Equation (3) as:

b(P™, Q) = exp(—d(P™, Q1)), @)

where the measure d(P™, Q/) penalizes trajectories with significant variation in spatial location
and velocity. After a hierarchical clustering procedure which is based on the affinity score [43],
a membership indicator function specifies the cluster G/ of joint j* each trajectory belongs to.

G = {P",Ym € {1,..,M} and argminb(P", Q/) = j*}. (5)
jel

Local codebook

for clusterj

Trajectory
Clustering Action
“l around Body Classification

Histogram for
clusterj

Figure 1. Proposed 2D Localized Trajectories approach. From an RGB sequence, Dense Trajectories are
generated and, then, clustered around body joints using RGB-D pose information (only 2D information
is used). Finally, local codebooks, for every cluster G/, are constructed for the histogram representation
of features. This feature representation is used in both training and testing phases of the classification.

Furthermore, trajectories that are above a certain threshold of distance are rejected. This condition
ensures that irrelevant and noise-resulting trajectories will not be considered, e.g., background motion.

\d
alll— % Al
Feature histogram 2
Feature histogram 1
b,

»

Tl S

Feature histogram 3 Feature histogram4

il— il

‘? Feature histogram 6
Feature histogram 5 [

alb—"$, .l
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Figure 2. The two stages of Localized Trajectories: Left: clustering motion trajectories around body
joints; and Right: local features computation which boosts the discriminative power of the original
Dense Trajectories concept.
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Feature Representation

As discussed in [7], features can be computed along each trajectory and BoWs can be used to
aggregate and encode the information. In such a case, however, a descriptor associated with each
trajectory carries no locality information. On the contrary, we propose to exclusively assign trajectories
and their corresponding descriptors to trajectory clusters. The main advantage of such a construction
is that every trajectory-aligned descriptor does not only capture the spatiotemporal characteristics of
the trajectory but it carries its location as well. Thus, we construct a local codebook for each trajectory
group G/. During feature encoding, one histogram is constructed per joint cluster and per descriptor
denoted by HI:

H = [Hé"SD |Hﬁoc }HLOF‘H{\/IBH} : (©)

The subscripts of the individual histograms identify the type of descriptors. Finally, an action
video is represented by the concatenation of the individual joint histograms in a final histogram H,
as follows:

H=|JH. )

5. 3D Trajectories and Aligned Descriptors

Dense Trajectories, generated via optical flow, offer adequate performance when used for tracking
movements that are lateral to the image plane. However, they struggle to track motion that happens
radially, due to the fact that the occurring motion is subtle with respect to the 2D image plane.
Consequently, in this section, we propose to extend localized Dense Trajectories to RGB-D input video
stream by replacing optical flow with scene flow. The generated 3D trajectories are suitable for tracking
motion in both lateral and radial directions, as illustrated in Figure 3.

XN . . L4 s

(b)

(d)

Figure 3. Scene flow-generated motion trajectories. Three phases of the same action are illustrated:

(a—c) the frontal view of a subject drinking water is displayed as a point cloud, along with the
corresponding motion trajectories in red; and (d—f) the same sequence is illustrated from the side.
The capture of both lateral and radial motion shape is clearly depicted.
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5.1. Scene Flow Estimation Using RGB-D Data

To generalize the concept of Dense Trajectories from 2D to 3D, we propose to make use of the 3D
extension of optical flow, called scene flow. Thanks to the emergence of RGB-D cameras, numerous
approaches have been proposed to estimate scene flow from depth maps, e.g., the Primal-Dual
Framework for Real-Time Dense RGB-D Scene Flow (PD-Flow) algorithm [44], the Dense semi-rigid
scene flow estimation [45] and the Layered RGBD scene flow estimation [46].

The scene flow Q is linearly dependent on the depth motion field S = (1, v, w), where w is the
range flow. It is computed by mapping S to the 3D world coordinate system as below:

Z o X
fx Z

a=1[o %y s, 8)
0 0 1

where fy and f, are the camera focal lengths, and X, Y, Z are the 3D world coordinates of a specific
point. On the other hand, the depth motion fields are estimated as a solution of a global variational
problem, defined as:

msin{ED(S) +Er(S)}, O

where Ep(S) is a data term defined as the combined measure of the photometric and geometric
inconsistency of successive depth and intensity images and Eg(S) is defined as a regularizer term.
Multiple approximations of S exist based, for example, on decoupling the radial motion w from the
lateral motion (u, v) [47,48].

