
sensors

Article

A Contention-Based Hop-By-Hop Bidirectional
Congestion Control Algorithm for Ad-Hoc Networks

Jiashuai Wang, Xiaoping Yang, Ying Liu and Zhihong Qian *

College of Communication Engineering, Jilin University, Changchun 130012, China
* Correspondence: qianzh@jlu.edu.cn; Tel.: +86-135-0441-5955

Received: 10 June 2019; Accepted: 31 July 2019; Published: 9 August 2019
����������
�������

Abstract: Existing hop-by-hop congestion control algorithms are mainly divided into two categories:
those improving the sending rate and those suppressing the receiving rate. However, these congestion
control algorithms have problems with validity and limitations. It is likely that the network will
be paralyzed due to the unreasonable method of mitigating congestion. In this paper, we present a
contention-based hop-by-hop bidirectional congestion control algorithm (HBCC). This algorithm
uses the congestion detection method with queue length as a parameter. By detecting the queue
length of the current node and the next hop node, the congestion conditions can be divided into the
following four categories: 0–0, 0–1, 1–0, 1–1 (0 means no congestion, 1 means congestion). When
at least one of the two nodes is congested, the HBCC algorithm adaptively adjusts the contention
window of the current node, which can change the priority of the current node to access the channel.
In this way, the buffer queue length of the congested node is reduced. When the congestion condition
is 1–1, the hop-by-hop priority congestion control (HPCC) method proposed in this paper is used.
This algorithm adaptively changes the adjustment degree of the current node competition window
and improves the priority of congestion processing of the next hop node. The NS2 simulation shows
that by using the HBCC algorithm, when compared with distributed coordination function (DCF)
without congestion control, the proposed unidirectional congestion control algorithms hop-by-hop
receiving-based congestion control (HRCC) and hop-by-hop sending-based congestion control
(HSCC), and the existing congestion control algorithm congestion alleviation—MAC (CA-MAC),
the average saturation throughput increased by approximately 90%, 62%, 12%, and 62%, respectively,
and the buffer overflow loss ratio reduced by approximately 80%, 79%, 44%, and 79%.

Keywords: ad-hoc network; MAC; congestion control; contention window; hop-by-hop; bidirectional

1. Introduction

With the rapid development of the Internet of Things, the application of ad-hoc networks is
becoming increasingly widespread [1]. There will be more and more sensors accessing the network
to transmit data. A large amount of data aggregation will inevitably lead to network congestion,
and network congestion will bring about multiple network problems such as packet loss, network
delay, throughput reduction, and excessive energy consumption [2]. Therefore, it is necessary to
study congestion control in ad-hoc networks [3]. Wan et al. [4] proposed an end-to-end congestion
control algorithm called Congestion Detection and Avoidance (CODA). The node determines whether
congestion occurs according to the buffer occupancy ratio and the channel load. When congestion
occurs, congestion can be alleviated by adjusting the sending rate of the source node to reduce
the receiving rate of the congested node. However, end-to-end congestion control has a strong
dependence on round-trip time, which inevitably leads to packet loss [5]. In contrast, the hop-by-hop
congestion control protocol has a faster response speed. Hull et al. [6] pointed out that the end-to-end
congestion control algorithm cannot satisfy the congestion control of ad-hoc networks in multi-hop

Sensors 2019, 19, 3484; doi:10.3390/s19163484 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/19/16/3484?type=check_update&version=1
http://dx.doi.org/10.3390/s19163484
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 3484 2 of 25

environments because of the higher distribution of ad-hoc networks. Feng et al. [7] proposed a
distributed adaptive algorithm with hop-by-hop congestion information feedback and proved that
the hop-by-hop congestion control algorithm is superior to the end-to-end algorithm in queue length.
The network layer is based on the end-to-end transmission control protocol (TCP), so in order to
achieve hop-by-hop congestion control, it must pass the medium access control (MAC) layer [8].

Various papers [9–20] have proposed hop-by-hop MAC layer congestion control algorithms.
In the present paper, the hop-by-hop algorithm for increasing the sending rate is called sending-based
congestion control, and the algorithm for suppressing node receiving rate is called receiving-based
congestion control. Papers [9–11] involve sending-based congestion control, and papers [11–14]
involve receiving-based congestion control. Wang [9] proposed an upstream hop-by-hop congestion
control (UHCC) protocol based on cross-layer design. It took advantage of unoccupied buffer size
and the traffic rate of each node as congestion level indications, based on which every upstream
traffic rate is adjusted with its node priority to mitigate congestion hop-by-hop. Kim [10] suggested
a transport-controlled MAC protocol (TC-MAC) that combines the transport protocol into the MAC
protocol. TC-MAC provides a fairness-aware lightweight transport control mechanism. When
congestion occurs, the congested node continuously sends data to achieve network congestion
mitigation. Basaran et al. [11] proposed a lightweight distributed congestion control method. Each
node detects congestion by considering the queue lengths and channel conditions. According to
the estimated congestion degree, each node dynamically adjusts the data packet transmission rate.
Qian et al. [12] proposed a novel MAC protocol to alleviate the congestion—CA-MAC (congestion
alleviation—media access control), which allows the nodes with more buffered packets to transmit
with a higher probability, as well as an intelligent burst packet transmission when the congested nodes
seize the channel. Yi et al. [13] developed a fair hop-by-hop congestion control algorithm. By restricting
the access time of upstream nodes, the rate of receiving data from congested nodes can be reduced
to alleviate congestion. Jang [14] proposed a congestion control technique for duty cycling wireless
sensor network MAC protocols (CCDC). It detects congestion by checking the current queue size. If it
detects congestion, it suppresses the node receiving rate by adding supplementary wake-up times.
Sadeghi et al. [15] presented a simple and efficient hop-by-hop layer 2 congestion control scheme
(SECC), which utilizes local information in the nodes to detect congestion and compute the target
rate for the congested flows. SECC utilizes unicast signaling to inform the upstream nodes of the
congestion status. The upstream nodes then modify their transmission rate to the target rate specified
by the congested downstream node.

However, the above congestion control algorithms only control the congestion of a single node.
When congestion occurs at both adjacent nodes in one hop, congestion mitigation at the current node
may aggravate congestion at the next hop. In a tree-like network, the next hop node often acts as the
forwarding hub of multiple paths. Once the congestion alleviation of one path causes the congestion of
the central node, it will inevitably lead to the paralysis of other paths. Moreover, congestion mitigation
speed is limited by the fact that there is only one direction of congestion control. Papers [16,17]
proposed new congestion control algorithms to improve throughput but did not solve the problem of
packet loss caused by congestion. Papers [18,19] proposed congestion control algorithms for cross-layer
design, which is more complicated than operating only through the MAC layer. Paper [20] is a
congestion prevention method, which controls the media access according to the priority of node
messages and reduces conflicts by using different random competition windows. When congestion
occurs, the algorithm cannot achieve the effect of congestion mitigation.

Aiming at the above problems, this paper proposes a new contention-based hop-by-hop
bidirectional congestion control algorithm—HBCC. By detecting the queue length of the current
node and the next hop node, the congestion conditions can be divided into the following four
categories: 0–0, 0–1, 1–0, 1–1. For the three conditions of congestion, the algorithm proposes three new
congestion control strategies—hop-by-hop receiving-based congestion control (HRCC), hop-by-hop
sending-based congestion control (HSCC), and hop-by-hop priority congestion control (HPCC). In this

Sensors 2019, 19, 3484 3 of 25

way, not only can congestion be minimized, but also the central node, which plays a more important
role in the network, can have a higher priority in congestion processing. Ad-hoc is composed of a
large number of sensor nodes. It is a multi-hop self-organizing network system formed by wireless
communication of sensor nodes. These sensor nodes are organized into clusters and they communicate
with the cluster heads using IEEE 802.15.4 [21]. The cluster heads report the harvested data to the
control center using IEEE 802.11. This paper will verify the performance of the HBCC algorithm in an
IEEE 802.11 context.

The remainder of this paper is organized as follows: in Section 2, we discuss the problems of
existing protocols. In Section 3, we present the main idea of our algorithm and its details. Meanwhile,
in Section 4, we discuss the simulation results of our algorithm and prove that it has better performance
in average saturation throughput and buffer overflow loss ratio. Finally, we conclude the paper in
Section 5.

2. Problems of Existing Network Protocols in Congestion Control

The existing hop-by-hop congestion control algorithms are unidirectional, but unidirectional
congestion control algorithms have two problems: effectiveness and limitations. In order to describe
these two problems more clearly, we take a simple network topology as an example to illustrate the
two problems.

