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Abstract: The combination of Wireless Sensor Networks (WSNs) and edge computing not
only enhances their capabilities, but also motivates a series of new applications. As a typical
application, 3D Underwater Wireless Sensor Networks (UWSNs) have become a hot research
issue. However, the coverage of underwater sensor networks problem must be solved, for it
has a great significance for the network’s capacity for information acquisition and environment
perception, as well as its survivability. In this paper, we firstly study the minimal number of
sensor nodes needed to build a diverse k-coverage sensor network. We then propose a k-Equivalent
Radius enhanced Virtual Force Algorithm (called k-ERVFA) to achieve an uneven regional coverage
optimization for different k-coverage requirements. Theoretical analysis and simulation experiments
are carried out to demonstrate the effectiveness of our proposed algorithm. The detailed performance
comparisons show that k-ERVFA acquires a better coverage rate in high k-coverage sub-regions,
thus achieving a desirable diverse k-coverage deployment. Finally, we perform sensitivity analysis of
the simulation parameters and extend k-ERVFA to special cases such as sensor-sparse regions and
time-variant situations.

Keywords: diverse k-coverage; sensor networks; three-dimensional coverage; underwater sensor
networks; virtual force algorithm

1. Introduction

The research on Underwater Wireless Sensor Networks (UWSNs) has a wide application prospect
in marine hydrological data collection, marine pollution detection, water quality monitoring [1–3],
etc. The coverage optimization of UWSNs has a great significance for the network’s capacity
for information acquisition and environment perception, as well as its survivability/lifetime [4].
In addition, the coverage effectiveness of UWSNs has a direct bearing on the properties of the network,
such as its communication bandwidth and computation capacity, thus determining the quality of
service to a certain extent [5].

Existing research on coverage optimization mainly aims at ground sensor networks and can be
classified into three categories: the target coverage [6], the regional coverage [7], and the barrier
coverage [8–10]. The target coverage requires that sensor networks can monitor target nodes.
In regional coverage, any point inside the region must be covered by at least one active node.
The barrier coverage studies the probability of detecting moving objects when they pass through the
monitoring region. In [6,7,10–12], a variety of coverage control methods were proposed, among which
the Virtual-Force Algorithm (VFA) by Zou et al. [7] has attracted considerate attention and is regarded
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as an effective method to solve the coverage problems in two-dimensional sensor networks. In practical
applications, only some parts of the whole underwater area will be the Regions Of Interest (ROI).
Observers usually expect the ROIs to be covered by more sensors (i.e., k-coverage) instead of only one
sensor (i.e., one-coverage), so that more reliable and accurate sensing data of ROIs can be collected for
further processing. In view of this, we define diverse k-coverage as the coverage optimization problem
in which the multiplicity of k-coverage requirements in different regions is diverse. However, most of
the algorithms above aim to solve the one-coverage problem rather than the k-coverage problem of
ROIs, even if the k-coverage (k ≥ 2) requirement is more practical in regional coverage of UWSNs.

In addition, typical coverage optimization utilizes a cloud-based centralized architecture.
The data generated by underwater nodes is preprocessed and subsequently sent to cloud servers.
The server can potentially receive huge data volumes from the large number of underwater nodes
and generate significant load on the sensor network. This process will consume many computational
resources and generate a certain time delay, which has a significant impact on coverage optimization.
Edge computing [13–15], a new paradigm that adds additional edge computing servers to low-powered
devices and networks, plays an important role in coverage optimization because of its advantages in
agility, intelligence, reliability, and real-time performance [16–18]. Tasks of UWSNs can be fully or
partly uploaded to the edge servers, and then, the edge servers return the computational results to the
nodes for optimizing the coverage. For example, the anchor node can adjust the location of the node in
real time according to the calculation result of edge servers. Meanwhile, few researchers have applied
the virtual force algorithm to the diverse k-coverage problems of UWSNs. Therefore, this motivates us
to design an effective diverse k-coverage algorithm based on VFA with a new computing architecture.

The main contributions of this paper are summarized as follows.

• We analyze and derive the minimal number of sensor nodes needed to build a specific diverse
k-coverage UWSN.

• We design an enhanced virtual force algorithm k-ERVFA to solve the non-uniform k-coverage
optimization problem of sub-regions with different interest levels in UWSNs.

• We extend our proposed algorithm to special cases such as sensor sparse regions and
time-variant situations.

The rest of this paper is organized as follows: Section 2 summarizes related studies on sensor
deployment methods of UWSNs and the k-coverage problem of WSN. In Section 3, we introduce the
3D-UWSNs model with different k-coverage requirements. We then derive the minimal number of
nodes needed to meet the specific k-coverage requirement. In Section 4, we give a detailed description
of the k-ERVFA algorithm. Simulation results are given in Section 5. In Section 6, we give discussions
about simulation parameters and extend k-ERVFA to special cases. Section 7 concludes the whole paper.

2. Related Works

2.1. Virtual Force Algorithm in Wireless Sensor Network

The VFA has attracted considerable attention and is considered an effective method to solve the
coverage problems. For example, Zou et al. [7] achieved the coverage control in two-dimensional
sensor networks based on VFA, which moves the node according to the calculated position in each step.
In this algorithm, a node will be subject to three resultant forces (obstacles, neighbor nodes, and targets
to be covered), including gravity and repulsion. Tao et al. [19] proposed PFCEA (Potential Field-based
Coverage-Enhancing Algorithm) based on the rotatable directional sensing model. Furthermore,
Huang et al. [20] put forward node re-deployment algorithm PRMCA (Probability model based
Rotate or Move along a fixed direction Coverage-enhancing Algorithm) based on the probability
model and the virtual force, where the sensor node rotates or moves along the fixed direction in
a two-dimensional plane in order to achieve the coverage effect. Heo et al. [21] suggested a coverage
control algorithm IDCA (Intelligent Deployment and Clustering Algorithm), and the virtual force
between nodes is represented by the result of the expected deployment density divided by the current
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deployment density. Ma et al. [22] proposed a coverage-control VFA-ACE (Area Coverage Enhance)
algorithm based on the virtual potential field, aiming at three-dimensional directional sensor networks.
Tan et al. [23] proposed a three-dimensional space deployment algorithm applied to continuous target
tracking. Virtual force in this algorithm is generated by the inter-node force, the obstacle repulsive
force, the monitored-path attractive force, and the tracking target together.

2.2. Existing Studies on k-Coverage of Wireless Sensor Networks

The k-coverage problem of wireless sensor networks has been extensively studied and can
be divided into two categories: the two-dimensional cases and the three-dimensional cases.
Huang et al. [24] studied two-dimensional k-coverage with geometric analysis and achieved improved
coverage. Wan et al. [25] derived the upper and lower bound of the minimal density of nodes
in the two-dimensional k-coverage problem using the methods based on the probability model.
The studies mentioned above focused on the thick deployment regions, such as a square or a circular
area. With finite thin strip regions, Balister et al. [26] calculated the deployment density of sensor
nodes needed to maintain both network connectivity and the k-coverage property. Qiu et al. [27]
proposed a distributed cooperation scheme based on a local k-order Voronoi diagram in which nodes
cooperate in hole detection and recovery. Esnaashari et al. [28] proposed CLA-EDS (a Cellular Learning
Automata-based Enhanced Deployment Strategy), a modification of the CLA-DS (a Cellular Learning
Automata-based Deployment Strategy) [29], in which a learning algorithm is applied to meet the
time-variant and diverse k-coverage requirements in the two-dimensional cases. Yu et al. [30] studied
the k-coverage problem in WSNs and proposed protocols based on the coverage contribution area.
The proposed protocols achieved low sensor spatial density and prolonged the network lifetime.

For three-dimensional k-coverage problems, Alam and Haas [31] proposed a deployment
strategy based on the Voronoi diagram on the tessellation of the truncated octahedral in 3D space.
However, k-coverage was not studied in [31], and only one-coverage was guaranteed. Huang et al. [32]
developed a polynomial time algorithm to solve the α-coverage problem in three-dimensional
sensor networks. Ammari and Das [33,34] designed a distributed hybrid forwarding protocol,
which guaranteed k-coverage, and discussed the minimal deployment density of sensor nodes
required in the three-dimensional k-coverage problem. In [35], a localized, pseudo-distributed scheme
was further proposed to achieve k-coverage in 3D duty-cycled WSNs, but the diverse k-coverage
requirements in different sub-regions were not mentioned.

2.3. The Existing Deployment Methods of UWSNs

The existing deployment methods of three-dimensional underwater sensor networks can be
classified into two categories: the sea-bottom deployment methods and the sea-column deployment
methods. Table 1 clearly displays the deployment classification of UWSN.

In the sea-bottom deployment, the seabed plane under the monitoring area is divided into
many triangular grids, with nodes deployed in the intersections of the grids, so as to achieve full
coverage of the monitoring area with a minimum number of nodes. Due to the 3D feature of the
underwater environment, most applications require the network to collect subaqueous or aquatic data.
Therefore, it is hard for the sea-bottom deployment methods to meet such demands.

In the sea-column deployment, nodes are deployed into 3D underwater space in order to achieve
3D coverage of the monitoring area. The existing sea-column deployment strategies fall into two
categories: the uniform deployment and the non-uniform deployment. The uniform deployment
requires the sensor nodes to be distributed uniformly in the monitoring area. Many uniform coverage
optimization methods [36–38] have been proposed by continuously adjusting the diving depth of nodes
and reducing sensing overlap areas of adjacent nodes. Alam et al. [31] proved the optimality of the
truncated octahedron model in the problem of the three-dimensional coverage of sensor networks and
provided various deployment strategies for practical applications. However, the coverage requirements
of many practical applications are non-uniform. Some sub-regions of the whole monitoring area need
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to be covered by more than one sensor node; therefore, the uniform deployment-oriented optimization
algorithms cannot achieve a satisfactory node deployment.

Table 1. Deployment classification of UWSN.

Scheme Sea-Column Deployment Sea-Bottom
Deployment

Location 3D Underwater Space The Bottom of the Sea

Distribution
Mode

Uniform deployment Non-uniform deployment

Nodes are deployed in the
intersections of the grids

Distributed uniformly in the
monitoring area

Deployed non-uniformly
according to the distribution
states of underwater targets

Characteristics It cannot meet actual
demand

A well-designed protocol
and a deployment algorithm
are required

The 3D properties of
underwater space are not
taken into account

The non-uniform deployment strategy, on the other hand, allows sensor nodes to be deployed
non-uniformly according to the distribution states of underwater targets. Many research efforts
working on the non-uniform deployment strategy are based on the concept of the “target interest
event”, which means the purpose of node deployment is to cover the targets and interesting events
instead of the whole monitoring area [39] and to make the density distribution of sensor nodes be
consistent with that of the target events. The non-uniform deployment strategy is more effective
in practical applications and accords with the sparsity characteristic of sensor nodes deployed in
UWSNs [6,21]. Aitsaadi et al. [40] proposed DDA (Differentiated Deployment Algorithm) for water
quality monitoring in a closed lake. The algorithm took the distribution characteristics of pollutants
into consideration and deployed nodes non-uniformly using mesh grid representation, thus achieving
diverse coverage of the monitoring area. Golen et al. [41] divided the monitoring area into sub-regions
based on environmental factors such as acoustic characteristics and then optimized node deployment
using the Game Theory Field Design (GTFD) model. However, this method is difficult to implement
due to its high complexity. Zakia et al. [42] proposed a heuristic deployment strategy based on sub-cube
tessellation and mixed integer linear program optimization. Liu et al. [43] studied the topology control
of UWSNs with diverse coverage requirements and proposed two algorithms in which the sensing
radius of a sensor node is adjusted to achieve the diverse coverage requirements. Wang et al. [44]
proposed a self-deployment algorithm for maintaining the maximum coverage and connectivity in
underwater acoustic sensor networks based on an ant colony optimization in 2019. They carried out
the greedy strategy and improved the path selection probability and pheromone update system.