We choose PD-Flow [44] to estimate a dense scene flow field from an RGB-D video stream, since
it has been shown to be one of the fastest and most accurate algorithms.

5.2. 3D Localized Trajectories

To estimate the 3D trajectories using scene flow, we start by uniformly sampling points from
the 2D image grid. In this context, we define pixel coordinates as (x,y). Similar to Wang et al. [7],
we reject points belonging to homogeneous areas. Next, each of the sampled points are mapped to
a standard 3D world coordinate system using the inverse of the intrinsic camera parameter matrix as
described below:

_((x—c)D (y —cy)D r
- ("% 2 ). 10

N = X

where cy and ¢, are the image plane central point coordinates, f; and f, are the respective x and y
components of the focal length and D is the depth value. Subsequently, trajectories of the mapped
3D points are estimated using Equation (1), except that the motion field is now based on an estimated
scene flow. The estimated 3D Dense Trajectories are denoted as:

(Xt11, Ye1, Zes1) = (X, Yo, Zt) + O, (11)

where ()iis the scene flow field. Correspondence between estimated 3D points, with scene flow,
and image pixels is derived by solving Equation (10) in terms of (x,y, D)T.

The above procedure is repeated recurrently until each of the 3D trajectories reach the fixed
temporal length we have set. Similar to Wang et al. [7], trajectories with sudden displacements or
small overall spatial length are considered irrelevant and are removed.

In depth maps, texture information is not present. Thus, in our case, only motion descriptors are

considered. Three types of descriptors are used: 3D Trajectory Shape Descriptor (3DTSD), Histogram of
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Scene Flow [49] (HSF), and 3D Motion Boundary Histogram (3DMBH). 3DTSD is based on the original
idea of the TSD for Dense Trajectories [7]. For each trajectory, the normalized displacement vector is
computed. The HSF descriptor captures the orientation and the magnitude of the local scene flow field.
For a spatiotemporal volume aligned around a 3D trajectory, the orientation of the 3D displacement is
calculated using the azimuth 6,y and elevation 6, , angles formed by consecutive points as:

Oxy = 2—}2 and 0, = i—f{ (12)
For the histogram construction, the 4D space is quantized into a fixed number of bins. Similarly,
the 3DMBH is based on the same idea as HSF. First, the derivative of the scene flow field is computed
and, then, for every pair of coordinates, the orientation angle is estimated.
3D Trajectories are adapted to 3D Localized Trajectories by following the procedure described in
Section 4, as depicted in Figure 4. Similarly as before, we propose to enhance the discriminative power
of 3D Trajectories by grouping them around 3D body joints. Hence, Equations (3)-(5) are adapted
accordingly to incorporate all three dimensions of 3D trajectories P3}, and 3D joint trajectories Q{;D
Then, during feature encoding, every histogram of joint clusters G/ defined in Equation (6) is modified
to include the descriptors used in this context, becoming;:

i [ gd j j
Hl = [H3DTSD|HHSP|H3DMBH}‘ (13)
RGB Sequences 3D Scene Flow 3D Trajectories Trajectory Clustering
%o/
past
Depth Sequences -

- - Ty
z \

Figure 4. Computation steps of 3D Localized Trajectories. RGB and depth modalities are used for the
estimation of the scene flow constituted of three components. Then, using the estimated scene flow,
3D Trajectories are generated. Finally, the latter are clustered around 3D body joints. A different color
has been used for each cluster.

5.3. Feature Selection for Codebook Construction

While 3D Trajectories are advantageous in capturing radial motion, they are notably noisier
compared to Dense Trajectories, due to the scene flow estimation. As a result, the quality of the
codebooks is degraded, unfavorably affecting the general performance of the proposed approach.
This is mainly caused by the random selection of features from the training set [7] which are used to
compute the final codebook. To reduce the impact of noise, we propose to select features according
to the classifier confidence and ambiguity probabilistic metrics. Confidence is the classifier ability to
quantify its predictions reliability, while ambiguity indicates the number of classes the classifier outputs
for every prediction. The confidence C and ambiguity A metrics are defined as:

C = medAi/Ian(log(Pr(lm = a|F™))), (14)
meM,

and
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A=} (log(Pr(ly = alF™))), (15)
me M,

where Pr(l,, = a|F™) is the posterior probability of label a given feature F".