2.1. Network Topology

Ad-hoc networks are distributed sensing networks with the sensor that senses and examines
the outside world. The sensor nodes distributed in the detection area send the received data to the
aggregation node through the intermediate node. Due to this characteristic of ad-hoc networks, we can
represent the local ad-hoc network with a simple tree topology, which is shown in Figure 1. In Figure 1,
node0, node1 and node2 are located at the end of the tree topology as sensor nodes for data acquisition.
Then, node3 and node4 are the intermediate nodes to forward the collected data to the sink node5.
The other parameters of the network topology are set as shown in Table 1. We model each wireless
link between any two nodes in the network to have a finite positive capacity. Each data flow in the
network corresponds to an ordered sequence of links. In this wireless system, a single transmission is
intended for only one receiver, and each node has only a single transceiver, and hence only half-duplex
communication is allowed. Further, a node can successfully receive from at most one other node at any
given time.

Table 1. Network Parameter.

Name Settings

bandwidth 11 Mb
CPThresh 10.0
CSThresh 501187 × 10−12

RXThresh 5.82587 × 10−9

basicRate 1 Mb
Channel type Wireless channel

Routing protocol AODV
Link layer type LL
CBR packetsize 1024 B
UDP PacketSize 1500 B

Max packet in ifq 50 packet
Mac type IEEE 802.11

Interface queue type Queue/DropTail/PriQueue

Sensors 2019, 19, 3484 4 of 25

Sensors 2019, 19, x FOR PEER REVIEW 4 of 25

Figure 1. Simple tree topology.

2.2. Effectiveness Problem

The idea of the unidirectional congestion control algorithm is that when a node is congested,
according to the congestion condition, the node adjusts the data transmission or reception rate to
control the network load and achieve the purpose of congestion mitigation. However, when both
nodes of the adjacent hop are congested, the unidirectional control algorithm will not work. In the
network topology of Figure 1, when both node3 and node4 are congested, if the data transmission
rate of node3 is increased to alleviate the congestion of node3, a large number of data packets are
sent to node4. However, at this time, node4 is also congested, so the data packet sent by node3 due
to the mitigation of congestion is discarded, which is a serious problem for the network. Otherwise,
the method of reducing the data transmission rate of node3 is used to alleviate the congestion of
node4. Because node3 is congested, the reduction in data transmission rate will increase the
congestion level. This is the effectiveness problem in the unidirectional control algorithm.

2.3. Limitations Problem

A unidirectional control algorithm does not consider the congestion state of the next hop node
in the network. In the topology shown in Figure 1, since node3 has three child nodes, the fact that
node0 is waiting to access the channel will inevitably result in the accumulation of data packets. As
the number of packets is increased, node0 will experience congestion. Node3 has three data input
sources, but only one output, so the node3 buffer queue will accumulate some data packets. If the
data transmission rate is increased in order to alleviate the congestion of node0, then node3 will
inevitably experience the accumulation of data packets, and congestion will occur. The congestion of
node3 causes node1 and node2 to fail to forward data through node3. Reducing congestion at node0
will make node1 and node2 unable to send data, which is detrimental to the entire network.
Unidirectional congestion control methods have not considered that increasing the transmission rate
of congested nodes will obstruct the transmission of other nodes, which is the limitation of
unidirectional congestion control algorithms.

3. HBCC Algorithm

In order to solve the problems raised in Section 2, this paper proposes a contention-based
hop-by-hop bidirectional congestion control algorithm—HBCC. The algorithm proposes
bidirectional congestion control to avoid the effectiveness problem and limitations of unidirectional
congestion control. By detecting the queue length of the current node and the next hop node, the
congestion conditions can be divided into the following four categories: 0–0, 0–1, 1–0, 1–1. According
to the four congestion conditions, this paper proposes several new congestion mitigation
strategies—HRCC, HSCC, and HBCC—which relieve the congestion the most. The meaning of
bidirectionality is that the congestion information of two adjacent nodes is taken into account when
congestion control is carried out. That is to say, if a node in the network is congested, the algorithm

Figure 1. Simple tree topology.

2.2. Effectiveness Problem

The idea of the unidirectional congestion control algorithm is that when a node is congested,
according to the congestion condition, the node adjusts the data transmission or reception rate to
control the network load and achieve the purpose of congestion mitigation. However, when both
nodes of the adjacent hop are congested, the unidirectional control algorithm will not work. In the
network topology of Figure 1, when both node3 and node4 are congested, if the data transmission
rate of node3 is increased to alleviate the congestion of node3, a large number of data packets are
sent to node4. However, at this time, node4 is also congested, so the data packet sent by node3 due
to the mitigation of congestion is discarded, which is a serious problem for the network. Otherwise,
the method of reducing the data transmission rate of node3 is used to alleviate the congestion of node4.
Because node3 is congested, the reduction in data transmission rate will increase the congestion level.
This is the effectiveness problem in the unidirectional control algorithm.

2.3. Limitations Problem

A unidirectional control algorithm does not consider the congestion state of the next hop node in
the network. In the topology shown in Figure 1, since node3 has three child nodes, the fact that node0 is
waiting to access the channel will inevitably result in the accumulation of data packets. As the number
of packets is increased, node0 will experience congestion. Node3 has three data input sources, but only
one output, so the node3 buffer queue will accumulate some data packets. If the data transmission rate
is increased in order to alleviate the congestion of node0, then node3 will inevitably experience the
accumulation of data packets, and congestion will occur. The congestion of node3 causes node1 and
node2 to fail to forward data through node3. Reducing congestion at node0 will make node1 and node2
unable to send data, which is detrimental to the entire network. Unidirectional congestion control
methods have not considered that increasing the transmission rate of congested nodes will obstruct the
transmission of other nodes, which is the limitation of unidirectional congestion control algorithms.

3. HBCC Algorithm

In order to solve the problems raised in Section 2, this paper proposes a contention-based
hop-by-hop bidirectional congestion control algorithm—HBCC. The algorithm proposes bidirectional
congestion control to avoid the effectiveness problem and limitations of unidirectional congestion
control. By detecting the queue length of the current node and the next hop node, the congestion
conditions can be divided into the following four categories: 0–0, 0–1, 1–0, 1–1. According to the
four congestion conditions, this paper proposes several new congestion mitigation strategies—HRCC,
HSCC, and HBCC—which relieve the congestion the most. The meaning of bidirectionality is that the
congestion information of two adjacent nodes is taken into account when congestion control is carried

Sensors 2019, 19, 3484 5 of 25

out. That is to say, if a node in the network is congested, the algorithm should consider the congestion
information of the last hop and the next hop in the link before congestion mitigation. The node
congestion control of HBCC is not only based on the node’s own congestion situation, but also on the
congestion situations of the last hop and the next hop in relation to this node. We call this algorithm a
bidirectional congestion control algorithm, which considers the congestion information of upstream
and downstream nodes.

3.1. Congestion Detection

Congestion detection methods can be divided into two categories: detection based on either queue
length or channel information [22]. The idea of the congestion detection method based on channel
information is to calculate the channel conditions (such as channel load, data service time, control
frame transmission frequency, etc.) over a period of time. According to these channel conditions,
the node judges whether congestion is occurring or not. The idea of the congestion detection method
based on queue length is to set a buffer queue threshold. When the current buffer queue length is
greater than the threshold, it is judged that the node is congested, otherwise it is considered that no
congestion is occurring. It is obvious that the congestion detection method based on queue length can
more quickly reflect the congestion condition of the current node [23,24]. Therefore, this paper selects
the detection method based on queue length to detect the congestion of nodes.

In the HBCC algorithm, the current queue length q is compared with the set congestion threshold
k, and when q is greater than k, it is judged that congestion is occurring in the network. Through
several simulations under the network topology shown in Figure 1, it is found that when k is 0.75 Qmax,
the effect of congestion control is the best. Therefore, the value of the congestion threshold k is taken as
0.75 Qmax, and Qmax is the maximum queue length of the node.

3.2. Congestion Notification

In the MAC layer protocol, the data transmission process is as shown in Figure 2. After the node
accesses the channel, the data transmission mode is as shown in Figure 3.

Sensors 2019, 19, x FOR PEER REVIEW 5 of 25

should consider the congestion information of the last hop and the next hop in the link before
congestion mitigation. The node congestion control of HBCC is not only based on the node’s own
congestion situation, but also on the congestion situations of the last hop and the next hop in
relation to this node. We call this algorithm a bidirectional congestion control algorithm, which
considers the congestion information of upstream and downstream nodes.

3.1. Congestion Detection

Congestion detection methods can be divided into two categories: detection based on either
queue length or channel information [22]. The idea of the congestion detection method based on
channel information is to calculate the channel conditions (such as channel load, data service time,
control frame transmission frequency, etc.) over a period of time. According to these channel
conditions, the node judges whether congestion is occurring or not. The idea of the congestion
detection method based on queue length is to set a buffer queue threshold. When the current buffer
queue length is greater than the threshold, it is judged that the node is congested, otherwise it is
considered that no congestion is occurring. It is obvious that the congestion detection method based
on queue length can more quickly reflect the congestion condition of the current node [23,24].
Therefore, this paper selects the detection method based on queue length to detect the congestion of
nodes.