However, current non-uniform deployment strategies based on event-driven cannot fully meet
the demands of underwater sensor network applications. The main reasons are listed as follows:

• Most of the event-driven coverage algorithms obtained only one-coverage in the target event area,
which might not meet the demands of practical applications. For instance, target localization
tasks require that any point within the region must be covered by at least three sensor nodes.

• Many methods mainly considered determined target events while ignoring the uncertain events
in the open underwater environment. Not much attention was paid to the difference of the levels
of coverage required in different sub-regions. Some research works considered diverse k-coverage
requirements in different sub-regions, but only in two-dimensional situations [28], which needed
to be extended to three-dimensional cases.

Current research works covered some aspects of the k-coverage problems in three-dimensional
space, but few methods have been proposed to solve the diverse k-coverage problem in
UWSNs. Some solutions for UWSNs were only extended from the general 3D k-coverage
cases. Therefore, we propose an enhanced virtual force algorithm k-ERVFA (k-Equivalent Radius
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enhanced Virtual Force Algorithm) to solve effectively the diverse k-coverage problem in 3D
UWSNs. The algorithm is based on the concept of “k-virtual force”, and it studies the minimum
deployment density of sensors required for 3D UWSNs’ k-coverage according to the practical
application. The proposed algorithm can realize different k-coverage requirements in 3D UWSNs
and can be extended to general situations, such as the cases of node sparsity and k-coverage
time-varying requirements.

3. 3D UWSNs’ Network Model with the Diverse k-Coverage Requirement

3.1. Preliminaries and Problem Statement

In this paper, the proposed network model consists of anchors, underwater sensor nodes, and buoy
nodes, which are connected to the sensor nodes via a rigid cable. Our goal is to achieve a desirable
diverse k-coverage rate with minimal adjustment cost. We made the following assumptions:

1. The 3D underwater space A is a cube with side length L0 (expressed as A = L0
3), and its bottom

surface is the plane of the seafloor with the X-Y axis, while the Z-axis extends forward to the sea
surface. The ith sub-region with the k-coverage requirement is denoted by Ak,i. The volume of
Ak,i is denoted as VAk,i , and Ak,i should be k-covered. Both VAk,i and k are known in advance.

2. At the initial phase, a fixed number of sensor nodes and buoy nodes are sprinkled randomly
by an airplane. The coordinates of sensor nodes are randomly distributed. The buoy nodes are
fixed through anchors on the seafloor so that the (x,y)coordinates of the sensor nodes are also
fixed. The diving depth of the sensor nodes can be adjusted by stretching the rigid cable between
the sensor nodes and buoy nodes. Each underwater sensor node Si communicates with its buoy
node Bi via a wired cable and reports its current depth, and the perception data are collected.
Each buoy is equipped with a GPS module in order to obtain its coordinate. In addition, the rigid
wired cable guarantees that the buoy will not drift far.

3. The sink nodes collect the coordinates of buoy nodes and the corresponding underwater sensor
nodes, then run the re-deployment algorithm, which calculates the re-deployment positions (only
in the vertical direction) of sensor nodes to meet the k-coverage requirements of the sub-regions.
When the calculation is complete, the sink nodes send a re-deployment message to the buoy
nodes, and the buoy nodes adjust the length of the underwater wired cable; thus, the diving
depths of sensor nodes are adjusted, and re-deployment is implemented.

4. Assume that the satisfactory k-coverage rate is denoted by η, whose value needs to be determined
by practical applications, while a fixed value of the k-coverage rate is necessary for the more
concise theoretical derivation and experimental simulations in this paper. In order to make the
analysis more intuitive, the value of η will be set to 89% as a demonstration in this paper. Note that
the input parameter η is still optional and adjustable. The proposed model and algorithm of this
paper can adapt to different η values to meet various requirements.

Under the above assumptions, the proposed algorithm will calculate the number of sensors needed
for a given diverse k-coverage problem and adjust the coordinates of sensor nodes automatically to
achieve the required coverage rate. The explanations of the main notations are presented in Table 2.

Table 2. Description of the main notations. ERVFA, Equivalent Radius enhanced Virtual
Force Algorithm.

Notation Description

r The coverage radius of sensor nodes
k The multiplicity of the coverage

requirement
rk The k-equivalent radius
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Table 2. Cont.

Notation Description

Ak,i The ith sub-region with the
k-coverage requirement

VAk,i The volume of Ak,i
pk,i Some point inside Ak,i
Ck,i The k-coverage rate of Ak,i
Sx The xth sensor node
L0 The side length of the underwater

monitoring area
η The satisfactory coverage rate
θ The node redundancy coefficient
ρmin The minimum deployment density

of sensor nodes
nmin The minimal number of sensor

nodes
Kcon f , Kattr,k, KOb,k The virtual force coefficients
∆Lmax The maximum moving distance of

sensor nodes in each iteration
Nmax The maximum iteration times in

each round of k-ERVFA

3.2. Related Definitions of the Network Model

Definition 1 (Sub-regions with different k-coverage requirements). The whole underwater monitoring
area consists of q sub-regions of various levels of coverage requirements. Namely, for any sub-region
Ak,i(i = 1, 2, ..., q, k ∈ Z+), any point inside Ak,i should be at least k-covered.

Definition 2 (Perceptual model). The Boolean perceptual coverage model is adopted in this paper. Let r be
the coverage radius of the sensor node and (xi, yi, zi) be the coordinates of sensor node Si. Then, the region
covered by Si is a three-dimensional sphere with a radius of r and the center at (xi, yi, zi). The region is called
the perceptual sphere region, denoted as ε(i). Namely, it is the set of all points p that conform to Equation (1),
in which d(Si, p) denotes the Euclidean distance between Si and p.

ε(i) = {p|d(Si, p) ≤ r} (1)

Definition 3 (k-equivalent radius). Let r be the coverage radius of the sensor node. Its k-equivalent radius is
then defined as:

rk =
r
k

k = 1, 2, 3... (2)

Definition 4 (k-conflict radius). In the classic virtual force algorithm, two sensor nodes with Euclidean
distance less than 2r are considered as conflicting nodes. Similarly, we consider two nodes to be k-conflicting
nodes when the Euclidean distance between them is less than two-times the k-equivalent radius. The k-conflict
radius rcon f ,k is then defined in Equation (3):

rcon f ,k = 2rk (3)
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Definition 5 (k-coverage rate). With sub-region Ak,i, we define its k-coverage rate (denoted as Ck,i) as the
volume of the k-covered region within Ak,i divided by the total volume of Ak,i:

Ck,i =
Vk(pk,i)

VAk,i

=

∫
Ak,i

xk(pk,i)dpk,i

VAk,i

k = 1, 2, 3...

pk,i ∈ Ak,i, ∆(pk,i)→ 0

xk(pk,i) =

{
1 if pk,i is k−covered
0 otherwise

(4)

where ∆(pk,i) is the volume of point pk,i, which reflects the granularity of division.

Definition 6 (Sphere with the k-equivalent radius). The three-dimensional sphere with a radius of rk
(rk =

r
k , k = 1, 2, 3...) is defined as a sphere with the k-equivalent radius. Note that the actual physics coverage

radius is still r.

3.3. Analysis of the Deployment Density Satisfying Different k-Coverage Requirements

In this section, we consider the deployment density needed to meet the specific k-coverage
requirement in a sub-region of UWSNs. Notice that [33,34] studied the minimal deployment density
to meet the k-coverage requirement in 3D underwater region. In this paper, we obtain an improved
minimum volume density of sensor nodes compared to that in [33,34]. The result is as follows:

Claim 1. The minimum volume density of sensor nodes needed to obtain a desirable k-coverage rate (89%) is
denoted as ρkmin, and the value of ρkmin is 3

√
3/8r3, when k= 1; 3/πr3, when k = 2; 9/2πr3, when k = 3... (for

other k values, refer to Equation (13)).

To reach the above conclusion, firstly, we divide the 3D underwater space into cubic grids as
shown in Figure 1a (four grids are illustrated here). Let L be the side length of the small cubic grid and r
be the coverage radius of the sensor node. Each sensor node is placed in the center of the corresponding
cubic. We can see from Figure 1a that if the eight vertices are not covered by the centered sensor, it will
not be covered by sensors from other grids either. In this case, similar coverage breaches will occur in
every cubic grid in the 3D space. Namely, when r is not large enough (compared to L), the coverage
rate will not be satisfactory. However, when r increases to the case shown in Figure 1b, all eight vertices
of the cubic grid will be covered. Thus, in order to ensure a 100% one-coverage rate, we have:

rmin =

√
3

2
L, namely r ≥ rmin =

√
3

2
L (5)

For the convenience of the solving process, L is represented as L = 2r
m· 3√k

, where k is the coverage
multiplicity required in this given sub-region and m is an unknown parameter. According to the
discussion above, we have:

r ≥ rmin =

√
3

2
L =

√
3r

m · 3
√

k
, m ≥

√
3

3
√

k
(6)

Sensor nodes are deployed uniformly in the whole 3D underwater space, so the density of sensor
nodes is:

ρ =
1
L3 =

1

( 2r
m· 3√k

)
3 =

m3k
8r3 (7)
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Consider some point p inside the given sub-region and a sphere centered at p with a radius of r;
the number of sensor nodes inside the sphere is:

n =
4
3

πr3 · ρ =
4
3

πr3 · m3k
8r3 =

m3πk
6

(8)

Any sensor S inside the sphere covers point p, while for any sensor S′ outside this sphere,
the Euclidean distance between S′ and p is greater than r, which means that p will not be covered by
S′. In order to meet the k-coverage requirement, there shall be at least k sensors inside this sphere;
thus, we have:

n ≥ k, namely
m3πk

6
≥ k, m ≥ 3

√
6
π

= 1.2407 (9)

Theoretically, k-coverage requirement will be met when both Equations (6) and (9) are satisfied
simultaneously. However, the analysis above mainly considers the average number of sensors.
In practice, the 100% k-coverage rate requirement cannot always be met due to randomness in
sensor deployment.

(a) Incomplete coverage (b) Complete coverage

Figure 1. Coverage of a cubic grid. (a) Incomplete coverage; (b) Complete coverage.

For example, as shown in Figure 2, which is the 2D projection of the 3D case mentioned above,
blue pentagrams stand for sensor nodes. Sphere 1 and Sphere 2 have the same volume, but Sphere 1
contains two sensor nodes, while Sphere 2 contains only one sensor node. Namely, all particles inside
Sphere 1 are two-coverage, while the particles inside Sphere 2 and outside Sphere 1 are one-coverage.

Therefore, an adjustable parameter θ is introduced to ensure higher k-coverage in the actual
deployment, which makes our solution more suitable for random deployment of initialization.

Therefore, the above condition m3πk
6 ≥ k should to be adjusted to:

m3πk
6
≥ θk⇒ m ≥ 3

√
6θ

π
, θ > 1 (10)

where θ is introduced to provide some redundancy of nodes so that a high k-coverage rate can be
guaranteed. θ is related to both k and η, expressed as θ = θ(k, η). The value of θ should be carefully
chosen, for a higher θ value will lead to a higher sensor deployment cost, while the satisfactory
coverage rate will not be obtained if θ is too small. We propose the Optimal θ Searching Algorithm
(OθSA) to help decide the appropriate value of θ.
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Figure 2. A counter-example to average volume.