Hence, the classifier is trained several times with diverse sets of random training features. In our
experiments, we chose 100 sets of training features. Then, based on the computed metrics, we select
the codebook which provides the highest confidence score and lowest ambiguity. If the codebook with
the highest confidence is different from the one with the lowest ambiguity, we randomly select one of
them. Our concept is inspired by the joint selection proposed in [11].

6. Experimental Evaluation

We evaluated the proposed approaches on five challenging datasets: MSR DailyActivity3D [11],
Online RGB-D (ORGBD) [50], G3D Gaming [51], Watch-n-Patch [52] and KARD datasets [53]. First,
a brief description of each dataset is given followed by the presentation of the experimental setups.
Then, the obtained results are reported and extensively analyzed.

6.1. Datasets and Experimental Settings

The first dataset used for the experimental evaluation is the MSR DailyActivity 3D dataset [11].
In this dataset, 10 actors perform 16 daily activities, which in some cases involve human—object
interaction. The dataset was captured by the Kinect v1 device, providing therefore RGB, depth and
skeleton modalities. A distinctive characteristic of this dataset is that every actor repeats each action
twice in both sitting and standing positions. For the experiments, we followed a cross-splitting protocol
as in [11], where half of the subjects were used for training and the rest for testing.

The second dataset is called Online RGB-D Action (ORGBD) [50]. It can be used for both action
recognition and action detection and includes seven common types of human—object interaction
related to the living room environment. Three sets of video sequences were collected using a Kinect
sensor. Thus, RGB, depth and skeleton modalities are available. The first set was captured in the
context of action recognition in the same environment, whereas the second set was acquired for
cross-environment action recognition and the third for on-line action detection. The splitting protocol
requires two-fold cross-validation for the same-environment scenario, whereas, for cross-environment
action recognition, training and testing sets should include different environments [50].

One challenging dataset used for the evaluation is the G3D Gaming Action Dataset [51].
This Kinect-acquired dataset can be used for both action recognition and temporal action detection.
It consists of 10 subjects performing 20 gaming actions which are grouped into seven gaming scenarios:
Fighting, playing golf, playing tennis, bowling, first person shooter, driving a car and miscellaneous.
The first five actors were used for training and the rest were used for testing [51].

Watch-n-Patch [52] dataset, which was introduced by Cornell University, was also utilized.
This dataset includes 21 types of actions (10 in an office and 11 in a kitchen) which involve interactions
with 23 types of objects. Seven subjects perform 2-7 actions in each of the 458 videos. The dataset was
recorded using a Kinect v2 camera. This dataset distinguishes itself by a high intra-class variability
since the subjects perform different combinations of actions by ordering them differently each time.
For the experiments, we used the provided splitting protocol proposed in [52], where, for every
environment, almost half of the videos were used for training and the rest for testing.

The last dataset used for evaluation is called Kinect Activity Recognition Dataset (KARD) [53].
It contains 18 action classes which are performed by 10 subjects (nine males and one female). Half of
the subjects were used for training and half for testing, as proposed in [53]. The dataset was captured
by a Kinect device and consequently contains the three RGB-D modalities: RGB images, depth maps
and 3D skeletons.
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6.2. Implementation Details

For extracting Dense Trajectories and features from videos, we used the implementation provided
by the authors in [7] (https://lear.inrialpes.fr/people/wang/dense_trajectories). The trajectory
temporal length was fixed to 15 frames. The features were computed on a spatiotemporal volume
of 32 x 32 x 15 aligned on the trajectory, as suggested in [7]. This volume was further divided into
2 x 2 x 3 cells, where the histograms of the descriptors were computed. In the case of 3D trajectories,
we used the same parameters for the spatiotemporal volume. The number of histogram bins for the
2D trajectories was set to eight for HOG and MBH descriptors and nine for HOF descriptor, whereas
for 3D trajectories case we used nine-bin histograms for every descriptor. The distance threshold for
each trajectory was set to 0.02. Moreover, a linear SVM was employed for classification.

For each one of the aforementioned datasets, we report the obtained recognition accuracy using
the proposed Localized Trajectories and compare it to the classical Dense Trajectories and recent
state-of-the-art approaches. In the following, we denote the original dense trajectory approach [7]
by Dense Trajectories. We refer to the 2D proposed approach as 2D Localized Trajectories. Similarly,
the proposed 3D extension of the classical and the local Dense Trajectories are, respectively, called 3D
Dense Trajectories and 3D Localized Trajectories.