In the HBCC algorithm, the current queue length q is compared with the set congestion
threshold k, and when q is greater than k, it is judged that congestion is occurring in the network.
Through several simulations under the network topology shown in Figure 1, it is found that when k
is 0.75 Qmax, the effect of congestion control is the best. Therefore, the value of the congestion
threshold k is taken as 0.75 Qmax, and Qmax is the maximum queue length of the node.

3.2. Congestion Notification

In the MAC layer protocol, the data transmission process is as shown in Figure 2. After the node
accesses the channel, the data transmission mode is as shown in Figure 3.

Start

Initialize CW
and Timer

Idletime>DIFS?

Time=0?

Sending data

Timer=Timer-1

Collision?

Sending
successfully

CW=2*CW

Buffer queue=0?

End

Y

Y

N

N

Y

Y

N

N

Figure 2. Data transmission chart. Figure 2. Data transmission chart.

Sensors 2019, 19, 3484 6 of 25

Sensors 2019, 19, x FOR PEER REVIEW 6 of 25

DIFS
RTS

SIFS
CTS

SIFS

Data

SIFS
ACK

DIFS

NAV(RTS)

NAV(CTS)

Sending node

Receiving node

Adjacent node

Access delay

CW

Fallback phase

Figure 3. Data transmission step after the node accesses the channel.

When congestion is detected, neighboring nodes should be informed so that they can adopt the
correct measure against the generated congestion. Congestion information can be propagated
explicitly or implicitly. Some congestion control protocols notify about the congestion by setting a
congestion notification (CN) bit in the packet header [22]. Unlike the explicit method, implicit
congestion notification does not insert further load to the network and the congested nodes. In this
type of congestion notification scheme, the congested nodes inform other sensor nodes by
piggybacking the congestion information in a payload packet header. A number of congestion
control protocols apply acknowledge character (ACK) signaling to indicate the congestion state
[9,25–27].

As can be seen from Figure 2, when the node is sending successfully, it will initialize the
competition window (CW). As shown in Figure 3, after the receiving node receives a data packet, it
will feed back an ACK control frame to the sending node. In this paper, a congestion flag CI is set in
the ACK returned by the receiving node, which records the congestion status of ACK sending nodes.
The congestion control algorithm in this paper is bidirectional. Therefore, two congestion flags need
to be set at the current node: one is Temp_CI to save the local congestion condition, the other is
Next_CI to save the next hop congestion condition. The value of Next_CI is taken from the value of CI
in the received ACK. The modified ACK frame format is shown in Figure 4. The procedure of
congestion condition transmission is shown in Algorithm 1. According to the values of these two
congestion flags, the congestion conditions of the two nodes are divided into four categories: 0–0,
0–1, 1–0, 1–1. The classification is shown in Figure 5.
Algorithm 1: Pseudo code for the congestion condition transmission algorithm

1. Input:
2. temp_queuelength: Buffer queue length of current node.
3. Queue_max: Maximum buffer queue length of nodes.
4. k: Congestion threshold.
5. queuelength: Used to get the length of the buffer queue.
6. Output:
7. CI: Next hop congestion marker in ACK.
8. next_queuelength: Next hop buffer queue length in ACK
9. Next_CI: The variable to save the congestion condition of next hop in current node.
10. qnext : The variable to save the length of buffer queue of next hop in current node.
11. Initially: CI ← Null next_queuelength ← Null Next_CI ← Null qnext ← Null
12. if node needs to send an ACK then
13. queuelength ← temp_queuelength

Figure 3. Data transmission step after the node accesses the channel.

When congestion is detected, neighboring nodes should be informed so that they can adopt
the correct measure against the generated congestion. Congestion information can be propagated
explicitly or implicitly. Some congestion control protocols notify about the congestion by setting
a congestion notification (CN) bit in the packet header [22]. Unlike the explicit method, implicit
congestion notification does not insert further load to the network and the congested nodes. In this type
of congestion notification scheme, the congested nodes inform other sensor nodes by piggybacking the
congestion information in a payload packet header. A number of congestion control protocols apply
acknowledge character (ACK) signaling to indicate the congestion state [9,25–27].

As can be seen from Figure 2, when the node is sending successfully, it will initialize the competition
window (CW). As shown in Figure 3, after the receiving node receives a data packet, it will feed
back an ACK control frame to the sending node. In this paper, a congestion flag CI is set in the
ACK returned by the receiving node, which records the congestion status of ACK sending nodes.
The congestion control algorithm in this paper is bidirectional. Therefore, two congestion flags need to
be set at the current node: one is Temp_CI to save the local congestion condition, the other is Next_CI
to save the next hop congestion condition. The value of Next_CI is taken from the value of CI in the
received ACK. The modified ACK frame format is shown in Figure 4. The procedure of congestion
condition transmission is shown in Algorithm 1. According to the values of these two congestion
flags, the congestion conditions of the two nodes are divided into four categories: 0–0, 0–1, 1–0, 1–1.
The classification is shown in Figure 5.

Sensors 2019, 19, x FOR PEER REVIEW 7 of 25

14. if 0 ≤ queuelength ≤ k then
15. CI ← 0
16. else if k < queuelength ≤ Queue_max then
17. CI ← 1
18. next_queuelength ← queuelength
19. end if
20. else if node received an ACK then
21. Next_CI ← CI
22. qnext ← next_queuelength
23. end if

SHR PHR PSDU CI

Figure 4. Modified ACK frame format.

Detect local
queue length q

q>k？

Extract CI
Next_CI=CI

Temp_CI=1
Next_CI=1

Temp_CI=1

Temp_CI=0

Temp_CI=0
Next_CI=0

Temp_CI=1
Next_CI=0

Temp_CI=0
Next_CI=1

Y

N

Next_CI=1?

Extract CI
Next_CI=CI

Next_CI=1?

N

Y

N Y

Figure 5. Classification of congestion conditions.

3.3. Congestion Control

Congestion control is classified into the following four categories: (1) Traffic control [28]: in this
technique, congestion is mitigated by means of reducing the number of packets injected into ad-hoc
networks. (2) Resource control [24]: in this case, congestion is handled by, for example, increasing
network resources or using other idle or uncongested paths for the transmission of data towards the
sink. (3) Priority-aware congestion control scheme [9]: in this scheme, congestion is managed by
considering different priorities in congestion situations. (4) Queue-assisted technique [23]:
congestion is tackled by the queue length of the nodes. Our proposed congestion control method
(HBCC) combines (1), (3) and (4). In HBCC, the queue length of nodes is used as the symbol of
congestion control, and then the queue length of nodes is reduced as much as possible by using the
method of traffic control. HBCC includes two traffic control methods: HRCC and HSCC. If the effect
of traffic control is not good, the priority-aware congestion control scheme is used. The
priority-aware congestion control scheme in HBCC is HPCC. The congestion control of HBCC is
shown in Figure 6.

Figure 4. Modified ACK frame format.

Sensors 2019, 19, 3484 7 of 25

Sensors 2019, 19, x FOR PEER REVIEW 7 of 25

14. if 0 ≤ queuelength ≤ k then
15. CI ← 0
16. else if k < queuelength ≤ Queue_max then
17. CI ← 1
18. next_queuelength ← queuelength
19. end if
20. else if node received an ACK then
21. Next_CI ← CI
22. qnext ← next_queuelength
23. end if

SHR PHR PSDU CI

Figure 4. Modified ACK frame format.

Detect local
queue length q

q>k？

Extract CI
Next_CI=CI

Temp_CI=1
Next_CI=1

Temp_CI=1

Temp_CI=0

Temp_CI=0
Next_CI=0

Temp_CI=1
Next_CI=0

Temp_CI=0
Next_CI=1

Y

N

Next_CI=1?

Extract CI
Next_CI=CI

Next_CI=1?

N

Y

N Y

Figure 5. Classification of congestion conditions.

3.3. Congestion Control

Congestion control is classified into the following four categories: (1) Traffic control [28]: in this
technique, congestion is mitigated by means of reducing the number of packets injected into ad-hoc
networks. (2) Resource control [24]: in this case, congestion is handled by, for example, increasing
network resources or using other idle or uncongested paths for the transmission of data towards the
sink. (3) Priority-aware congestion control scheme [9]: in this scheme, congestion is managed by
considering different priorities in congestion situations. (4) Queue-assisted technique [23]:
congestion is tackled by the queue length of the nodes. Our proposed congestion control method
(HBCC) combines (1), (3) and (4). In HBCC, the queue length of nodes is used as the symbol of
congestion control, and then the queue length of nodes is reduced as much as possible by using the
method of traffic control. HBCC includes two traffic control methods: HRCC and HSCC. If the effect
of traffic control is not good, the priority-aware congestion control scheme is used. The
priority-aware congestion control scheme in HBCC is HPCC. The congestion control of HBCC is
shown in Figure 6.