In this paper, the coverage radius of sensor node r = 10 m, and the side length of the 3D underwater
region L0 = 100 m. Sensor nodes were deployed as shown in Figure 1, with a deployment interval of
L = 2r/(m · 3

√
k). In order to make the analysis more intuitive, the value of η will be set to 89% as

a demonstration in this paper.
In order to meet different requirements of the k-coverage rate in practical applications, we can

obtain the optimal θ value through the optimal θ searching algorithm (Algorithm 1). When η is varied,
the new θ value can be calculated by this algorithm to match it. In addition, we have displayed different
values regarding θ when η = 88% and 90%, respectively, as shown in Figure 3 and Table 3 below.
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Figure 3. The simulation results of the coverage rate with different values of k and θ(k, η). (a) η = 89%;
(b) η = 90%; (c) η = 88%.
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Algorithm 1: Optimal θ searching algorithm.
Input: k, r, L and ∆x.
Output: The coverage rate.

1 # define INF 1,0000
2 MAXN = ceil(L/(2r/((6 ∗ 2.5/pi ∗ k)(1/3))))

/* the maximum number of sensors in one side */
3 x = y = z = zeros(0,MAXN)
/* initialize the sensors’ (x,y,z) coordinates */

4 for (i,10,INF) do
5 Calculate θ = i/10;
6 m = 3

√
6θ/π;

7 dx = 2r/(m 3
√

k)
8 for (j,1, MAXN) do

/* let the x, y, z be the feasible coordinates of the sensors */
9 if (j ∗ dx ≤ L) then

/* not to exceed the L3 space */
10 x(j) = j ∗ dx
11 end
12 end
13 end
14 y = z = x;

/* calculate the sensors’ (x,y,z) coordinates of the 3D space */
/* calculate the k-coverage rate */

15 for (i0; 0; L) do
16 for (j0; 0; L) do
17 for (k0; 0; L) do
18 Pot_covered (i0, j0, k0) = 0
19 for (i1; 0; MAXN) do
20 for (j1; 0; MAXN) do
21 for (k1; 0; MAXN) do
22 if (x(i1) ∗ y(j1) ∗ z(k1) 6= 0) and

((i0 − x(i1))2 + (j0 − y(j1))2 + (k0 − z(k1))2 ≤ r2) then

23 end
24 end
25 end
26 end
27 if ( Pot_covered (i0, j0, k0) ≥ k) then
28 Num_covered_k ++;
29 end
30 end
31 end
32 end
33 k_coverage_rate = Num_covered_ k/(L/∆x)3;

/* the satisfactory k-coverage rate is achieved, and the algorithm ends */
34 if (k_coverage_rate ≥ η) then
35 break;
36 end
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Table 3. The η value and the matching θ value in different cases.

η

θ k
2 3 4 5

88% 1.9 1.9 1.9 2.2

89% 2.0 2.0 2.0 2.3

90% 2.1 2.2 2.1 2.4

In the simulation experiment, we set the step size of spatial variation ∆x to be one meter.
We performed the search with different k values and varied θ(k, η) from 1.0–2.5 with an increment
of 0.1. Simulation experiments were carried out several times, and the average coverage rate was
calculated to decide the appropriate θ(k, η). The simulation results are shown in Figure 3.

As we can see from Figure 3b, when θ(k, η) = 1, which is the aforementioned case without any
redundancy of nodes, the two-coverage rate is only 53.47%, and 38.52% for three-coverage, 41.68% for
four-coverage, and 36.23% for five-coverage. The coverage rate increases significantly when θ grows.
The optimal θ to achieve the 89% k-coverage rate is as follows: θ(2, 89%) = θ(3, 89%) = θ(4, 89%) = 2,
and θ(5, 89%) = 2.3.

From Figure 3, we find that a higher value of θ (greater than 1.8) makes little contributions to
the improvement of the coverage rate, while causing an unnecessary deployment cost. Thus, it is not
recommended to adopt a higher value of θ. In addition, for higher values of k(k ≥ 5), the optimal
value of θ also should be determined by OθSA.

It can be seen in Figure 3 and Table 3 that the simulation results are consistent with the theoretical
derivation. The basic idea of the algorithm can be described as follows: for a given k, through traversing
the value of θ(k, η) from 1.0 with an increment of 0.1, the value of m can be calculated according to
Equation (10); thus, the quantitative relation between r and L is known, and the k-coverage rate in the
sub-region can be obtained. Whenever the calculated coverage rate reaches η, the algorithm will be
terminated at this moment, and the value of θ(k, η) is optimal. This algorithm belongs to the Monte
Carlo method (statistical simulation algorithm). The shorter the step size of space particle coordinates,
the higher the precision and the higher the algorithm complexity. The time complexity of OθSA is
O(L3

o MAXN3/(∆x)3) where ∆x is the step size of spatial variation and MAXN is ceil(L0/L).
In summary, in order to achieve a satisfactory k-coverage rate of one given sub-region,

both Equations (6) and (10) should be satisfied (m ≥
√

3
3√k

and m ≥ 3
√

6θ
π ). Besides, larger m leads

to smaller L = 2r
m 3√k

and a greater volume density of sensor nodes, which means the deployment cost
is more expensive. We should adopt the minimum m that satisfies both Equations (6) and (10). That is:

m ≥
√

3
3√k

m ≥ 3
√

6θ
π

k ≥ 1 & k ∈ Z+

The minimum m and corresponding volume density of nodes to ensure an 89% k-coverage rate
can then be calculated and is shown in Table 4.
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Table 4. The minimum m and corresponding volume density to ensure an 89% k-coverage.

k 1 2 3 4 5 ...

θ(k, η) 1 2 2 2 2.3 ...

mmin(k, η)
√

3 3
√

12
π

3
√

12
π

3
√

12
π

3
√

13.8
π ...

ρmin(r, k, η)
3
√

3
8r3

3
πr3

9
2πr3

6
πr3

8.625
πr3 ...

Notice that ρmin(r, 5, 89%) > ρmin(r, 4, 89%) > ρmin(r, 3, 89%) > ρmin(r, 2, 89%) > ρmin(r, 1, 89%),
which coincides with the actual situation.

In [33], the minimal volume density of sensor nodes needed to ensure k-coverage in 3D space is:

λ(r, k) =
9k

πr3 , k > 1 (11)

In [34], the volume density is:

β(r, k) =
k

0.422r03 , k ≥ 4, where r0 =
r

1.066
(12)

We will see in Section 6.2 that 1 < θ(k, η) ≤ 2.3 when η = 89% and k ≥2. Therefore, we have:

ρmin(r, k, η = 89%) =
m3

mink
8r3 ≤

13.8
π k
8r3

=
1.725k

πr3 , when k ≥ 2
(13)

In comparison, λ(r, k) is several times ρmin(r, k, 89%), and β(r, k) is greater than ρmin(r, k, 89%)

when k ≥ 4, while ρmin(r, k, 89%) is sufficient to ensure a coverage rate of 89%. Considering the
deployment cost and the achieved coverage rate, ρmin(r, k, 89%) has better performance than λ(r, k)
and β(r, k). In practice, a one-coverage rate reaches 100% with ρmin(r, 1, 89%) when k = 1, as shown in
Figure 1b.

The minimal number of nodes in any given k-coverage sub-region can then be calculated as:

nmin(k, η) = Vk · ρmin(r, k, η) = Vk ·
m3

min(r, k, η) · k
8r3 (14)

where Vk is the volume of the k-coverage sub-region.

4. The Enhanced Virtual-Force Algorithm k-ERVFA

In this section, we propose the enhanced virtual force algorithm, i.e., k-ERVFA to solve the diverse
k-coverage problem of 3D UWSNs. The model of the sensor sphere with k-equivalent radius (seen in
Section 3.2) is used to cover the entire 3D underwater area.

4.1. Repulsion between k-Conflicting Nodes Based on Coulomb’s Law

According to Coulomb’s Law, we define the k-repulsion between two sensor nodes i and j as
Equation (15):

−→
Fji =


Kcon f

d2
ij
· −→eji , 0 < dij ≤ rcon f ,k

0, dij > rcon f ,k

i, j ∈ {1, 2, ..., n} (15)

where n is the total number of sensor nodes in the sensor network, dij is the Euclidean distance between
sensor node i and sensor node j, rcon f ,k is the k-conflict radius (seen Definition 4 in Section 3.2), −→eji is



Sensors 2019, 19, 3496 13 of 38

the unit vector in the direction from Sj to Si, and Kcon f is the coefficient of the Coulomb repulsion
between nodes, which is a constant independent of the value of k.

Note that for sub-regions with different k-values, the only difference in Equation (15) is rcon f ,k,
which is 2 · r/k (seen in Definitions 3 and 4 in Section 3.2). For greater k values, both rk and rcon f ,k
are smaller, i.e., the repulsion exists only when the Euclidean distance between neighboring nodes
is rather small (compared to cases with small k values). A smaller distance between nodes means
a higher volume density, which leads to a higher k-coverage rate. This explains why the k-equivalent
radius was introduced and how it facilitates obtaining diverse k-coverage.

In this algorithm, the k-repulsion between nodes was adopted to minimize the overlapping
coverage area of neighboring nodes.

4.2. Attraction from the k-Coverage Requirement Sub-Regions

If there were only repulsion between nodes, sensor nodes would just disperse as far as possible so
there will be coverage breaches between sensors; thus, k-coverage will not be achieved. In an ideal
deployment scheme, more sensor nodes should move towards sub-regions with k-coverage (k ≥ 2)
requirements to guarantee better k-coverage. Therefore, we introduce the attraction from the k-coverage
requirement sub-regions on nodes to “pull in” more sensor nodes. In order to achieve diverse
k-coverage, the attraction coefficients of sub-regions with different k-coverage requirements should
differ. The attraction from a sub-region on nodes is considered as the attraction from the region’s
centroid. For a given k (k ≥ 2), the k-attraction from the jth k-coverage requirement sub-region on
sensor Si is:

−→
F attr,ikj =


Kattr,k

d2
ikj
· −→eikj, if Si is outside of Ak,j

0, if Si is inside of Ak,j

(16)

where Kattr,k is the attraction coefficient of the k-coverage requirement sub-regions on sensor nodes and
varies with different k values and dikj is the equivalent distance between sensor Si and the k-coverage
requirement region Ak,j (the jth k-coverage requirement sub-region for a given k), which is considered
as the Euclidean distance between Si and the centroid of Ak,j:

dikj =
√
(xi − xk,j)

2 + (yi − yk,j)
2 + (zi − zk,j)

2 (17)

The direction of
−→
F attr,ikj is determined by the unit vector −→eikj, which starts from Si and ends

at the centroid of Ak,j. Now, considering the value of Kattr,k, naturally, for sub-regions with higher
k-coverage requirements, the attraction should be greater so that more sensors can be pulled into these
sub-regions; thus, we will set greater Kattr,k for higher k values. The numerical relation of Kattr,k for

different k values is determined by
Kattr,k1
Kattr,k2

= k1
k2

(the ratio of the coverage requirement multiplicity in

different sub-regions), where k1 and k2 represent the coverage requirement multiplicity in different
sub-regions, respectively. The numerical relation between Kattr,k and Kcon f will be stated later in the
simulation section.