The number of skeleton joints defines the number of clusters. Subsequently, in the MSR
DailyActivity3D, ORGBD and G3D datasets, the skeletons are composed of 20 joints, while,
in Watch-n-Patch and KARD datasets, they are, respectively, formed by 25 and 15 joints. We also
empirically chose 2000 trajectories per video to construct the codebooks and 128 words per cluster and
per descriptor for every dataset.

6.3. Performance of 2D Localized Dense Trajectories

In this subsection, an analysis of the obtained results is provided. First, we compare the
performance of our approach against Dense Trajectories and other state-of-the-art methods. Later, we
discuss some of the limitation of 2D Localized Trajectories.

6.3.1. 2D Localized Dense Trajectories vs. Dense Trajectories

Since the aim of this work is to improve the discriminative power of classical Dense trajectories,
we start by comparing our proposed 2D Localized Dense Trajectories with them. The results obtained
on the five benchmarks prove the superiority of the proposed 2D Localized Trajectories. As reported in
Tables 1-5, 2D Localized Dense Trajectories improve the accuracy by 10%, 7.7%, 3.1%, 16%, 13.8% and
0.4% on MSR DailyAvtivity3D, G3D, ORGB (same-environment settings), ORGB (cross-environment
settings), Watch-n-Patch and KARD, respectively, compared to the classical Dense Trajectories [7].

Table 1. Mean accuracy of recognition (%) on MSR DailyActivity 3D dataset for Dense Trajectories and
2D Localized Trajectories approaches against literature.

Method Mean Accuracy
Dynamic Temporal Warping [54] 54.0%
Local HON4D [24] 80.0%
Moving Pose [34] 73.8%
3D Trajectories [9] 72.0%
Skeleton only [11] 68.0%
Skeleton and LoP [11] 85.8%
Naive-Bayes-NN [35] 73.8%
TriViews [55] 83.8%
Skeletal Shape Trajectories [38] 70.0%
Long-Term Motion Dynamics [56] 86.9%
Spatiotemporal Multi-fusion [57] 94.1%
Dense Trajectories [7] 64.4%
3D Dense Trajectories (ours) 48.8%
2D Localized Trajectories (ours) 74.4%

3D Localized Trajectories (ours) 76.3%
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Table 2. Mean accuracy of recognition (%) on G3D dataset for Dense Trajectories and 2D Localized
Trajectories approaches against literature.

Method Mean Accuracy
Dynamic Time Wrapping [58] 86.3%
Weighted Graph Matching [59] 89.2%
Adaptive Graph Kernels [60] 84.8%
Histogram [61] 79.5%
LPP and BoW [62] 87.5%
Spatial Graph Kernels [63] 95.7%
DL on Lie Group [64] 89.1%
Rolling Rotations [65] 88.0%
Dense Trajectories [7] 80.1%
Skeleton and LoP [11] 87.3%
2D Localized Trajectories (ours) 87.8%

Table 3. Mean accuracy of recognition (%) on ORGBD dataset for Dense Trajectories and 2D Localized
Trajectories approaches against literature in both Same and Cross Environment Settings.

Mean Accuracy

Method
Same Env. Cross Enw.
Moving Pose [34] 38.4% 28.5%
Eigenjoints [35] 49.1% 35.7%
DSTIP and DCSF [26] 61.7% 21.5%
Skeleton and LoP [11] 66.0% 59.8%
Pairwise joint distance [50] 63.3% -
Orderlet [50] 71.4% -
Motion decomposition [66] 80.9% -
Dense Trajectories [7] 64.3% 43.8%
2D Localized Trajectories (ours) 67.4% 59.8%
3D Localized Trajectories (ours) 64.5% 38.4%

Table 4. Mean accuracy of recognition (%) on Watch-n-Patch in both kitchen and office settings for
Dense Trajectories and 2D Localized Trajectories approaches.

Method Mean Accuracy
Dense Trajectories—office [7] 68.8%
Dense Trajectories—kitchen [7] 56.2%
2D Localized Trajectories—office (ours) 71.1%
2D Localized Trajectories—kitchen (ours) 81.5%

Table 5. Mean accuracy of recognition (%) of Dense Trajectories and 2D Localized Trajectories
approaches on KARD dataset.