Figure 5. Classification of congestion conditions.

Algorithm 1: Pseudo code for the congestion condition transmission algorithm

1. Input:
2. temp_queuelength: Buffer queue length of current node.
3. Queue_max: Maximum buffer queue length of nodes.
4. k: Congestion threshold.
5. queuelength: Used to get the length of the buffer queue.
6. Output:
7. CI: Next hop congestion marker in ACK.
8. next_queuelength: Next hop buffer queue length in ACK
9. Next_CI: The variable to save the congestion condition of next hop in current node.
10. qnext: The variable to save the length of buffer queue of next hop in current node.
11. Initially: CI← Null next_queuelength← Null Next_CI← Null qnext← Null
12. if node needs to send an ACK then
13. queuelength← temp_queuelength
14. if 0 ≤ queuelength ≤ k then
15. CI← 0
16. else if k < queuelength ≤ Queue_max then
17. CI← 1
18. next_queuelength← queuelength
19. end if
20. else if node received an ACK then
21. Next_CI← CI
22. qnext← next_queuelength
23. end if

Sensors 2019, 19, 3484 8 of 25

3.3. Congestion Control

Congestion control is classified into the following four categories: (1) Traffic control [28]: in this
technique, congestion is mitigated by means of reducing the number of packets injected into ad-hoc
networks. (2) Resource control [24]: in this case, congestion is handled by, for example, increasing
network resources or using other idle or uncongested paths for the transmission of data towards the
sink. (3) Priority-aware congestion control scheme [9]: in this scheme, congestion is managed by
considering different priorities in congestion situations. (4) Queue-assisted technique [23]: congestion
is tackled by the queue length of the nodes. Our proposed congestion control method (HBCC) combines
(1), (3) and (4). In HBCC, the queue length of nodes is used as the symbol of congestion control, and
then the queue length of nodes is reduced as much as possible by using the method of traffic control.
HBCC includes two traffic control methods: HRCC and HSCC. If the effect of traffic control is not good,
the priority-aware congestion control scheme is used. The priority-aware congestion control scheme in
HBCC is HPCC. The congestion control of HBCC is shown in Figure 6.Sensors 2019, 19, x FOR PEER REVIEW 8 of 25

0-0？

0-1？ HRCC

Y

N

Extracting
Congestion State

Y

1-0？ HSCC

Start

Y

N

N

DCF

HPCC

Set CW

End

Figure 6. Contention window adjustment strategies of HBCC.

3.3.1. DCF Algorithm

DCF is used to transmit data in the 802.11 protocol, and DCF provides a standard competitive
service like Ethernet. DCF is the basic access control mode of the IEEE802.11 protocol. In DCF mode,
after detecting the busy channel, the node uses the CSMA/CA mechanism and random backoff time
to share the wireless channel. The basic rule of DCF is that the node listens to the busy condition of
the surrounding medium through the carrier sense mechanism. If the channel is busy, the sending
node will continue to monitor the channel. If the channel is idle, in order to avoid collision between
nodes, the nodes enter a random backoff state. The generation of backoff time is as follows:

SlotTimeRandomBackoff Time ×= () (1)

Here, Random () is a random number between (0, CW).

3.3.2. Hop-By-Hop Receiving-Based Congestion Control—HRCC

When Next_CI = 1, the unidirectional congestion control algorithm to suppress the reception
rate of the next hop node should be adopted. According to this principle, the hop-by-hop
receiving-based congestion control (HRCC) algorithm is proposed in this paper. The idea of the
HRCC algorithm in this paper is: the current node detects that the next hop congestion flag Next_CI
= 1, that is, the next hop node is congested. By increasing the CW (competition window) of the
current node, the priority of the current node to access the channel is reduced, so the data sending
rate of the current node is reduced [29]. That is, the data receiving rate of the next hop node is
reduced, so that the congestion of the next hop node is alleviated.

It can be seen from Equation (1) that the larger the value selected by Random (), the longer the
backoff time before the current node sends the data. As the waiting time of the current node
increases, the receiving rate of the next hop node gradually decreases. Therefore, when the next hop
node is congested, the next hop node queue length is used as a parameter to adaptively adjust the
size of the contention window of the current node, thereby achieving the purpose of congestion
mitigation. The CW of the current node is adjusted in the following way:

Figure 6. Contention window adjustment strategies of HBCC.

3.3.1. DCF Algorithm

DCF is used to transmit data in the 802.11 protocol, and DCF provides a standard competitive
service like Ethernet. DCF is the basic access control mode of the IEEE802.11 protocol. In DCF mode,
after detecting the busy channel, the node uses the CSMA/CA mechanism and random backoff time to
share the wireless channel. The basic rule of DCF is that the node listens to the busy condition of the
surrounding medium through the carrier sense mechanism. If the channel is busy, the sending node
will continue to monitor the channel. If the channel is idle, in order to avoid collision between nodes,
the nodes enter a random backoff state. The generation of backoff time is as follows:

Sensors 2019, 19, 3484 9 of 25

Backo f fTime = Random() × SlotTime (1)

Here, Random () is a random number between (0, CW).

3.3.2. Hop-By-Hop Receiving-Based Congestion Control—HRCC

When Next_CI = 1, the unidirectional congestion control algorithm to suppress the reception rate
of the next hop node should be adopted. According to this principle, the hop-by-hop receiving-based
congestion control (HRCC) algorithm is proposed in this paper. The idea of the HRCC algorithm in
this paper is: the current node detects that the next hop congestion flag Next_CI = 1, that is, the next
hop node is congested. By increasing the CW (competition window) of the current node, the priority
of the current node to access the channel is reduced, so the data sending rate of the current node is
reduced [29]. That is, the data receiving rate of the next hop node is reduced, so that the congestion of
the next hop node is alleviated.

It can be seen from Equation (1) that the larger the value selected by Random (), the longer the
backoff time before the current node sends the data. As the waiting time of the current node increases,
the receiving rate of the next hop node gradually decreases. Therefore, when the next hop node is
congested, the next hop node queue length is used as a parameter to adaptively adjust the size of
the contention window of the current node, thereby achieving the purpose of congestion mitigation.
The CW of the current node is adjusted in the following way:

CW = (CWmin + 1) × 2n
− 1 (2)

Here, CW is the adjusted initial contention window of the current node, CWmin is the contention
window minimum, and n is the window adjustment parameter, which is given by:

n = ((qnext − k)/(Qmax − k)) × log2((CWmax + 1)/(CWmin + 1)) (3)

where qnext is the queue length of the next hop node, k is the congestion threshold, Qmax is the maximum
length of the node buffer queue, and CWmax is the maximum contention window.

According to Equations (2) and (3), the adjustment range of the CW is between CWmin and CWmax.
When qnext = k, n = 0 and CW = CWmin. As the length of the node queue increases, the CW also
increases, and the priority of the node to access the channel is continuously decreasing. When qnext =

Qmax, n is given by:
n = log2((CWmax + 1)/(CWmin + 1)) (4)

By bringing Equation (4) into Equation (2), the value of CW is obtained as CWmax, at which point
the current node gets the lowest priority to access the channel. The current node waits for the longest
time, and the next hop node will have enough time to send the packets in the buffer queue.

3.3.3. Hop-By-Hop Sending-Based Congestion Control—HSCC

When Temp_CI = 1, the unidirectional congestion control algorithm to improve the sending rate
of the current node should be adopted. According to this principle, the hop-by-hop sending-based
congestion control algorithm (HSCC) is proposed in this paper. The idea of the HSCC algorithm in
this paper is: when Temp_CI = 1, the priority of the current node to access the channel is increased by
reducing the CW of the current node, so that the data packets in the buffer queue of the current node
are sent out as soon as possible.

It can be seen from Equation (1) that the smaller the value selected by the number of Random (),
the shorter the backoff time before the current node sends the data. The higher the probability of
the current node accessing the channel, the higher the data transmission rate of the current node.

Sensors 2019, 19, 3484 10 of 25

Therefore, when the current node is congested, the HSCC algorithm uses the current node queue
length as a parameter to adaptively adjust the size of the CW of the current node. CW is given by:

CW = (CWmin + 1) ∗ 2m
− 1 (5)

where m is given by:
m = −

((
qtemp − k

)
/(Qmax − k)

)
(6)

Here, qtemp is the queue length of the current node. It can be seen from Equation (6) that when
qtemp = k, m = 0, so CW = CWmin. As the current node queue increases, m is reduced, CW is reduced,
and the priority of the current node to access the channel is continuously increased. When qtemp =

Qmax, m = −1 and CW = 0.5 × (CWmin − 1). At this time, the current node obtains the highest priority
to access the channel, and the current node can send the data packets of the buffer queue more quickly,
so that the congestion is alleviated.