4.3. Obstacle Repulsion from the “Fixed” k-Coverage Requirement Sub-Regions

The k-ERVFA algorithm sorts all sub-regions in a descending order of k values, then considers the
sensor deployment in each sub-region successively. Namely, the sub-regions with high k values are
considered as “fixed” after their deployment rounds are over. The sensor nodes inside of the “fixed”
sub-regions will not participate in the future deployment process (i.e., the deployment process in
sub-regions with smaller k values). Besides, in the following deployment process, the aforementioned
“fixed” sub-regions should be considered as obstacles to prevent the nodes outside the “fixed”
sub-regions from re-entering. This kind of re-entering will result in extra deployment cost and
can be avoided when the obstacle k-repulsion is adopted.
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We set the obstacle region Obk,i of “fixed” sub-region Ak,i to be the combination of Ak,i and a ring
region formed by the spheres with a radius of rk and the centroid at the boundary of Ak,i, as shown in
Figure 4.

Figure 4. Obstacle area Obk,i with the 2D form.

Obk,i can be defined as:

Obk,i = {p|dob(p, ok,i) ≤ d(p′, ok,i) + rk, ∀p ∈ bondk,i} (18)

where p represents a point in 3D space, dob(p, ok,i) is the distance from p to ok,i, which is the centroid
of Ak,i, bondk,i is the boundary surface of region Ak,i, and p′ is the projection of point p on bondk,i.

In the current deployment round, if sensor node Sj is outside the fixed region Ak,i and inside the
obstacle region Obk,i, it will receive repulsion from Obk,i:

−→
F ob,ikj =


Kob,k

d2
ikj
· −→eikj if Sj is inside of Obk,i && Sj /∈ Ak,i

0 if Sj is outside of Obk,i

(19)

where
−→
F ob,ikj represents the repulsion of obstacle region Obk,i on sensor Sj with the direction from

the centroid of region Ak,i to Sj, dikj is the distance between Obk,i and Sj, and Kob,k is the repulsion
coefficient of Obk,i.

4.4. k-Resultant Force of the Sensor Node

Based on the virtual force model and the discussions above, the k-resultant force on node Si is the
vector sum of the aforementioned k-repulsion and k-attraction, namely:

−→
Fi = ∑

j

−→
Fji + ∑

k,j

−→
F attr,ikj + ∑

k,j

−→
F ob,ikj (20)

In a single deployment round, the sink node receives the coordinate of Si(xi, yi, zi) from the buoy,
calculates the k-resultant force that acts on Si, and then decides the moving direction and distance of
Si in this round. Since the underwater sensor nodes can only move vertically, we need to obtain the
component force along the Z-axis by projecting

−→
Fi onto the Z-axis:

−→
Fiz =

−→
Fi ·

zi√
x2

i + y2
i + z2

i

(21)

Let
−→
Fi be expressed as

−→
Fi = (Fix, Fiy, Fiz), then

−→
Fiz = Fiz · −→ez , where −→ez is the unit vector in the

positive direction of the Z-axis. The moving distance and direction of Si are then decided by the
magnitude (|Fiz|) and direction of

−→
Fiz. Let the maximum moving distance (along the Z-axis) of all
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the sensor nodes in a single round be ∆Lmax (the suitable value of ∆Lmax is discussed in Section 6).
After

−→
Fiz of each Si is calculated in each round, the maximum of |Fiz| can be obtained and be denoted

by max{|Fiz|} (i = 1, 2..., n). The moving distance of Si in this round is then:

∆zi =
Fiz

max{|Fiz|}
· ∆Lmax (22)

The normalized calculation in Equation (22) represents the correlation between the resultant force
that acts on the sensor node and the sensor’s moving distance in each round, namely greater force
corresponds to longer moving distance under the premise that the maximal moving distance in a single
round is ∆Lmax.

4.5. Motion Pattern of Boundary Nodes Based on the Ideal Elastic Collision

Any given closed region has its boundary; here, the word “region” means either one specific
k-coverage requirement sub-region Ak′i ,j

or the entire underwater monitoring area A. For one
sub-region Ak′i ,j

, when the “fixed and even” algorithm (seen in Sections 4.6 and 6.1) is performed, we
need to make sure that all sensor nodes inside Ak′i ,j

always stay in Ak′i ,j
(that is why these nodes are

considered to be “fixed”). For the entire monitoring area A, naturally, any sensor node should not
move outside of the boundary of A. To prevent nodes from escaping a closed region, we propose the
motion pattern of boundary nodes based on ideal elastic collision.

In this paper, sensor nodes can only move along the Z-axis, so we only consider the z-coordinate.
If the calculated redeployment position zi + ∆zi is outside the boundary, then the actual redeployment
position should be modified as follows according to ideal elastic collision:

When zi = zi + ∆zi > A:

zi
′ = A− (zi + ∆zi − A) = 2A− (zi + ∆zi) (23)

When zi = zi + ∆zi < A:

zi
′ = A + (A− (zi + ∆zi)) = 2A− (zi + ∆zi) (24)

where A is the z-coordinate of the upper horizontal boundary of the 3D region A, A is that of the lower
horizontal boundary, and zi

′ is the modified redeployment position of node Si after collision.

4.6. The Fix and Even Redeployment Algorithm

In this Section, we only describe the procedure of the fix and even algorithm; a further discussion
and explanation can be seen in Section 6.1.

1. The input parameter of this algorithm is the coverage multiplicity ki
′. Set the state of any sensor

Sx inside Aki
′ ,j to be “fixed”. Namely, for any sensor inside Aki

′ ,j, its range of motion should be
within Aki

′ ,j.
2. Calculate the k-resultant force on Sx and its moving vector ∆zx, based on the discussions in

Sections 4.1–4.4. If the calculated redeployment position zx + ∆zx is outside Aki
′ ,j, modify the

actual redeployment position according to Equation (23) or (24).

Repeat Step 2 until the iteration number reaches Nmax or the k-coverage rate of Aki
′ ,j is met,

that is Cki
′ ,j ≥ η, where η is the satisfactory k-coverage rate for practical application. The fix and even

algorithm is described in Algorithm 2.
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Algorithm 2: The “fix and even” algorithm.

Input: k′i, the specific multiplicity of the coverage requirement.
Output: The coverage rate inside Ak′i ,j

is improved.

1 Nalready ← 0 repeat
/* Nalready is used to count iteration times */

2 for all Sx in Ak′i ,j
do

3 Dx ← “ f ixed′′

/* Set the state of any sensor Sx inside Aki
′ ,j to be “fixed” */

4 calculate the k-coverage parameters:
−→
Fxz, ∆zx, zx = zx + ∆zx

/* according to Equations (15) to (22) */
5 if zx > Ak′i ,j

or zx < Ak′i ,j
then

6 calculate the new z′x
/* according to Equation (23) or (24) */

7 end
8 end
9 until ++ Nalready > Nmax or all Ck′i ,j

> η;

4.7. Steps of the k-ERVFA Algorithm

The procedure of k-ERVFA algorithm (described in Algorithm 3) is as follows:

1. Sort {k1, k2..., km} (ki is the coverage multiplicity in different k-coverage requirement sub-regions)
in descending order, and get {k1

′, k2
′..., km

′}, where k1
′ > k2

′ > ... > km
′. For each ki

′, calculate the
corresponding k-equivalent radius rki

′ = r/ki
′.

2. Check the current iteration number Nalready; if Nalready > Nmax, break out the loop in Step 2;
otherwise, substitute the k-equivalent radius calculated in Step 1 into Equations (15)–(22). The sink
nodes calculate the k-resultant force and the moving vector for all sensor nodes, except for those
whose states are set as fixed in Step 3. The redeployment positions of sensors in this iteration
round are then determined (for boundary nodes, the ideal elastic collision model will be adopted
if necessary). Now, calculate the k-coverage rate Cki

′ ,j of Aki
′ ,j, (j = 1,2, ... , mki

′ , where mki
′ is the

total number of sub-regions that need to be ki
′-covered). Break out of Step 2 if Nalready > Nmax or

the k-coverage rate for all Aki
′ ,j is met. Otherwise, repeat Step 2, and increase Nalready by one.

3. For all sub-regions that need to be ki
′-covered, the redeployment process is partially done.

Now, either the k-coverage rate for all Aki
′ ,j has been met or Nalready has reached Nmax.

Then, call the fix and even algorithm for all Aki
′ ,j. By doing this, all sensors within Aki

′ ,j are
set to be fixed and will no longer participate in the following redeployment rounds (smaller ki

′).
Besides, the sensors within Aki

′ ,j are homogenized, and a better coverage rate is achieved.
4. Increase i by one. If i ≤ m, go back to Step 2. Otherwise, the redeployment algorithm finalizes,

and sink nodes send the final positions of sensors to the corresponding buoy nodes; the sensors
then individually move to the calculated final positions, and the redeployment process is done.
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Algorithm 3: The k-ERVF Algorithm (k-ERVFA).
Input: The coverage requirement of all sub-regions in the monitoring area.
Output: The final deployment of sensor nodes with the improved k-coverage rate.

1 Sort {k′i} in descending order, and calculate rk′i
= r

k′i
2 for i = 1 to m do
3 Nalready ← 0
4 while ++ Nalready ≤ Nmax and any Ck′i ,j

< η do
5 for l = 1 to n do
6 if Dl 6= ‘ f ixed′ then
7 calculate

−→
Flz, ∆zl , zl =zl + ∆zl

/* according to Equations (15) to (22) */
8 if zl > Ak′i ,j

or zl < Ak′i ,j
then

9 calculate the new z′l
/* according to Equation (23) or (24) */

10 end
11 end
12 end
13 end
14 for all Sx in Ak′i ,∗

do
15 call the “fix and even” algorithm to re-compute the position of Sx

16 end
17 end

5. Simulation Results and Performance Analysis

We performed simulations of the k-ERVFA algorithm using MATLAB R2015a. The entire
three-dimensional underwater monitoring area was set to be a cube with side length of 100 m.
The diverse k-coverage requirement was set as follows:

• a cubic sub-region that is centered on (25 m, 25 m, 25 m) needs to be three-covered, and the size
of the three-coverage requirement sub-region is 30 m * 30 m * 30 m;

• a cubic sub-region that is centered on (70 m, 70 m, 70 m) needs to be two-covered, and the size of
the two-coverage requirement sub-region is 40 m * 40 m * 40 m;

• the rest of the monitoring area needs to be one-covered.

Sensor nodes were randomly distributed initially. We set the numerical relation of Kcon f : Kattr,2 :
Kattr,3 : Kob,2 : Kob,3 to be 1:2:3:2:3. With a given maximum iteration number, this proportion helps
to achieve a satisfactory k-coverage rate according to the simulation results. The detailed simulation
parameters are shown in Table 5.

Here, r is set to be 10 m, and according to Equation (14), the minimal number of sensor nodes
needed to meet the diverse k-coverage requirements (89% was considered as the satisfactory coverage
rate) in different sub-regions is: 591 for the one-coverage sub-region; 62 for the two-coverage sub-region;
39 for the three-coverage sub-region; and 692 in total.
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Table 5. Simulation parameters. RD, Random Deployment; CLA-EDS, a Cellular
Learning Automata-based Enhanced Deployment Strategy; IDCA, Intelligent Deployment and
Clustering Algorithm.