Method Mean Accuracy
JTMI, LBP and FLD [67] 98.5%
JTMI and Gabor features [68] 96.0%
HOJ3D [69] 95.3%
EigenJoints [35] 96.2%
Dense Trajectories [7] 97.8%
2D Localized Trajectories (ours) 98.2%

The reported results reflect the ability of 2D Localized Trajectories to distinguish actions with
similar motion patterns that are performed by different body parts. This is shown in various cases
when comparing confusion matrices obtained for 2D Localized Trajectories and Dense Trajectories.
For instance, in the confusion matrices of G3D dataset in Figure 5, 2D Localized Trajectories boost
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the performance of the following action pairs: Punch Right-Punch Left and Kick Right-Kick Left.
In addition, in the same dataset, the recognition accuracy of both Tennis Swing Backhand and Throwing
Bowling Ball activities which include similar motion shapes is improved by 20% and 6%, respectively.
Furthermore, the accuracy of Drinking and Reading Book classes in ORGBD dataset is increased by
33% and 31%, respectively (see Figure 6).

Another example of this enhancement can be the pair of actions Defend and Aim and Fire Gun
in G3D dataset. The motion shapes of both action classes are similar, since both of them include arm
raising. Nevertheless, the first is performed using both arms and the second by using only one arm.
As we can see in Figure 5, the performance obtained for the action Defend is improved by 13% and
the confusion with the action Aim and Fire Gun is reduced by 14%. In addition, in the same dataset,
actions Wave and Clap have similar lateral motion and using the classical Dense Trajectories made
their distinction challenging. However, with the use of 2D Localized Trajectories, motion trajectories
were assigned to only one hand cluster in Wave action and to both hands in Clap action, reducing the
confusion between these classes. This results in an accuracy boost of 13% in Wave class, as shown in
Figure 5.

0.02
0.07 0.07
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Figure 5. Confusion matrices obtained for Dense Trajectories (a) and 2D Localized Trajectories
(b) approaches on G3D dataset. Actions list: (1) Aim and Fire Gun; (2) Clap; (3) Climb; (4) Crouch;
(5) Defend; (6) Flap; (7) Golf Swing; (8) Jump; (9) Kick Left; (10) Kick Right; (11) Punch Left; (12) Punch
Right; (13) Run; (14) Steer; (15) Tennis Serve; (16) Tennis Swing Backhand; (17) Tennis Swing Forehand;
(18) Throw Bowling Ball; (19) Walk; and (20) Wave.
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Using Remote

Drinking
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Making Phone Call
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Using Remote

Figure 6. Confusion matrices obtained for Dense Trajectories (a) and 2D Localized Trajectories
(b) approaches (ORGBD).

Moreover, in scenarios with full-body motion, such as the kitchen environment in Watch-n-Patch
dataset, 2D Localized Trajectories outperform the Dense Trajectories approach, as shown in Figure 7.
Clusters isolate specific motion of body parts, therefore motion patterns related to the action can be
identified more effectively.
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Figure 7. Confusion matrices obtained for Dense Trajectories (a) and 2D Localized Trajectories
(b) approaches (Watch-n-Patch) in the kitchen environment. The action labels are: (0) no-action;
(1) fetch-from-fridge; (2) put-back-to-fridge; (3) prepare-food; (4) microwaving; (5) fetch-from-oven;
(6) pouring; (7) drinking; (8) leave-kitchen; (9) fill-kettle; (10) plug-in-kettle; and (11) move-kettle.

6.3.2. Comparison with 3D-Based State-of-the-Art Approaches

Our 2D Localized Trajectories approach has shown competitive performance compared to
3D-based state-of-the-art approaches. In ORGBD dataset, we achieve the third best performance in the
same-environment setting (Table 3). We manage to match the state-of-the-art results of Wang et al. [11]
in the cross-environment settings and, at the same time, increase the mean accuracy by 16% over the
Dense Trajectories.

In Watch-n-Patch dataset, the 2D Localized Trajectories improved the performance of the Dense
Trajectories by 2.3% in the office environment and by 25.3% in the kitchen environment, as illustrated
in Table 4. The discriminative power of our approach boosts the performance of every action class,
especially in the kitchen environment, as can be observed in Figure 7. On this dataset, we only
compared our work with Dense Trajectories. To the best of our knowledge, there is no work in the
literature reporting offline action recognition accuracy on it, since this dataset was initially acquired
for action detection.
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In KARD dataset, our approach based on the 2D Localized Trajectories outperforms almost all
state-of-the-art approaches, with a score of 98.2%, except JTMI, LBP and FLD [67], which reaches
a slightly superior score with only 0.3% difference.