3.3.4. Hop-By-Hop Priority Congestion Control—HPCC

The above two methods of congestion control only consider the congestion conditions of one
node, and they adjust the data packet transmission rate of the current node by changing the priority of
access to the channel according to the length of the node buffer queue, thereby achieving the purpose
of relieving congestion. However, unidirectional congestion control algorithms have the problem of
validity when two nodes are congested at the same time (see description in Section 2). In order to solve
this problem, this paper proposes the Hop-by-hop Priority Congestion Control (HPCC) algorithm.
When the current node congestion flag Temp_CI and the next hop node congestion control Next_CI are
both 1, in order to ensure that the next hop node has a higher congestion processing priority, the node
uses HPCC to adjust the CW of the current node, which is given by:

CW =

{
CWnext

CWmin

qtemp ≥ qnext

qtemp < qnext
(7)

Here, CWnext is the congestion contention window of the next hop node, qtemp is the current node
buffer queue length, and qnext is the next hop node buffer queue length. It can be seen from Equation (7)
that if qtemp ≥ qnext, the algorithm sets the CW of the current node to be equal to the CW of the next hop
node. Due to the fact that the current node has a greater degree of congestion but the next hop node
has a higher congestion handling priority, the same congestion processing level is set. If qtemp < qnext,
the algorithm sets the CW of the current node to CWmin. This is because the buffer queue of the next
hop node is longer, and the CW setting of the next hop node is less than CWmin, which also ensures
that the next hop node has a higher congestion processing priority. The HBCC algorithm not only
ensures that the congestion of the current node is alleviated, but it also ensures that the next hop node
has a higher congestion processing priority.

3.3.5. Contention-Based Hop-By-Hop Bidirectional Congestion Control—HBCC

HBCC deploys a hop-by-hop approach for congestion control. There are three phases of the HBCC
protocol, i.e., congestion detection, congestion notification and congestion control. In the congestion
detection phase, the HBCC protocol uses buffer occupancy. It uses the congestion threshold value to
calculate the level of congestion at each node. If the queue length is higher than the threshold, the child
nodes need to decrease their data rates to avoid congestion and packet loss. Changing the value of CW
can indirectly change the data rate of nodes. HBCC provides higher network throughput by reducing
packet loss.

Sensors 2019, 19, 3484 11 of 25

The proposed HBCC algorithm combines the four congestion processing algorithms. When the
local congestion sign Temp_CI and the next hop congestion sign Next_CI are both 0, neither node has
congestion, and so the DCF algorithm is adopted. When Temp_CI = 1 and Next_CI = 0, the current
node is congested and the next hop node is not congested. Therefore, it is most suitable to improve the
current node transmission rate to alleviate congestion. At this time, the proposed HSCC algorithm is
used to adjust the competition window. When Temp_CI = 0 and Next_CI = 1, the current node is not
congested and the next hop node is congested. Therefore, the best way to alleviate congestion is to
suppress the next hop receiving rate. At this time, the proposed HRCC algorithm is used to adjust the
competition window. When Temp_CI = 1 and Next_CI = 1, that is, congestion occurs at both nodes,
the HPCC algorithm proposed in this paper is used to adjust the competition window. The HBCC
algorithm considers the congestion conditions of two nodes and adopts different contention window
adjustment methods for different congestion conditions.

As shown in Figure 1, if node3 is congested and node4 is not congested (1–0 congestion condition),
we adopt the HSCC algorithm for congestion control. The contention window of node3 is adjusted
using Equation (5) to obtain a higher priority to access the channel, but the priority of node4 is not
improved, which is only in order to transfer the data packets buffered by node3 to node4. Although
the packet loss ratio at node3 can be reduced, a transfer delay may be caused due to the fact that the
transferred data packet cannot be transmitted immediately. If both node3 and node4 are congested,
node4 should not only alleviate local congestion but should also forward packets sent by node3 as soon
as possible. Therefore, the time for node3 to use high priority should be reduced in order to reduce the
chances of competing with node4 for the channel. In order to solve this problem, we have added an
adaptive data transmission rate adjustment mechanism to increase the packet transmission rate in
order to reduce its priority usage time when the congestion node transmits data. Rdata is given by:

Rdata =

10 Mbps
5 Mbps
2 Mbps
1 Mbps

(
qtemp − qnext

)
≥ 0.25Qmax

0.1Qmax ≤
(
qtemp − qnext

)
< 0.25Qmax

0 ≤
(
qtemp − qnext

)
< 0.1Qmax

else

(8)

It can be seen from Equation (8) that the larger the difference between the queue length of the
current node and the next hop node, the larger the data sending rate of the current node. It is obvious
that the larger the buffer queue length of the node, the more serious the congestion of the node;
therefore, CW is adjusted to be smaller and the priority of the node is adjusted to be higher. Nodes with
high priority also have high data transmission rates, which reduces the time that high priority nodes
occupy the channel. Therefore, the transferred data packet can be transmitted as soon as possible.
Through several simulations under the network topology shown in Figure 1, we find that when the
segment threshold is set to 0.25Qmax and 0.1Qmax, the congestion control effect is the best, so we adopt
0.25Qmax and 0.1Qmax as the segment threshold. However, this optimization of Equation (8) does not
take into account the quality of the channel when improving the transmission rate, which may lead to
the loss of data packets due to a poor channel. So this optimization method is only suitable for the case
of good channel quality. Different delay optimization methods can be selected in different situations,
but this does not affect HBCC congestion control to alleviate network congestion. The HBCC algorithm
is shown in Algorithm 2.

Sensors 2019, 19, 3484 12 of 25

Algorithm 2: Pseudo code for the HBCC algorithm

1. Input:
2. temp_queuelength: Buffer queue length of current node.
3. Queue_max: Maximum buffer queue length of nodes.
4. k: Congestion threshold.
5. Next_CI: The variable to save the congestion condition of next hop in current node.
6. qnext: The variable to save the length of buffer queue of next hop node in current node.
7. queuelength: Used to get the length of the buffer queue.
8. Temp_CI: The variable to save the congestion condition of current node.
9. CWmin: The minimum contention window.
10. Output:
11. CW: Adjusted competition window of current node.
12. datarate: Adjusted data sending rate of current node.
13. CWnext: The variable to save the current CW value of the next hop node in current node.
14. Initially: CW← CWmin datarate← 1 Mbps
15. if node needs to send a data then
16. queuelength← temp_queuelength
17. if 0 ≤ queuelength ≤ k then
18. Temp_CI← 0
19. else if k < queuelength ≤ Queue_max then
20. Temp_CI← 1
21. end if
22. if Temp_CI = 0 and Next_CI = 0 then
23. CW← CWmin

24. else if Temp_CI = 0 and Next_CI = 1 then
25. CW is calculated by (2)
26. else if Temp_CI = 1 and Next_CI = 0 then
27. CW is calculated by (5)
28. else if Temp_CI = 1 and Next_CI = 1 then
29. CWnext is calculated by (5) with next_queuelength as parameter.
30. if temp_queuelength > next_queuelength then
31. CW← CWnext
32. else
33. CW← CWmin

34. end if
35. end if
36. if Temp_CI = 1 then
37. defferent← temp_queuelength − next_queuelength
38. if 0 ≤ defferent < 0.1 * Queue_max then
39. datarate← 2 Mbps
40. else if 0.1 * Queue_max ≤ defferent < 0.25 * Queue_max then
41. datarate← 5 Mbps
42. else if defferent ≥ 0.25 * Queue_max then
43. datarate← 10 Mbps
44. end if
45. end if
46. end if

Sensors 2019, 19, 3484 13 of 25

3.3.6. Complexity Analysis

Time complexity: The overall time complexity is computed as follows:

⇒ TC = O(n) + O(1) + O(1)
⇒ TC = O(n)

(9)

Space complexity: The space complexity comes out to be as shown below:

⇒ SC = O(n) + O(1) + O(1)
⇒ SC = O(n)

(10)

4. Simulation and Analysis

In this section, we first analyze the effectiveness of the algorithm in the topology shown in Figure 1,
and then use the aggregation network topology and random network topology to analyze the algorithm
robustness and related network performance.

4.1. Performance Metrics

The performance metrics used for evaluation in this paper are as follows:

(1) Throughput [30]: This is defined as the number of packets received by the destination per unit
time. A higher throughput reflects a higher efficiency of the network and is desirable.

(2) Average end-to-end delay: This refers to the time taken for a packet to be transmitted from the
source to its destination. The average end-to-end delay is the average end-to-end delay for all
Throughput the packets that are successfully delivered. A lower delay reflects a higher efficiency
of the network.

(3) Buffer overflow packet loss ratio [31]: This is the ratio of packet loss caused by buffer overflow
to the total number of packets sent to the network. A lower loss ratio reflects the reliability of
the protocol.