Monitoring area 100 m * 100 m * 100 m

k3-sub region A3,1 k3 = 3, center3: (25 m, 25 m, 25
m), size3 = 30 m * 30 m * 30 m

k2-sub region A2,1 k2 = 2, center2: (70 m, 70 m, 70
m), size2 = 40 m * 40 m * 40 m

k1-sub region A1,1 k1 = 3, size1 = the rest of the
monitoring area

Number of sensor nodes 400∼650, with a step size of 50

Coverage radius r 10 m

∆Lmax 7 m

Contrast algorithms k-ERVFA, RD, VFA, CLA-EDS,
and IDCA

Max iteration times Nmax 100

Kcon f , Kattr,k, KOb,k Kcon f :Kattr,2:Kattr,3:KOb,2:KOb,3 =
1:2:3:2:3

However, in the simulation experiments, we deployed no more than 650 sensor nodes into the
monitoring area for the reasons below. Firstly, according to Equation (10) and Table 4, the calculated
number of nodes will achieve a 100% one-coverage rate in the one-coverage requirement sub-regions,
which is unnecessary. Secondly, θ was introduced, which leads to redundancy in node deployment.
In practice, k-ERVFA achieved a satisfactory k-coverage rate with approximately 650 nodes, as shown
in the simulation results.

In the simulation experiments, the number of nodes varied from 400 to 650 with an increment of
50 each time. We compared k-ERVFA with the following sensor deployment algorithms: RD (initial
Random Deployment algorithm), VFA (classic Virtual Force Algorithm) [7], CLA-EDS (a Cellular
Learning Automata-based Enhanced Deployment Strategy) [28], IDCA (Intelligent Deployment and
Clustering Algorithm) [21]. Note that the IDCA algorithm does not take the k-coverage requirement
into consideration, and it should be modified to be compared with other algorithms. We modified
IDCA by replacing davg (the expected distance between nodes, which was an input parameter of IDCA)
with davg/k (similar to the k-equivalent radius in k-ERVFA); thus, the modified IDCA can deal with
diverse k-coverage problems. In addition, CLA-EDS and IDCA only study two-dimensional sensor
networks, so we extended them to the 3D case while constraining sensor nodes to move along the
Z-axis only. We compared five algorithms under the same conditions.

Figure 5a–c show the k-coverage rate (k = 3, 2, 1) achieved by different algorithms with the number
of sensor nodes varying from 400 to 650.

As shown in Figure 5a, with 450 sensor nodes, for the three-coverage requirement sub-region A3,1,
the three-coverage rate was 23.43% by RD, 32.92% by VFA, 61.89% by CLA-EDS, 62.97% by IDCA,
and 82.45% by k-ERVFA, which was the highest among the five algorithms. Similarly, in Figure 5b,
with 450 sensor nodes, for the two-coverage requirement region A2,1, the two-coverage rate was 45.32%
by RD, 56.65% by VFA, 83.17% by CLA-EDS, 84.92% by IDCA, and 86.44% by k-ERVFA, which was
also the highest. Note that although 450 was far less than 692 calculated by Equation (14), to achieve
over an 89% k-coverage rate, the two-coverage and three-coverage rate of k-ERVFA reached 82% and
86%, respectively. It is obvious that k-ERVFA improved the k-coverage rate significantly.

Similar results were obtained when n varied from 500 to 650. The two-coverage and three-coverage
rates of k-ERVFA were higher compared to other algorithms. It can be found that there was a significant
advantage in the three-coverage rate, while the advantage was rather slight for the two-coverage rate.
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Figure 5. Comparison of the coverage rate among five sensor deployment algorithms. (a) Comparison
of the three-coverage rate among five sensor deployment algorithms; (b) Comparison of the
two-coverage rate among five sensor deployment algorithms; (c) Comparison of the one-coverage rate
among five sensor deployment algorithms.

Figure 5c demonstrates the one-coverage rate achieved by the five algorithms. IDCA had the
highest one-coverage rate, followed by the CLA-EDS algorithm, then the classic VFA and k-ERVFA
algorithms. Note that the Y-axis started at 0.75, and the difference of the coverage rate between
k-ERVFA and IDCA was from 3.33% to 9.11% as n varied from 400 to 650, which shows that k-ERVFA
increased the two- and three-coverage rate significantly with a slight sacrifice in the one-coverage
rate. In addition, the one-coverage rate of k-ERVFA reached 91.87% when n = 450, which was 12.64%
higher than RD, showing that its one-coverage performance was acceptable.

The main reason was that the k-ERVFA algorithm sorted all diverse k-coverage requirement
sub-regions in terms of k values and considered redeployment in high k-coverage sub-regions
preferentially. Namely, the algorithm deployed nodes into high k-coverage requirement sub-regions
first, followed by the redeployment in low k-coverage sub-regions. In particular, for some point in
a sub-region that needs to be k-covered, if it can only be (k− 1) covered because of the lack of one
sensor node, then the other existing (k− 1) sensor nodes are wasted for this point. For higher k values,
this kind of squander of sensors was severe and should be eliminated with first priority, which explains
why k-ERVFA set priorities according to the k values.

In this respect, k-ERVFA was superior to CLA-EDS, which did not take priority coverage for
the higher k-coverage requirement into consideration (according to [28], the CLA-EDS algorithm
showed an obvious decrease in the high k-coverage rate). IDCA introduced the k-expected distance
davg/k, which was similar to the k-equivalent radius in k-ERVFA, and both algorithms were based
on VFA, while the k-ERVFA algorithm achieved a better two- and three-coverage rate by considering
the k-resultant force comprehensively and applying the fix and even algorithm to redeploy nodes
within sub-regions. Compared to the classic VFA algorithm in which nodes are deployed uniformly,
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k-ERVFA pulled more nodes into the two- and three-coverage requirement sub-regions to achieve
more desirable two- and three-coverage rates with a slight decrease (<3%) in the one-coverage rate.

In addition, in order to prove that it is reasonable to deploy 650 nodes in practical applications,
we added a set of experiments with 700 nodes, and the experimental results are shown in Figure 6.
Deploying 700 sensor nodes could achieve a 100% one-coverage rate and at least an 89% two- and
three-coverage rate. However, compared with the result of 650 nodes, the effect of the improvement
was not obvious. It also caused the redundancy of nodes and the increase of the deployment cost.
In fact, with dynamic adjustment of node position based on the k-resultant force, k-ERVFA achieved
a satisfactory two- and three-coverage rate (though the one-coverage rate decreased slightly) using
only 650 nodes. Therefore, it is reasonable and optimal to deploy 650 nodes in the real scenario.

Figure 6. Comparison of the coverage rate among the five algorithms (n = 700).

Figure 7a–c demonstrate the deployment of 600 sensor nodes in the 3D underwater area with the
parameters shown in Table 5. Figure 7a shows the initial Random Deployment (RD) where the green
dots are the sensor nodes located in three-coverage requirement sub-region A3,1, the red triangles are
the nodes in two-coverage requirement sub-region A2,1, and all other blue asterisks are sensors in
one-coverage requirement sub-regions. It can be seen that sensor nodes were non-uniformly distributed
with RD, and the number of nodes in A3,1 and A2,1 were few. Figure 7b shows the distribution of
nodes after the first round of k-ERVFA, i.e., the round in which spheres with three-equivalent radius
(r3 = r/3) were applied to achieve high a three-coverage rate. Due to the k-attraction of sub-region
A2,1, nodes would aggregate towards A2,1, and the two-coverage rate increased. However, the node
distribution in A1,1 was still non-uniform, which lead to many coverage breaches. Figure 7c is the
ultimate distribution after k-ERVFA has been performed. Compared with Figure 7b, nodes were more
uniformly distributed in A3,1 and A2,1 due to the effect of the fix and even algorithm. There were fewer
coverage breaches in A1,1 so the one-coverage rate increased accordingly. Eventually, the k-coverage
rates achieved by k-ERVFA with 600 nodes were: 92.67% for one-coverage, 97.54% for two-coverage,
and 95.22% for three-coverage, which was consistent with the theoretical analysis.



Sensors 2019, 19, 3496 21 of 38

80
60

X

40
20

20

40

60

Y 

80

10

90

80

70

60

50

40

30

20

Z

(a) Initial deployment

80
60

X

40
20

20

40

60

80

Y

10

20

30

40

90

80

60

50

70

Z

(b) The first deployment round of k-ERVFA
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(c) Final deployment

Figure 7. The deployment of 600 sensors in the 3D underwater area. (a) Initial deployment; (b) The
first deployment round of k-ERVFA; (c) Final deployment.

6. Further Discussions

6.1. The Principle of the Fix and Even Algorithm

After completing Step 1 of the k-ERVFA algorithm, the redeployment process in the ki
′-coverage

requirement sub-regions was only partially done. For now, we know that either the coverage rate in all
ki
′-coverage requirement sub-regions reached η or the iteration number reached Nmax. The latter is the

more common case in practice. It is worth emphasizing that the value of Nmax should not be too large
due to restrictions of energy and running time. Namely, in most cases, the iteration number reached
Nmax, but the ki

′-coverage rate inside Aki
′ ,j was far from satisfaction.

However, if we continue the node redeployment process in Step 2 of k-ERVFA, some nodes
already inside Aki

′ ,j may move away from Aki
′ ,j due to the attraction from other sub-regions,

causing unnecessary moving and computing costs. In order to avoid this situation, here we consider
site preservation and bound these nodes inside Aki

′ ,j, i.e., these nodes cannot move out of Aki
′ ,j and

will not participate in future redeployment rounds. This is the operation of “fix”.
Now that the nodes are fixed inside Aki

′ ,j, their distribution is still uneven, and the ki
′-coverage

rate is not satisfactory. Naturally, we want to homogenize the node distribution inside Aki
′ ,j. This is

the operation of “even”.
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With the fix and even algorithm, we fixed the sensor nodes inside the sub-region and then
homogenized the node distribution, for the purpose of achieving a higher ki

′-coverage rate inside Aki
′ ,j.

6.2. Discussion of the Value of θ(k, η)

In this section, we discuss whether there is a rough acceptable range for the value of θ(k, η) to
guide node deployment in practice.

As shown in Figure 3, when θ < 1.4, some individual points in the curve of the f-coverage rate
were above the corresponding points in the curve of the three-coverage rate, and these two curves
tended to merge when θ > 2.2. For a given θ, θ · k increased with k, which provided more extra nodes.
Namely, if we used the same θ(k, η) for different k values, then the redundancy of nodes in cases with
high k values was excessive and would result in extra deployment cost. Therefore, we conjectured that
with the increment of k, the optimal θ(k, η) was no more than O(k) or even had an upper bound of
a constant.

Conjecture 1. 1 < θ(k, η) ≤ 2.3 when η is 89% and k ≥ 2.

Proof. It is difficult to give the strict mathematical proof of the conjecture, so we discuss the problem
by performing statistical simulations.

Let η be 89%. We ran the OθSA (Optimal θ Search Algorithm) simulation experiments with
k values varying from 1 to 300. We had the maximum of θ(k, η) as max{θ(k, 89%)}k=1∼300 = 2.3
when k = 5. Namely, for k = 1 ∼ 300, the value of optimal θ(k, η) had a numerical upper bound of
2.3. The simulation result shown in Figure 8 also suggests that θ(k, η) decreased when k increased.
In general, the value of θ(k, η) decreased when k increased from 10 to 250.

For higher k values, the node deployment interval (l = 2r/(m · 3
√

k)) was rather small, which led
to a high time complexity of OθSA. Therefore, we only carried out the OθSA for several individual k
values to testify to our hypothesis. We obtained θ(500, 89%) = 1.6 when k = 500, θ(700, 89%) = 1.6 when
k = 700, and θ(900, 89%) = 1.6 when k = 900. None of the above θ values was larger than 2.3, which was
consistent with our hypothesis. Note that θ(k, η) seemed to approximate to some lower bound when k
was large, and this lower bound should be greater than one.