The 2D Localized Trajectories approach offers the second largest improvement on MSR
DailyActivity3D dataset, by 10% compared to Dense Trajectories, as depicted in Table 1.

Finally, as reported in Table 2, our method achieves a competitive performance on the G3D dataset
without the need of 3D information.

Despite the performance of 2D Localized Trajectories, it can be noted that some state-of-the-art
approaches achieve better performance (e.g., [11,24,55-57,59,63-65,67]), as reported in Tables 1-3 and 5.
We remark that most of these state-of-the-art approaches rely on 3D features [11,24,55,57,59,63-65,67].
Indeed, 3D descriptors are directly extracted from depth maps and/or 3D skeleton sequences.
In contrast, our method computes only RGB features around the extracted 2D trajectories. The 2D
information of 3D skeletons is only used to cluster the trajectories. Moreover, some of these 3D
approaches (e.g., [55,57]) are even more reinforced with the use of fusion strategies. For instance,
while we use only four 2D descriptors around 2D Localized Trajectories, the two aforementioned
approaches [55,57] use five descriptors each. Finally, methods employing deep learning models
(e.g., [56,64]) can reach higher performance, since they learn appropriate features, instead of
hand-crafting them. As further investigation, it would be interesting to use a more important number
of 3D features and define new strategies to fuse deeply learned and/or hand-crafted features computed
around trajectories.

6.3.3. Limitations of 2D Localized Dense Trajectories

Despite its strong performances, 2D Localized trajectories action representation suffers from two
limitations. First, 2D Localized Trajectories approach presents low performance when the motion
amount is small. This attribute is inherited from Dense Trajectories approach and is clearly depicted in
action classes such as Call Cellphone in both MSR DailyActivity 3D and ORGBD, as shown in Figures 8
and 6, respectively, and Write on a Paper in MSR DailyActivity 3D. Nonetheless, Sit Still class achieves
adequate performance with the use of 2D Localized Trajectories, since it is an action class with almost
no motion.

Second, 2D Localized Trajectories approach does not capture radial motion sufficiently. Action
classes such as Playing the guitar in MSR DailyActivity3D dataset include a notable amount of radial
motion and the accuracy results are consequently low, as demonstrated in Figure 8a,b. For that reason,
as mentioned above, the proposed 3D Localized Trajectories presents as a good alternative to solve
these two issues. Performance of the 3D Localized Trajectories are reported in the next section.

6.4. Performance of 3D Localized Trajectories

The proposed 3D Localized trajectories approach was evaluated on MSR DailyActivity3D and
ORGBD datasets. The results reported in Figure 1 show its superiority against Dense Trajectories and
2D Localized Trajectories. In fact, the accuracy of Dense Trajectories and 2D Localized Trajectories are
improved by 1.9% and 11.9%, respectively. However, the reported results in Table 3 are lower than the
2D Localized Trajectories in both settings, by 2.9% and 21.4%.

The performance improvement happens mainly because of the inclusion of depth information
in 3D trajectories. This helps in distinguishing actions which are performed radially with respect
to the camera. The latter is particularly reflected in the confusion matrix of MSR DailyActivity
3D dataset in Figure 8, where actions such as play game and play guitar are more effectively
discriminated using 3D information. The reported accuracies for the actions play game and play
guitar are significantly improved. In particular, from 20% and 20% using Dense Trajectories and 40%
and 40% using 2D Localized Trajectories, the accuracy climbed to 60% and 70% with the use of 3D
Localized Trajectories, respectively.
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010 0.0

(©)