4.2. Simple Tree Topology

4.2.1. Parameter Settings

The simple tree network topology is shown in Figure 1, and the related parameter settings are
shown in Table 2. After 10 seconds of simulation, node0, node1 and node2 start generating CBR
packets, which are forwarded by node3 and node4 and transmitted to node5. Node1 and node2
generate data packets at a fixed rate of 10 packets/s, gradually changing the packet transmission rate of
node0 (10 packets/s to 90 packets/s), which makes the network change gradually from no-congestion to
congestion. Network performance is tested under the DCF, HBCC, HSCC, HRCC and CA-MAC [11]
congestion control algorithms.

Table 2. Parameter Settings.

Name Settings

Environment Win7 + VMware + Ubuntu10.04 + NS − 2.35
Queue management Droptail

Routing Protocol AODV
Node communication radius 250 m

Packet type CBR
Packet size 1024 B

Maximum buffer queue length 50 packet
Simulation duration 250 s

CWmin 31
CWmax 1023

Sensors 2019, 19, 3484 14 of 25

4.2.2. Simulation Results and Algorithm Effectiveness Analysis

(1) Throughput

Figure 7 shows the curve of the average saturated throughput of node5 with the DCF, HBCC,
HSCC, CA-MAC and HRCC algorithms, varying with load, under a simple tree topology. As can be
seen from Figure 7, when the network load is small, the throughput of the four protocols increases
linearly with the increase in input load. As the network load continues to increase, the network
gradually becomes congested, and the throughput stops growing, in turn, in the DCF algorithm (when
the load is 25 packets/s), the HRCC algorithm (when the load is 15 packets/s), the HSCC algorithm
(when the load is 35 packets/s), the CA-MAC algorithm (when the load is 15packets/s) and the HBCC
algorithm (when the load is 40 packets/s). The average saturation throughputs of the DCF, HRCC,
HSCC, CA-MAC and HBCC algorithms are approximately 29 packets/s, 34 packets/s, 49 packets/s,
34 packets/s and 55 packets/s, respectively.

Sensors 2019, 19, x FOR PEER REVIEW 14 of 25

4.2.2. Simulation Results and Algorithm Effectiveness Analysis

(1) Throughput

Figure 7 shows the curve of the average saturated throughput of node5 with the DCF, HBCC,
HSCC, CA-MAC and HRCC algorithms, varying with load, under a simple tree topology. As can be
seen from Figure 7, when the network load is small, the throughput of the four protocols increases
linearly with the increase in input load. As the network load continues to increase, the network
gradually becomes congested, and the throughput stops growing, in turn, in the DCF algorithm
(when the load is 25 packets/s), the HRCC algorithm (when the load is 15 packets/s), the HSCC
algorithm (when the load is 35 packets/s), the CA-MAC algorithm (when the load is 15packets/s)
and the HBCC algorithm (when the load is 40 packets/s). The average saturation throughputs of the
DCF, HRCC, HSCC, CA-MAC and HBCC algorithms are approximately 29 packets/s, 34 packets/s,
49 packets/s, 34 packets/s and 55 packets/s, respectively.

Figure 7. Curves of average saturation throughput with network load.

It can be seen from the simulation results in Figure 7 that the throughput performance of
HBCC using hop-by-hop bidirectional congestion control is better than the HSCC algorithm, HRCC
algorithm, CA-MAC algorithm and DCF algorithm. The average saturation throughput in HBCC is
about 12% higher than in the HSCC algorithm, about 62% higher than in the HRCC algorithm,
about 62% higher than in the CA-MAC algorithm, and about 90% higher than in the DCF algorithm.
Because HBCC adopts bidirectional congestion control, when a node is congested, the node can
handle the congestion quickly according to the congestion condition judged, so that the packet of
the congested node can be sent out as soon as possible. The congestion is reduced, and the waiting
time of the buffered data packet in the queue is also reduced, so that the data packet is sent to the
destination node5 as soon as possible. Therefore, the throughput of the network is greatly
improved.

(2) Buffer overflow packet loss ratio

Figure 8 shows the curves of buffer overflow loss ratio with network load using the DCF,
HBCC, HSCC, CA-MAC and HRCC algorithms, under a simple tree topology. As can be seen from
Figure 8, the buffer overflow packet loss ratio of the four algorithms increases with increasing
network load. It can be seen from the figure that when the DCF algorithm has a load of 10 packets/s,
the HRCC algorithm has a load of 15 packets/s, the HSCC algorithm has a load of 25 packets/s,
CA-MAC algorithm has a load of 15 packets/s, or the HBCC algorithm has a load of 30 packet/s, the
network begins to lose data packets. As the load on the network increases, the buffer overflow
packet loss ratio of the HBCC algorithm is lower than that of the other three algorithms.

Figure 7. Curves of average saturation throughput with network load.

It can be seen from the simulation results in Figure 7 that the throughput performance of HBCC
using hop-by-hop bidirectional congestion control is better than the HSCC algorithm, HRCC algorithm,
CA-MAC algorithm and DCF algorithm. The average saturation throughput in HBCC is about 12%
higher than in the HSCC algorithm, about 62% higher than in the HRCC algorithm, about 62% higher
than in the CA-MAC algorithm, and about 90% higher than in the DCF algorithm. Because HBCC
adopts bidirectional congestion control, when a node is congested, the node can handle the congestion
quickly according to the congestion condition judged, so that the packet of the congested node can
be sent out as soon as possible. The congestion is reduced, and the waiting time of the buffered data
packet in the queue is also reduced, so that the data packet is sent to the destination node5 as soon as
possible. Therefore, the throughput of the network is greatly improved.

(2) Buffer overflow packet loss ratio

Figure 8 shows the curves of buffer overflow loss ratio with network load using the DCF, HBCC,
HSCC, CA-MAC and HRCC algorithms, under a simple tree topology. As can be seen from Figure 8,
the buffer overflow packet loss ratio of the four algorithms increases with increasing network load.
It can be seen from the figure that when the DCF algorithm has a load of 10 packets/s, the HRCC
algorithm has a load of 15 packets/s, the HSCC algorithm has a load of 25 packets/s, CA-MAC algorithm
has a load of 15 packets/s, or the HBCC algorithm has a load of 30 packet/s, the network begins to lose
data packets. As the load on the network increases, the buffer overflow packet loss ratio of the HBCC
algorithm is lower than that of the other three algorithms.

Sensors 2019, 19, 3484 15 of 25
Sensors 2019, 19, x FOR PEER REVIEW 15 of 25

Figure 8. Curves of buffer overflow loss ratio with network load.

It can be seen from the simulation results in Figure 8 that the buffer overflow packet loss ratio
performance of HBCC with bidirectional congestion control is better than the HSCC algorithm,
HRCC algorithm, CA-MAC algorithm and DCF algorithm. When the load is 40 packets/s, the buffer
overflow packet loss ratio using the HBCC algorithm is about 44% lower than the HSCC algorithm,
about 79% lower than the HRCC algorithm, about 79% lower than the CA-MAC algorithm, and
about 80% lower than the DCF algorithm. Because HBCC adopts bidirectional congestion control,
when a node is congested, it can adaptively adjust the CW of the previous hop node to obtain the
lower priority of access to the channel and suppress the data receiving rate of the current node. It
can also adaptively adjust the contention window of the current node to obtain a higher priority of
access to the channel and improve the sending rate of the current node. In this way, the congested
node can reduce the length of the buffer queue of the current node more quickly. Therefore, the
congestion of the network is alleviated, and the buffer overflow packet is avoided.

(3) Average end-to-end delay

Figure 9 shows the curves of average end-to-end delay with network load using the DCF,
HBCC, HSCC, CA-MAC and HRCC algorithms, under a simple tree topology. As can be seen from
Figure 9, the average end-to-end delay of the four algorithms increases with increasing network
load. It can be seen from the figure that the average end-to-end delay of the four algorithms is, from
high to low: HRCC, DCF, HBCC, HSCC.

Figure 9. Curves of average end-to-end delay with network load.

Figure 8. Curves of buffer overflow loss ratio with network load.

It can be seen from the simulation results in Figure 8 that the buffer overflow packet loss ratio
performance of HBCC with bidirectional congestion control is better than the HSCC algorithm, HRCC
algorithm, CA-MAC algorithm and DCF algorithm. When the load is 40 packets/s, the buffer overflow
packet loss ratio using the HBCC algorithm is about 44% lower than the HSCC algorithm, about 79%
lower than the HRCC algorithm, about 79% lower than the CA-MAC algorithm, and about 80% lower
than the DCF algorithm. Because HBCC adopts bidirectional congestion control, when a node is
congested, it can adaptively adjust the CW of the previous hop node to obtain the lower priority of
access to the channel and suppress the data receiving rate of the current node. It can also adaptively
adjust the contention window of the current node to obtain a higher priority of access to the channel
and improve the sending rate of the current node. In this way, the congested node can reduce the
length of the buffer queue of the current node more quickly. Therefore, the congestion of the network
is alleviated, and the buffer overflow packet is avoided.