Figure 8. Different k and the corresponding optimal θ.

When θ was set to be one, we performed simulations with different k values and calculated the
k-coverage rate. We obtained a 28.79% k-coverage rate when k = 500, a 29.96% k-coverage rate when
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k = 700, and a 26.11% when k = 900. The average k-coverage rate obtained was 33.32%. This suggests
that θ(k, η) should still be greater than one even when k is very large. In fact, when we increased
θ to 1.1, the average k-coverage rate was then 61.71%, which almost doubled the k-coverage rate
when θ = 1. This shows that the redundancy caused by θ plays a crucial role in the improvement of
k-coverage. Even a slight increment of θ(k, η) over one could significantly increase the k-coverage rate.

In summary, we had 1 < θ(k, η) ≤ 2.3 when k ≥ 2.

The value of θ(k, η) was within a small constant range and had an upper bound, independent of
k. It can be seen that the actual deployment volume density ensured the coverage was linearly related
to k, and the deployment cost was acceptable even if the value of k was large.

6.3. Discussions of the Value of r, Nmax, and ∆Lmax

6.3.1. Discussion of the Value of r

To study the influence of the value of r on the performance of k-ERVFA, we conducted simulation
experiments with different r values. Most of the simulation parameters were the same as those in
Table 5, except for the coverage radius r and the number of sensor nodes.

According to Equation (14), the total number of sensor nodes needed to obtain a satisfactory
k-coverage rate (89% in this paper) is proportional to 1/r3. Figure 9 shows the minimum number of
nodes needed in each sub-region to meet the corresponding k-coverage (k = 1, 2, 3) requirement with r
varying from 5 m to 20 m.

As shown in Figure 9, with the increase of the node coverage radius r, the number of required
nodes decreased rapidly at first and then became stable. This was because when the coverage radius
was small, the coverage area was very limited, and a large number of nodes were needed to achieve the
required coverage rate. As r increased, the coverage rate increased, and the number of nodes required
decreased. When r reached a certain threshold, the number of required nodes tended to stabilize due
to comprehensive coverage and network connectivity.

In addition, the coverage radius of the node was determined by its power. The increase of
power would increase the energy consumption of the system and reduce the network life, so it was
necessary to consider comprehensively the coverage and energy consumption of the system to choose
the appropriate node radius in the practical applications.

In the case of r = 1 m, the calculated number of sensor nodes was: 5.9041 ∗ 105 in the one-coverage
requirement sub-region, 61,115 in the two-coverage requirement sub-region, and 38,675 in the
three-coverage requirement sub-region. Note that the total number of sensor nodes needed when
r = 10 m was 692 (seen in Section 5), and it is obvious that with different coverage radius, the number
of sensor nodes needed differed greatly. Fewer sensors were needed when the coverage radius was
large, which is in consistent with practical experience.

Figure 10a–c show the curves of the k-coverage rate (k = 1, 2, 3) for different sensor numbers (400
and 500) when r varied from 5 m to 15 m.

It should be noted that when r was small (e.g., r = 5 m), the calculated total number of sensor
nodes needed to obtain a satisfactory k-coverage rate was quite large (more than 5000), while we set n
as 400 or 500 in the simulations. This is the problem of node deployment in sparse sensor networks.
Because k-ERVFA adopts a greedy strategy that considers node deployment in high k-coverage
requirement sub-regions as the first priority, the coverage rate in the low k-coverage requirement
sub-regions achieved in sparse sensor networks was rather poor. Therefore, the Ak-ERVFA (seen in
Section 6.4.1) was applied here to improve the performance in sparse sensor networks, especially for
sub-regions with a low k-coverage requirement.
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Figure 9. The correlation between r and the number of nodes needed to achieve an 89% k-coverage rate.
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r and the three-coverage rate.

For higher r values (r ≥ 9 m), we tended to use the original k-ERVFA algorithm to highlight its
advantage of improving the k-coverage rate with high k values.
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As shown from Figure 10a–c, the k-coverage rate in the corresponding area increased with the
value of r, which is consistent with practical experience. When r = 5 m and n = 500, which is
the aforementioned case of a sparse sensor network, the initial 1-, 2-, and 3-coverage rates in the
corresponding sub-regions were 19.06%, 0.96%, and 0.37%. These coverage rates increased to 23.17%,
3.34%, and 1.68% in the simulation experiments of Ak-ERVFA.

The two-coverage rate and three-coverage rate increased significantly when 5 m ≤ r ≤ 10 m,
as shown in Figure 10b,c. This increase tendency slowed down a bit when r was greater than 10 m.
In particular, when r = 12 m and n = 500, the initial 1-, 2-, and 3-coverage rates were 94.36%, 89.7%,
and 57.13% and were improved to 96.02%, 98.99%, and 97.89% by k-ERVFA. These k-coverage rates
were rather impressive compared with the k-coverage rate obtained in Section 5 with 650 sensor nodes,
considering only 500 sensors were deployed here. This indicates that a slight increment of r can
lead to a significant improvement of the k-coverage rate. When r = 15 m and n = 500, the initial
1-, 2-, and 3-coverage rates were 99.13%, 99.94%, and 97.51%, and they all increased to 100% after
redeployment with k-ERVFA. In conclusion, the value of r had a significant influence on the variation
of the k-coverage rate.

Obviously, the k-coverage rate achieved by k-ERVFA was 100% for higher r values (r ≥ 15 m).
Therefore, for the diverse 3D underwater k-coverage requirement scenarios described in this paper,
400∼500 sensor nodes with a physical coverage radius of 10 m∼15 m can guarantee a satisfactory
k-coverage rate.

6.3.2. Discussion of the Value of Nmax

In this section, we study the influence of the maximum iteration number on the performance of
the k-ERVFA algorithm. Similarly, the setting of the underwater monitoring area and all simulation
parameters except for Nmax were the same as those in Section 5. We carried out simulations with
n = 400 and Nmax increasing from 10–150 by steps of 10. Figure 11 shows the different k-coverage rates
obtained by k-ERVFA with different values of Nmax. It should be mentioned that in order to eliminate
the difference from the initial coverage rate caused by the initial random deployment, the initial sensor
distributions in different rounds were set to be identical. The initial 1-, 2-, and 3-coverage rates were
77.51%, 41.96%, and 24.81%, respectively.

Figure 11. The correlation between Nmax and the k-coverage rate.

Besides, we modified Step 2 of the original k-ERVFA so that the loop ends only if the iteration
number has reached Nmax, i.e., the judging condition of whether the coverage rate has reached η was
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removed. The “fix” operation was also abolished; thus, sensor nodes moved more freely in order to
demonstrate the effect of Nmax and the greedy strategy of k-ERVFA.

As expected, the two-coverage rate and three-coverage rate increased significantly with the growth
of Nmax, as shown in Figure 11. When Nmax = 150, the two-coverage rate obtained was 91.33%, and the
three-coverage rate was 83.17%. They increased by 49.37% and 58.36%, respectively, compared to the
initial coverage rate.

The one-coverage rate increased smoothly when Nmax increased from 10 to 50,
reaching a maximum coverage rate of 86.35% when Nmax = 50. However, it decreased gradually when
Nmax was greater than 50 and reached a minimum of 77.96% when Nmax = 150. It is reasonable to
predict that the two- and three-coverage rate will keep growing, while the one-coverage will decrease
when Nmax keeps increasing. In fact, when Nmax was small, the homogenization effect from repulsion
was the dominant factor to facilitate the increase of the one-coverage rate. When Nmax was large,
the k-attraction of the sub-regions with the high k-coverage requirement was dominant, and more
sensors moved into high k-coverage sub-regions, which led to the increment of the high k-coverage
rate and the decline in the one-coverage rate. Larger Nmax also highlighted the characteristics of the
greedy strategy adopted by the k-ERVFA algorithm, as mentioned above.

According to Figure 11, the two-coverage and three-coverage rate increased significantly when
Nmax grew from 40 to 100, and this increasing tendency slowed down when Nmax was over 100.
When Nmax was around 100, the one-coverage rate was also acceptable. Considering that the
excessively large value of Nmax would result in unnecessary running time and energy consumption,
it was appropriate to set Nmax as 80 to 100 in the underwater monitoring scenario described in this
paper. In the practical scenario, an appropriate value of Nmax is important to achieve the better trade-off
between coverage requirements and network cost.

6.3.3. Discussion of the Value of ∆Lmax

In this section, we study the effect of ∆Lmax, which is the maximum possible moving distance
(along the Z-axis) of the sensor node in each iteration. Similarly, the parameters except for ∆Lmax were
identical to those in Section 5. We carried out simulations with n = 400 and fixed the initial distribution
of sensor nodes throughout the simulation process for the same reason mentioned in Section 6.3.2.
The initial 1-, 2-, and 3-coverage rates were 77.51%, 41.96%, and 24.81%, respectively.

Figure 12a shows the different k-coverage rates achieved by the k-ERVFA with ∆Lmax growing
from 0.1 m to 1 m with a step size of 0.1 m. When ∆Lmax = 0.1 m, the final 1-, 2-, and 3-coverage
rates were 83.72%, 58.78%, and 35.76%, respectively. Compared with the initial k-coverage rates,
the improvement by k-ERVFA was inappreciable. The reason was that compared to the size of the
underwater monitoring area (100 m * 100 m * 100 m), ∆Lmax was so small (0.1m) that sensor nodes
could not reach the desirable destinations based on k-ERVFA within the maximum iteration times
(Nmax = 100); thus, the k-coverage rate obtained was unsatisfactory. However, the effect of k-ERVFA
improved with the increasing of ∆Lmax. The decline in the one-coverage rate shown in Figure 12a
was due to the fact that more sensor nodes moved into the two- and three-coverage requirement
sub-regions when ∆Lmax increased.

In Figure 12b, when ∆Lmax grew from 1 m to 20 m with a step size of 1 m, all the k-coverage
rates oscillated with the growth of ∆Lmax. When the value of ∆Lmax was small (1m ≤ ∆Lmax ≤ 7 m),
the moving range of sensor nodes in each iteration was longer compared with those in Figure 12a
(∆Lmax < 1 m). With the same iteration number, the effect of the redeployment process was
more significant; thus, all the k-coverage rates increased. However, when ∆Lmax kept increasing
(∆Lmax > 7 m), the moving range of sensor nodes in each iteration was so long that their motion
pattern turned into a certain kind of disordered oscillation. Hence, the k-coverage rates obtained by
k-ERVFA could not satisfy the actual requirements.

In conclusion, the value of ∆Lmax should be moderate. If ∆Lmax is too small (≤1 m),
then sensors cannot reach their final destinations before the redeployment process is terminated.
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However, the excessively large value of ∆Lmax (≥10 m) will cause nodes to drift and oscillate; thus,
the performance of k-ERVFA will be unpredictable. We can see from Figure 12b that when ∆Lmax = 7 m,
the 1-, 2-, and 3-coverage rates all reached their maximum value. Therefore, ∆Lmax = 7 m was the
optimal value under such simulation conditions (n = 400, Nmax = 100, r = 10 m).
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Figure 12. The correlation between ∆Lmax and the k-coverage rate. (a) The correlation between ∆Lmax

and the k-coverage rate (n = 400, r = 10 m, ∆Lmax = 0.1 ∼ 1 m) ; (b) The correlation between ∆Lmax

and k-coverage rate (n = 400, r=10 m, ∆Lmax = 1 ∼ 20 m).