Figure 8. Confusion matrices obtained for (a) Dense Trajectories, (b) 2D Localized Trajectories and
(c) 3D Localized Trajectories approaches on MSR DailyActivity 3D dataset. Actions list: (1) Drink;
(2) Eat; (3) Read book; (4) Call cellphone; (5) Write on a paper; (6) Use laptop; (7) Use vacuum cleaner;
(8) Cheer up; (9) Sit still; (10) Toss paper; (11) Play game; (12) Lie down on a sofa; (13) Walk; (14) Play
guitar; (15) Stand up; and (16) Sit down.
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Nevertheless, the results reported in Table 3 can be explained by two facts: (a) Current scene flow
estimation algorithms are still very sensitive to noise in comparison to optical flow. Thus, since this
dataset is slightly noisier than MSR DailyActivity3D, it is predictable to have less impressive results.
However, novel approaches for a more robust estimation of scene flow are being currently investigated
with the expectation of improved performance in the future. (b) 3D Localized Trajectories are more
efficient than 2D ones, especially in the presence of radial motion. However, ORGBD dataset do not
incorporate actions involving significant amount of radial motion. On the other hand, we can notice
that some state-of-the-art methods (e.g., [24,50,55-57,66]) remain more accurate than the proposed
3D Localized Trajectories, as shown in Tables 1 and 3. As explained in Section 6.3.2, the methods
mentioned above make use of multiple and sophisticated 3D features directly extracted from skeleton
and depth map sequences. Unlike these 3D methods, the discrimination of the features computed
around the 3D trajectories is not the focus of this paper, but could be further investigated (only one 3D
descriptor is used, namely HOF, while the 3D skeleton sequences are used only for the clustering of
trajectories). Furthermore, our method that is based on scene flow estimation is effective especially in
the presence of a high quantity of motion. On the contrary, the methods proposed in [50,66] called
Ordelet and LOP4D, respectively, are effective in the presence of both high or low amount of motion,
since they use local descriptors. This is confirmed by our experiments on the ORGBD dataset that
incorporates actions with a low amount of motion.

These promising results highlight the potential of our first attempt to generalize Dense Trajectories
to 3D and opens up new perspectives. Indeed, many components of this 3D concept can be reinforced to
increase its effectiveness. For example, 3D trajectories are slightly more noisy than the Dense trajectories
mainly because depth sensors introduce additional noise. This noise translated to a significant number
of points belonging to the background which appeared to move radially, creating a lot of irrelevant 3D
trajectories. Most importantly, the scene flow estimation is not optimal, since it relies on two different
modalities which often appear to be misaligned. This fact is reflected in the performance of the 3D
Trajectories (without locality), resulting in a notably lower accuracy than the Dense Trajectories, as
demonstrated in Table 1. Nevertheless, the trajectory clustering around body joints is still able to
remove a significant amount of noisy and irrelevant trajectories in 3D Localized Trajectories case.

6.5. Global BoW vs. Local BoW

To experimentally motivate the use of local BoWs, we compared the results obtained for 2D
Localized trajectories using both a global BoW and a local BoWs. Hence, the experiments were
conducted on the cross-environment scenario of the ORGBD dataset. The mean accuracy is notably
lower compared to the 2D Localized Trajectories approach with Local BoW, reaching 53.6% vs. 59.8%.
The results suggest that trajectories clustering combined with local BoWs contribute significantly to
the enhancement of the local discriminative power of the overall approach. They also suggest that the
local encoding is more effective, since the codebooks are constructed using features which are specific
to the motion of each body part.

6.6. Computational Complexity

Our approach considers only a local area around each body joint. Therefore, the complexity of
the proposed approach is significantly lower than the complexity of the original Dense Trajectories [7]
approach. Let us denote the complexity needed to extract features around one motion trajectory by
O(N), where N is the number of operations. While the original approach computes features around all
the K generated trajectories, our method conserves only Kj trajectories within a small region around
body joints (with K; > Kj). Thus, our approach presents a lower complexity with respect to the
original approach (O(K;N) < O(KyN)).
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7. Conclusions

In this paper, we propose to solve two major shortcomings of the original Dense Trajectories
approach using additional modalities provided by RGB-D cameras: the lack of locality information
and the ineffectiveness in describing radial motion. Our contribution is two-fold. First, we enhance the
discriminative power and locality-awareness of Dense Trajectories by clustering them around human
body joints. This method is coupled with the local Bag-of-Words concept, strengthening further the
framework. Second, we construct 3D Localized Trajectories for action recognition. For this purpose,
we use: (a) scene flow instead of optical flow for the generation of the 3D Trajectories; and (b) 4D
extension of the originally used spatiotemporal descriptors. The reported results show the robustness
of the two proposed representations in various challenging datasets. As future work, we intend to
develop an automatic way of choosing the optimal parameters. In addition, we intend to estimate
more reliable and robust to noise 3D trajectories directly from point cloud data for the purposes of
enhancing our current approach and extending it to view-invariant action recognition.
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