(3) Average end-to-end delay

Figure 9 shows the curves of average end-to-end delay with network load using the DCF, HBCC,
HSCC, CA-MAC and HRCC algorithms, under a simple tree topology. As can be seen from Figure 9,
the average end-to-end delay of the four algorithms increases with increasing network load. It can
be seen from the figure that the average end-to-end delay of the four algorithms is, from high to low:
HRCC, DCF, HBCC, HSCC.

Sensors 2019, 19, x FOR PEER REVIEW 15 of 25

Figure 8. Curves of buffer overflow loss ratio with network load.

It can be seen from the simulation results in Figure 8 that the buffer overflow packet loss ratio
performance of HBCC with bidirectional congestion control is better than the HSCC algorithm,
HRCC algorithm, CA-MAC algorithm and DCF algorithm. When the load is 40 packets/s, the buffer
overflow packet loss ratio using the HBCC algorithm is about 44% lower than the HSCC algorithm,
about 79% lower than the HRCC algorithm, about 79% lower than the CA-MAC algorithm, and
about 80% lower than the DCF algorithm. Because HBCC adopts bidirectional congestion control,
when a node is congested, it can adaptively adjust the CW of the previous hop node to obtain the
lower priority of access to the channel and suppress the data receiving rate of the current node. It
can also adaptively adjust the contention window of the current node to obtain a higher priority of
access to the channel and improve the sending rate of the current node. In this way, the congested
node can reduce the length of the buffer queue of the current node more quickly. Therefore, the
congestion of the network is alleviated, and the buffer overflow packet is avoided.

(3) Average end-to-end delay

Figure 9 shows the curves of average end-to-end delay with network load using the DCF,
HBCC, HSCC, CA-MAC and HRCC algorithms, under a simple tree topology. As can be seen from
Figure 9, the average end-to-end delay of the four algorithms increases with increasing network
load. It can be seen from the figure that the average end-to-end delay of the four algorithms is, from
high to low: HRCC, DCF, HBCC, HSCC.

Figure 9. Curves of average end-to-end delay with network load. Figure 9. Curves of average end-to-end delay with network load.

Sensors 2019, 19, 3484 16 of 25

Because the idea of the HRCC algorithm is to increase the time for the last hop node to wait for
access to the channel in exchange for congestion mitigation, this will inevitably lead to a certain delay
increase, but in exchange for a lower packet loss ratio and higher throughput. This is worthwhile for
the entire network, because packet loss ratio is the most important network performance evaluation
index. The average end-to-end delay of the HSCC algorithm is the lowest, because when the node is
congested, by increasing the priority of access for the congested node, the time that the node waits for
access to the channel is reduced, and the time of the data packet in the buffer queue is reduced. So,
the end-to-end delay is lower. However, the CA-MAC algorithm does not have the delay optimization
added in this paper, so the delay is still very large compared with HRCC. The HBCC algorithm
combines two algorithms, so the average end-to-end delay curve lies between the two algorithms, and
the congestion mitigation effect is better. Through the analysis of the above three network performance
indicators, we can see that the HBCC algorithm can greatly improve the average saturation throughput
of the network, reduce the average end-to-end delay, and greatly reduce the network buffer overflow
packet ratio.

(4) Analysis of the congestion control process of the HBCC algorithm

Here, we analyze how the HBCC algorithm works by tracking the length of the buffer queue.
Figure 10 shows the distribution of the buffer queues of node0, node1 (the buffer queue of node2
is similar to that of node1), node3, and node4 in the simulation time when the network loads are
20 packets/s and 25 packets/s. Figure 11 shows the distribution of the buffer queues of node0, node1,
node3 and node4 in the simulation time when the network loads are 30 packets/s and 35 packets/s.
In Figures 10 and 11, the green histogram is the DCF algorithm, the red histogram is the HBCC
algorithm, the brown is the intersection areas of two algorithms, the horizontal axis is the length of the
buffer queue, and the vertical axis is the number of occurrences.

As can be seen from Figure 8, when the network load is 20 packets/s, the DCF algorithm has
generated packet loss, and the HBCC algorithm has not generated packet loss. As shown in Figure 10c,
the buffer queue length of node3 in the DCF algorithm has reached the full queue, while the buffer
queue of node3 in the HBCC algorithm has not reached the full queue. When the network load is
increased to 25 packets/s, the full queue has appeared at node0 under the DCF algorithm due to the
larger quantity of data packets generated. The length of the buffer queue of node3 continues to increase.
However, under the HBCC algorithm, the buffer queues of node0 and node3 do not reach the full
queue. When the load is heavier, the packet loss ratio of the DCF algorithm is aggravated, while that of
the HBCC algorithm does not occur. These results are also confirmed in the packet loss ratio curve of
Figure 8.

Sensors 2019, 19, x FOR PEER REVIEW 16 of 25

Because the idea of the HRCC algorithm is to increase the time for the last hop node to wait for
access to the channel in exchange for congestion mitigation, this will inevitably lead to a certain
delay increase, but in exchange for a lower packet loss ratio and higher throughput. This is
worthwhile for the entire network, because packet loss ratio is the most important network
performance evaluation index. The average end-to-end delay of the HSCC algorithm is the lowest,
because when the node is congested, by increasing the priority of access for the congested node, the
time that the node waits for access to the channel is reduced, and the time of the data packet in the
buffer queue is reduced. So, the end-to-end delay is lower. However, the CA-MAC algorithm does
not have the delay optimization added in this paper, so the delay is still very large compared with
HRCC. The HBCC algorithm combines two algorithms, so the average end-to-end delay curve lies
between the two algorithms, and the congestion mitigation effect is better. Through the analysis of
the above three network performance indicators, we can see that the HBCC algorithm can greatly
improve the average saturation throughput of the network, reduce the average end-to-end delay,
and greatly reduce the network buffer overflow packet ratio.

(4) Analysis of the congestion control process of the HBCC algorithm

Here, we analyze how the HBCC algorithm works by tracking the length of the buffer queue.
Figure 10 shows the distribution of the buffer queues of node0, node1 (the buffer queue of node2 is
similar to that of node1), node3, and node4 in the simulation time when the network loads are 20
packets/s and 25 packets/s. Figure 11 shows the distribution of the buffer queues of node0, node1,
node3 and node4 in the simulation time when the network loads are 30 packets/s and 35 packets/s.
In Figures 10 and 11, the green histogram is the DCF algorithm, the red histogram is the HBCC
algorithm, the brown is the intersection areas of two algorithms, the horizontal axis is the length of
the buffer queue, and the vertical axis is the number of occurrences.

As can be seen from Figure 8, when the network load is 20 packets/s, the DCF algorithm has
generated packet loss, and the HBCC algorithm has not generated packet loss. As shown in Figure
10c, the buffer queue length of node3 in the DCF algorithm has reached the full queue, while the
buffer queue of node3 in the HBCC algorithm has not reached the full queue. When the network
load is increased to 25 packets/s, the full queue has appeared at node0 under the DCF algorithm
due to the larger quantity of data packets generated. The length of the buffer queue of node3
continues to increase. However, under the HBCC algorithm, the buffer queues of node0 and node3
do not reach the full queue. When the load is heavier, the packet loss ratio of the DCF algorithm is
aggravated, while that of the HBCC algorithm does not occur. These results are also confirmed in
the packet loss ratio curve of Figure 8.

(a) (b)

Figure 10. Cont.

Sensors 2019, 19, 3484 17 of 25Sensors 2019, 19, x FOR PEER REVIEW 17 of 25

(c) (d)

Figure 10. Buffer queue distribution of nodes when loads are 20 and 25 packets/s. (a) Node0; (b)
Node1; (c) Node3; (d) Node4.

From the change in queue length, we can see that network congestion has been greatly
alleviated. This is because when it is detected that the buffer queue is larger than the congestion
threshold, the contention window is adaptively adjusted according to the queue length, and the
adjusted contention window changes the node data transmission rate. The congestion condition of
node1 and node3 is 0–1, and the CW is adjusted using Equation (2). The buffer queue length of
node1 is increased, and the data reception rate of node3 is reduced. It can be seen from Figure 10b
that the buffer queue of node1 is slightly increased, and the buffer queue of node3 is below the full
queue. The congestion condition of node3 and node4 is 1–0. At this time, the CW is adjusted by
Equation (5). The adjusted CW increases the data transmission rate of node3, and a certain data
packet is sent to node4. It can be seen from Figure 10d that the buffer queue of node4 increases.
Figure 10c shows that the buffer queue of node3 is reduced to below the full queue. When the load
is 25 packets/s, the congestion condition of node0 and node3 is 1–1, and the CW is adjusted
according to Equation (7). Node3 preferentially handles congestion, and the buffer queue of node3
falls under the HBCC algorithm, so the congestion of node0 can also be relieved. Figure 10a shows
that the buffer queue of node0 is also reduced.