Table 6 shows the optimal ∆Lmax for different total numbers of sensors (when r = 10 m). We can
see that with the node number increasing, the optimal value of ∆Lmax decreased gradually. The reason
was that with more sensor nodes deployed in the area, the average distance between the coverage
breached, and the neighboring sensor nodes decreased; thus, the appropriate moving distance of
the sensor node in each iteration (which was decided by ∆Lmax in Equation (22)) decreased as well.
Therefore, the key to application implementation lies in how to obtain the optimal value of ∆Lmax

according to the total number of nodes in the actual scenario.

Table 6. Optimal ∆Lmax for different numbers of nodes.

Number of nodes 400 450 500 550 600 650

Optimal ∆Lmax(m) 7 7 6 6 6 5

6.4. The Improvement of k-ERVFA

The underwater sensor network is closely related to many marine environment factors, such as
fish stock interference and tidal disturbances. For example, when the fish school destroy the nodes
or the nodes and equipment age and fail, the previous deployment requirements will be changed to
adapt to the new situation. The number of nodes may be insufficient in some scenarios, and even
in some extreme conditions, the total number of sensor nodes is so small that the sensor network
is quite sparse. In addition, in practical applications, k-coverage requirements may change over
time according to seasonal changes or actual situations, which is also a real problem that needs
to be considered. Aiming at these actual problems mentioned above, we discuss the Ak-ERVFA
(Averaged k-ERVFA) algorithm for node sparsity and the Ck-ERVFA (Changed k-ERVFA) algorithm
for time-variant demand, respectively.

6.4.1. Ak-ERVFA

Due to the strategy taken by k-ERVFA, which satisfied the k-coverage requirement with high k
values preferentially and the fact that the total number of nodes was severely limited, the performance
of k-ERVFA in sparse sensor networks was unsatisfactory. Especially, sub-regions with requirements
of low coverage multiplicity tended to be ignored.
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We propose the Ak-ERVFA (Averaged k-ERVFA) to improve the performance of k-ERVFA in
sparse sensor networks, and the modifications are as follows:

1. Let η be 89%; the number of nodes required in different k-coverage requirement sub-regions can
then be calculated by Equation (14), denoted by Nmin(r, 1, 89%), Nmin(r, 2, 89%),..., Nmin(r, k, 89%),
Nmin(r, nk, 89%), respectively (k = 1, 2, 3,...nk).

2. Calculate the proportional factor λ(r, k) for each sub-region Ak,j as follows:

λ(r, k) = Nmin(r, k, 0.89)/
nk
∑

i=1
Nmin(r, i, 0.89).

3. Modify the termination condition in Step 2 of k-ERVFA; now, the iteration will also be terminated
if the number of nodes inside Ak,j reaches λ(r, k) · Ntotal , where Ntotal is the total number of
sensor nodes.

We can see that with Ak-ERVFA, the number of nodes deployed in any sub-region was
proportional to its expected node number calculated by Equation (14). In this way, sub-regions
with different k-coverage requirements were treated equally to some extent. Thus, the k-coverage rate
in sub-regions with the requirements of low coverage multiplicity became reasonable.

6.4.2. Ck-ERVFA

Ck-ERVFA was defined as the enhanced k-ERVFA for time-variant situations. In Section 4,
the coverage requirement information of the underwater monitoring area was known in advance and
was considered to be fixed throughout the life-cycle of the sensor network. However, the coverage
requirement information is often time-variant in practical applications, and we should extend our
k-ERVFA algorithm so that it may work in such time-variant situations. In fact, this extension is
possible when the running time (response time) of k-ERVFA is far less than the time interval between
changes in coverage requirement information, which is the case in most practical applications.

We propose the enhanced Ck-ERVFA as follows:

1. Sink nodes collect the latest coverage requirement information, i.e., the geometry attributes
and the coverage multiplicities of all sub-regions. Then, the coordinates of the centroids of the
sub-regions and the corresponding equivalent radius are calculated. All sub-regions are sorted in
descending order of the k value. Set n as zero.

2. Sink nodes calculate the k-resultant force similar to Step 2 in the k-ERVFA algorithm.
3. Call the fix and even algorithm similar to Step 3 in the k-ERVFA algorithm.
4. Sink nodes send redeployment commands to sensors, and let n = n + 1. Check if n reaches kn,

otherwise go to Step 2.
5. Sink nodes monitor the coverage requirement information constantly; go to step 1 if the coverage

requirement information changes, otherwise go to Step 5.

In summary, Ck-ERVFA monitors changes of the coverage requirement information, and node
redeployment will be performed according to the latest coverage requirement. In this way, k-ERVFA can
adapt to underwater monitoring tasks with the time-variant coverage requirement. It should be noted
that in Ck-ERVFA, sink nodes are capable of collecting information about the coverage requirements,
as discussed in [28].

7. Conclusions and Future Work

In this paper, we studied the diverse k-coverage problem in three-dimensional underwater
sensor networks. First, we analyzed the minimum density of sensors required to satisfy the different
k-coverage requirements by dividing the monitoring area into grids. We introduced θ to provide
the necessary redundancy of sensor nodes required in practical applications and proposed the OθSA
algorithm to decide the appropriate value of θ. Then, we put forward the enhanced virtual force
algorithm k-ERVFA to solve the diverse k-coverage problem. Both theoretical analysis and simulation
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experiments were carried out to demonstrate the effectiveness and feasibility of our proposed algorithm.
Finally, we extended the k-ERVFA to Ak-ERVFA and Ck-ERVFA so that it could work in sparse sensor
networks and time-variant situations.

Moving forward, we plan to combine our approach with methods based on the Voronoi diagram
to better discover coverage breaches and further improve the diverse k-coverage rate in 3D UWSNs.
We also plan to implement the proposed algorithm with a testbed to evaluate the performance of
k-ERVFA in real-world application scenarios while taking the influence of marine environment factors
and measurement error into account.
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Appendix A. Theoretical Analysis of the Effectiveness of the k-ERVFA Algorithm

Appendix A.1. The Effectiveness of k-ERVFA in the Case of k = 2

In this subsection, we perform a theoretical analysis on the correctness and effectiveness of the
k-ERVFA algorithm when k = 2.

According to the k-ERVFA algorithm, spheres with a two-equivalent radius (r2 = r/2) are
deployed in the two-coverage requirement sub-regions. Note that the actual coverage radius is
still r, as mentioned in Section 3.2.

As shown in Figure A1, the larger spheres are the actual coverage region of the sensor nodes, while
the smaller spheres are the two-equivalent radius spheres defined in Definition 6 (seen in Section 3.2).
In Figure A1, the two-equivalent radius spheres are tangent to each other, which is considered as the
critical case. When adopting the k-ERVFA algorithm, neighboring two-equivalent radius spheres tend
to overlap with each other, which will result in a higher two-coverage rate than the critical case.
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For simplicity, assume that the sub-region is a cube with side length L (L ≥ 3r). If L is less than
3r, the number of nodes needed can be calculated by Equation (14) in the paper, then these sensor
nodes are deployed into the cubic region. In this case, there will be overlapping areas between adjacent
two-equivalent spheres, and the actual coverage rate will be greater than the critical case. Based on the
discussions above, here we only need to study the critical case in Figure A1 when L ≥ 3r.

There are four kinds of three-dimensional regions that need to be discussed separately.
These regions are marked as α, β, ε, and θ in Figure A1, where α ∩ β ∩ ε ∩ θ = ∅.

1. For any point within region α, it is covered by four sensor nodes because it is within the coverage
range from Sensor 1 to Sensor 4. Namely, region α is at least four-covered.

2. For any point within region β (β includes the internal part and upper external part of the sphere
with the two-equivalent radius of Sensor 4; here, the upper external part is inside the actual
coverage sphere of Sensor 4), it is covered by Sensors 3 and 4 at least. Hence, region β is at least
two-covered.

3. For any point within region ε (ε is located near the edge in the right front side of the cube), it can
only be covered by Sensor 2. Thus, region ε is only one-covered. We need to know the total
number of ε regions (denoted by nε) in the entire cubic in order to calculate the 2-coverage rate.
Assume that L = K · r, K ≥ 3, K ∈ N+; we derive the total number of region ε as follows (the
detailed derivation process can be found in Appendix A.2 for k = 3):

nε = 12 · ( L
2 · (r/2)

− 2) = 12(
L
r
− 2) = 12(K− 2) (A1)

4. For any point within region θ (θ is located in the vertices of the cube as shown in Figure A1;
θ includes the external part of sphere with the two-equivalent radius of Sensor 1; here, the external
part is inside the actual coverage region of Sensor 1), it can only be covered by Sensor 1;
thus, region θ is only one-covered. There are eight θ regions in the cube, and each one corresponds
to a vertex of the cube.

In order to calculate the two-coverage rate of the entire cubic, we need to estimate the volume of
region ε and region θ, which are not two-covered.

The front, bottom, and right surfaces of region θ are flat, while the top, left, and back surfaces are
spherical, which are formed by some parts of the spheres with a two-equivalent radius of Sensor 2, 4,
and 6.

Based on the symmetry of region θ, we can estimate its volume as follows:

Vθ < l3
θ −

1
3

S′(lθ −
r
2
) · 3 = l3

θ − l2
θ (lθ −

r
2
) =

rl2
θ

2
(A2)

where lθ
3 is the volume of the cubic with side length lθ and S′ is the area of the square with side length

lθ (these squares share common vertices with the three spherical surfaces of region θ). 1
3 S′(lθ − r

2 ) is the
volume of the three pyramids that will be removed to estimate the volume of region θ. These pyramids
are based on the aforementioned squares, and their apexes are at the center of the spherical surfaces of
region θ. Vθ is less than the value on the right side of Equation (A2) because the spherical surfaces are
concave. With knowledge of solid geometry, we have lθ = 3−

√
2

2 r. There is a total of eight θ regions in
the entire cube. Therefore, the percentage of Vθ in the entire cube is:

Pθ =
8Vθ

Vcube
=

4rl3
θ

L3 <
4rl3

θ

(Kr)3

=
(3−

√
2)

3

2K3 ≤ (3−
√

2)
3

2 · 33 = 0.0738

(A3)
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Similarly, we can estimate the volume of the region ε (denoted by Vε) as follows:

Vε < l2
θ lε − (2 · 1

3
S1

lε
2
+

1
3

S2(lθ −
r
2
) +

1
3

S3(lθ −
r
2
))

=
1
3

lθ lεr =
1
3
· 3−

√
2

2
(2−

√
2)r3 = 0.1548r3

(A4)

where l2
θ lε is the volume of the cuboid with height lε. The terms after the minus sign are the volume of

pyramids to be removed. Similarly, Vε is less than the value on the right side of Equation (A4) due
to the concavity of region ε. From Equation (A1), we have obtained the total number of regions ε;
therefore, the percentage of Vε in the entire cube is:

Pε =
nεVε

L3 <
12(K− 2) · 0.1548r3

(K · r)3

=
1.8579(K− 2)

K3 ≤ 1.8579
33 = 0.0688

(A5)

The two-coverage rate of the entire cube is then:

Preality,2 ≥ Pcritical,2 = 1− Pε − Pθ

> 1− 0.0688− 0.0738 = 0.8574
(A6)

Preality,2 is the two-coverage rate obtained by k-ERVFA with enough sensor nodes and sufficient
running time. Pcritical,2 is the two-coverage rate in the critical case in Figure A1 when spheres with
two-equivalent radius are tangent to each other and L = 3r.

In Section 5, we set L to be 10r in the simulation experiments (K = 10). Substituting the

K value into Equations (A2)–(A6), we have Pθ < (3−
√

2)
3

2·103 = 0.002, Pε < 1.8579(10−2)
103 = 0.0149,

and Preality,2 = 1− Pε − Pθ > 0.9831. Namely, a 98.31% two-coverage rate can be achieved theoretically.
Thus far, we have proven that the k-ERVFA algorithm achieved over an 85.74% two-coverage rate

in and underwater cube with side length L = 3r when there were enough sensor nodes and sufficient
running time. The two-coverage rate increased with the increase of L. Especially, we achieved over
a 98.31% two-coverage rate when L = 10r.

There is a similar analysis when k = 3 is presented in the next subsection (a 96.73% three-coverage
rate was achieved). For k values greater than four, we propose a different approach to prove that the
100% k-coverage rate can be achieved.

When k = 1, the k-ERVFA algorithm will degenerate to the general virtual force algorithm for 3D
UWSNs, for which the effectiveness and correctness have been extensively studied [7,12].

Appendix A.2. The Effectiveness of k-ERVFA in the Case of k = 3

According to k-ERVFA, spheres with a three-equivalent radius (r3 = r/3) are deployed in the
three-coverage requirement sub-regions when k = 3. Note that the actual coverage radius was still r.

We studied the critical case when spheres with the three-equivalent radius are tangent to each
other, as shown in Figure A2. For simplicity, assume that the side length (denoted by L) of the entire
cubic region is greater than 2r. In fact, when L ≤ 2r, we can calculate the total number of sensors
required according to Equation (14) in the paper and deploy these sensors in the cube to guarantee
k-coverage.
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Figure A2. Critical case in the three-coverage requirement region. (a) The 3D view of the three-coverage
requirement cube; (b) The projection view of the three-coverage requirement cube.

Now we analyze the three-coverage rate of the entire cube in the aforementioned critical case
(L > 2r). As the physical coverage radius was still r and the distance between sensor nodes was 2 · r/3,
any point in the interior part of the cube was at least four-covered. Therefore, we only need to study
the coverage situation in the boundary part, which was near the surfaces and vertices of the cube.
There are three kinds of three-dimensional regions that need to be discussed separately. In Figure A2,
these regions are marked as α, β and ε, where α ∩ β ∩ ε = ∅.

1. For any point within region α, similar to the points in the interior part, it can be covered by
Sensors 1, 2, 3, and 4, so region α is at least four-covered.

2. For any point within region β (around Sensor Node 4) that is near the boundary surface and
not close to the edges of the cube, it is covered by Nodes 1, 3, and 4, so region β is at least
three-covered.

3. For any point within region ε that is near the edges of the cube, it can only be covered by Node 1
or both Nodes 1 and 2, so region ε is not three-covered. We need to estimate the volume of region
ε and the total number of such regions to calculate the three-coverage rate of the entire cube.

First, we estimated the volume of region ε. Figure A2b is the projection view of Figure A2a on
the front surface of the cube. The radius of the circular section of Sphere 4 on the surface was then

r′ =
√

r2 − (r/3)2 = 2
√

2r
/

3.
For the chord length l in Figure A2a, we have:

l = 2
√

r′2 − (r/3)2 = 2
√
(2
√

2r/3)
2 − (r/3)2 = 2

√
7r/3 (A7)

The side length of the bottom surface of region ε is:

lε =
1
2
(L− l) =

1
2
(L− 2

√
7r)

3
(A8)
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We study the boundary situations with L = 2r in Figure A2b; thus, we obtain:

lε = (1−
√

7
3

)r = 0.1181r (A9)

Let hε be the height of region ε on the edge; we see that the top vertex of region ε is the
intersection point of the edge and Section Round 5. With the coordinate system shown in Figure A2b
and knowledge of analytical geometry, we can derive the expression regarding Section Round 5 as
(x− 5

3 r)2 + (y− r
3 )

2 = ( 2
√

2
3 r)2. Let y be zero, and hε is calculated as:

hε = (
5−
√

7
3

)r = 0.7847r (A10)

Region ε is a concave polyhedron (similar to Vθ in Figure A1) with concave surfaces, so its volume
Vε is less than the volume of the corresponding cuboid, which has the bottom area of lε2 and height hε.

Vε < lε2hε = (1−
√

7
3

)2(
5−
√

7
3

)r3 = 0.0109r3 (A11)

Now, we consider the total number of regions like region ε. Note that region ε appears on the
edges of the cube repeatedly with an interval length of r. The cube has 12 edges, so there are 12L/r of
such regions in total.

Therefore, the total volume of ε regions is estimated as:

Vε−total << 12 · L
r

Vε < 0.1308Lr2 (A12)

Now, we consider the entire cubic region and set its side length as L = M · 2r/3, M ≥ 3, M ∈ N+,
so the percentage of the total volume of all ε regions in the entire cubic region is:

Pε =
Vε−total

Vcube
<<

0.1308Lr2

L3 =
0.1308r2

(M · 2
3 r)2

=
0.2943

M2 ≤ 0.2943
32 = 0.0327

(A13)

So far, our discussion has been based on the critical situation where spheres with k-equivalent
radius are tangent to each other. The three-coverage rate of the critical case can be denoted by Pcritical,3.
In practice, with enough sensors and sufficient running time, the spheres with k-equivalent radius will
overlap with each other so the three-coverage rate achieved by k-ERVFA (denoted as Preality,3) will be
better than Pcritical,3, i.e.,

Preality, 3 ≥ Pcritical, 3 = 1− Pε >> 1− 0.0327 = 0.9673 (A14)

It can be found that in Equation (A13), Pε decreases when L increases.
Therefore, the three-coverage rate in larger underwater areas will be greater. For example,
when M = 10 (L = 20r/3), we have Pε ≤ 0.0029 and Preality,3 ≥ 0.9971.

Appendix A.3. Discussion of the Effectiveness of the k-ERVFA Algorithm When k ≥ 4

In the case of k ≥ 4 (k ∈ N+), suppose that sensor nodes are uniformly deployed
in a 3D underwater cube with side length L. Without loss of generality, let L be the
integral multiple of 2rk, i.e., L mod (2rk)= 0, where rk = r/k is the k-equivalent radius.
We study the critical case where spheres with the k-equivalent radius are tangent to each other,
as shown in Figures A1 and A2. Therefore, the total number of sensor nodes in the cube is
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(L/2rk)
3 = L3/8r3

k = L3/8(r/k)3 = k3L3/8r3, and the average volume density of node deployment is

ρ = k3L3

8r3 /L3 = k3

8r3 .
For some point p in the cubic region, it is covered by sensor Si only if the Euclidean distance

between p and Si is less than the coverage radius of Si, i.e., dpSi ≤ r. We define the under-covered
region of point p (denoted by Rp) as follows:

1. For any point in Rp, its Euclidean distance to point p should be less than r;
2. The density of node deployment ρ in Rp should be a non-zero constant.

Point p is k-covered if there are more than k sensor nodes in Rp, i.e., ρ · VRp ≥ k. Based on this
definition, we consider the k-coverage rate in the aforementioned cubic region. The problem can be
divided into two different cases:

1. For any point p in the interior part of the cubic region, Rp is a sphere center at p with the radius

of r. The average number of sensor nodes in Rp is then: 4
3 πr3 · ρ = 4

3 πr3 · k3

8r3 = πk3

6 , so point p

is πk3

6 -covered. Let f (k) = πk3

6 − k; we have its derivative as f ′(k) = π
2 k2 − 1 > 0 when k > 1.

Note that f (2) = 4π/3− 2 > 0, and we have f (k) > 0( πk3

6 > k) for ∀k ≥ 2; thus, point p is at
least k-covered. Therefore, in the critical case where spheres with k-equivalent radius are tangent
to each other, the k-coverage rate of the interior part of the cubic region is 100% when k ≥ 2.
However, the discussion above is based on the average density, and the coverage rate in some
sub-regions may not reach 100% in practice due to the non-uniform distribution of sensor nodes.

2. For any point p that is near the boundary surfaces and vertices of the cubic region, according to the
definition, Rp is no longer a complete sphere in this case. Here, the sphere is cut by the surface of
the cube, and there are no sensors in the part outside the cube. Therefore, the volume of Rp is now
m · 4

3 πr3 with 1/8 ≤ m ≤ 1. In particular, m = 1/8 is the case when p coincides with the eight

vertices of the cube. The average number of sensor nodes in Rp is then m · 4
3 πr3 · ρ = 4mπr3

3 · k3

8r3 =
mπk3

6 . Similarly, let f (k) = mπk3

6 − k, and we get f ′(k) = πm
2 k2 − 1, 1/8 ≤ m < 1. Let m be

1/8, which corresponds to the minimum of f (k) and f ′(k), and we have f (4) = 0.1888 > 0 and
f ′(4) = π − 1 > 0. As f (k) and f ′(k) increase with k, it can be proven that f (k) > 0( mπk3

6 > k),
when k ≥ 4 and m = 1/8. Namely, point p can be k-covered even if it coincides with the eight
vertices of the cubic region. For other cases with various m values (1/8 < m < 1), the volume
of Rp is greater than the case with m = 1/8, which means there are more sensor nodes in Rp.
Therefore, point p is also at least k-covered.

Based on the discussions above, points in the interior part of the cubic region are k-covered when
k ≥ 2, and points that are near the boundary surfaces and vertices of the cubic region are k-covered
when k ≥ 4. Theoretically, the k-coverage rate of the cubic region will reach 100% when k ≥ 4.

In fact, for the case of k ≥ 4, the same result can be obtained with the approach given in Appendix
A.2.

In conclusion, with enough sensor nodes and sufficient running time, the k-ERVFA algorithm will
achieve the following k-coverage rates in the critical case where spheres with k-equivalent radius are
tangent to each other:

• Over an 85.74% two-coverage rate for the two-coverage requirement sub-regions;
• Over a 96.73% three-coverage rate for the three-coverage requirement sub-regions;
• A 100% k-coverage rate for the k-coverage requirement sub-regions when k ≥ 4, k ∈ N+.

Appendix B. Selection of the Underwater Deployment Model

The deployment model we adopted in this paper is the 3D underwater sensor deployment
model proposed in [45]. We also adopted the system proposed in [46], which can adjust the depth
of sensors automatically. In general, a cloud-based architecture was proposed to provide a high
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quality of service for UWSNs. However, UWSNs also require low latency, and the central servers
need to store and transmit tremendous data. Edge computing can overcome these drawbacks of
traditional cloud computing. Therefore, we adopted the edge computing architecture, which performs
the related tasks of UWSNs at the nearby edges of networks. The details of our model are shown
in Figure A3. Initially, all sensor nodes were scattered into the target sea area from aircraft or ships,
and they were then fixed by anchors on the seafloor. Rigid cables were used to prevent buoys from
drifting, which would cause sensors to deviate from the target sea area. The length of the cable was
adjustable; thus, the depth of the sensor node could be adjusted.

As for the transmission medium, the models proposed by [37,47,48] used an underwater acoustic
link. However, due to the limitations of current technology, the underwater acoustic link suffers from
issues like low bandwidth, high latency, path loss, noise [49,50], multi-path, etc. Here, we selected
the wired cable as the transmission medium between underwater sensor nodes and buoy nodes.
Buoy nodes were equipped with wireless communication modules, which received data collected
by sensor nodes and transmitted the data to the edge servers. Edge servers became responsible for
a subset of tasks in their close vicinity. The buoy nodes also acted as relays for communications
between sensor nodes and were equipped with a positioning module (such as a GPS receiver) and
an energy supplement module (such as solar panels).

Figure A3. Underwater sensor deployment model.
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