The queues analyzed in Figure 10 are all cases where HBCC does not experience congestion. It
can be seen from Figure 8 that the HBCC algorithm has generated congestion when the load reaches
35 packets/s. Therefore, according to Figure 11, this paper analyses the change in nodes’ buffer
queue length from non-congestion to congestion. As shown in Figure 11, under the DCF algorithm,
as the load increases, the buffer queue lengths of node0 are increasing, and a large number of them
are clustered near the full queue. The buffer queue of node3 is saturated (the delay is also
confirmed by the delay curve shown in Figure 9, but it can be seen from Figure 8 that the network
packet loss ratio is increasing. The buffer queue lengths of node1 and node4 are very low. Under
the HBCC algorithm, the buffer queues of node0 and node3 are greatly reduced, while the buffer
queue lengths of node1 and node4 are both increased.

Figure 10. Buffer queue distribution of nodes when loads are 20 and 25 packets/s. (a) Node0; (b) Node1;
(c) Node3; (d) Node4.

From the change in queue length, we can see that network congestion has been greatly alleviated.
This is because when it is detected that the buffer queue is larger than the congestion threshold,
the contention window is adaptively adjusted according to the queue length, and the adjusted
contention window changes the node data transmission rate. The congestion condition of node1 and
node3 is 0–1, and the CW is adjusted using Equation (2). The buffer queue length of node1 is increased,
and the data reception rate of node3 is reduced. It can be seen from Figure 10b that the buffer queue of
node1 is slightly increased, and the buffer queue of node3 is below the full queue. The congestion
condition of node3 and node4 is 1–0. At this time, the CW is adjusted by Equation (5). The adjusted
CW increases the data transmission rate of node3, and a certain data packet is sent to node4. It can be
seen from Figure 10d that the buffer queue of node4 increases. Figure 10c shows that the buffer queue
of node3 is reduced to below the full queue. When the load is 25 packets/s, the congestion condition
of node0 and node3 is 1–1, and the CW is adjusted according to Equation (7). Node3 preferentially
handles congestion, and the buffer queue of node3 falls under the HBCC algorithm, so the congestion
of node0 can also be relieved. Figure 10a shows that the buffer queue of node0 is also reduced.

The queues analyzed in Figure 10 are all cases where HBCC does not experience congestion.
It can be seen from Figure 8 that the HBCC algorithm has generated congestion when the load reaches
35 packets/s. Therefore, according to Figure 11, this paper analyses the change in nodes’ buffer queue
length from non-congestion to congestion. As shown in Figure 11, under the DCF algorithm, as the
load increases, the buffer queue lengths of node0 are increasing, and a large number of them are
clustered near the full queue. The buffer queue of node3 is saturated (the delay is also confirmed by
the delay curve shown in Figure 9, but it can be seen from Figure 8 that the network packet loss ratio is
increasing. The buffer queue lengths of node1 and node4 are very low. Under the HBCC algorithm,
the buffer queues of node0 and node3 are greatly reduced, while the buffer queue lengths of node1 and
node4 are both increased.

Sensors 2019, 19, 3484 18 of 25
Sensors 2019, 19, x FOR PEER REVIEW 18 of 25

(a) (b)

(c) (d)

Figure 11. Node buffer queue distribution when loads are 30 and 35 packets/s. (a) Node0; (b) Node1;
(c) Node3; (d) Node4.

Comparing the changes in the buffer queues of nodes under the two protocols, it can be seen
that when the congestion is aggravated, the congestion mitigation strength of the HBCC algorithm
is gradually increased, and the length of buffer queues of congested nodes decreases to a great
extent. This is because under the HBCC algorithm, when the length of the buffer queue increases,
the adaptive adjustment of the competition window becomes very strong. Under the DCF
algorithm, when the network loads are 30 packets/s and 35 packets/s, node0 has reached the full
queue, and the buffer queue length of node3 is also clustered around 50. However, the buffer queue
lengths of node1 and node4 are very low. Under the HBCC algorithm, the congestion condition of
node0 and node3 is 1–1. The HBCC algorithm adjusts the CW of node0 according to Equation (7)
and changes its data sending rate. After the congestion of node3 is alleviated, node0 also
experiences an alleviation of congestion to a certain extent. As can be seen from Figure 11a, the
buffer queue of node0 is basically below the full queue. Under the HBCC algorithm, the congestion
condition of node1 and node3 is 0–1. The HBCC algorithm adaptively adjusts the CW of node1
according to Equation (2). The adjusted contention window reduces the data transmission rate of
node1. The buffer queue of node 1 shown in Figure 11b has been greatly improved, which reduces
the data receiving rate of node3. The congestion condition of node3 and node4 is 1–0. The HBCC
algorithm adjusts the CW of node3 according to Equation (5) to increase its data sending rate. As
can be seen from Figure 11c, the buffer queue length of node3 is basically below the full queue. The
length of the buffer queue in node 4 has increased, as shown in Figure 11d.

The node queue status under the two algorithms at different loads is shown in Table 3. The
adjustment effect of the HBCC algorithm is shown in Table 4. Table 4 shows that when the load is
20 packets/s, the average buffer queue length of each node in the HBCC algorithm decreases
compared with the DCF algorithm. Because the degree of congestion is low at this time, the nodes
in the HBCC algorithm are mostly in a no-congestion state. Therefore, compared with the DCF

Figure 11. Node buffer queue distribution when loads are 30 and 35 packets/s. (a) Node0; (b) Node1;
(c) Node3; (d) Node4.

Comparing the changes in the buffer queues of nodes under the two protocols, it can be seen
that when the congestion is aggravated, the congestion mitigation strength of the HBCC algorithm is
gradually increased, and the length of buffer queues of congested nodes decreases to a great extent.
This is because under the HBCC algorithm, when the length of the buffer queue increases, the adaptive
adjustment of the competition window becomes very strong. Under the DCF algorithm, when the
network loads are 30 packets/s and 35 packets/s, node0 has reached the full queue, and the buffer
queue length of node3 is also clustered around 50. However, the buffer queue lengths of node1 and
node4 are very low. Under the HBCC algorithm, the congestion condition of node0 and node3 is 1–1.
The HBCC algorithm adjusts the CW of node0 according to Equation (7) and changes its data sending
rate. After the congestion of node3 is alleviated, node0 also experiences an alleviation of congestion to
a certain extent. As can be seen from Figure 11a, the buffer queue of node0 is basically below the full
queue. Under the HBCC algorithm, the congestion condition of node1 and node3 is 0–1. The HBCC
algorithm adaptively adjusts the CW of node1 according to Equation (2). The adjusted contention
window reduces the data transmission rate of node1. The buffer queue of node 1 shown in Figure 11b
has been greatly improved, which reduces the data receiving rate of node3. The congestion condition
of node3 and node4 is 1–0. The HBCC algorithm adjusts the CW of node3 according to Equation (5) to
increase its data sending rate. As can be seen from Figure 11c, the buffer queue length of node3 is
basically below the full queue. The length of the buffer queue in node 4 has increased, as shown in
Figure 11d.

The node queue status under the two algorithms at different loads is shown in Table 3.
The adjustment effect of the HBCC algorithm is shown in Table 4. Table 4 shows that when the
load is 20 packets/s, the average buffer queue length of each node in the HBCC algorithm decreases

Sensors 2019, 19, 3484 19 of 25

compared with the DCF algorithm. Because the degree of congestion is low at this time, the nodes in
the HBCC algorithm are mostly in a no-congestion state. Therefore, compared with the DCF algorithm,
the length of the buffer queue in non-congested nodes is basically unchanged. When the load is
25 packets/s, the average buffer queue length of node0 in the HBCC algorithm is higher than that in the
DCF algorithm, but there is no full queue in node0, and no packet loss occurs. Other buffer queue
changes are consistent with the HBCC algorithm principle.

Table 3. Queue status of nodes.

Load
Packet/s

Algorithm Average Queue Length of Nodes (Packet) Nodes with
Full Queue

Packet Loss
RatioNode0 Node1 Node2 Node3 Node4

20
DCF 1.53 0.16 0.22 44.28 0.94 Node3 22.5%

HBCC 0.98 0.11 0.20 35.45 0.57 No No

25
DCF 26.85 0.12 0.14 45.02 0.93 Node 0 Node 3 35.3%

HBCC 33.73 0.27 0.40 37.69 0.69 No No

30
DCF 43.21 0.13 0.13 44.38 0.94 Node 0 Node 3 41.4%

HBCC 37.67 2.06 1.25 39.60 0.99 Node 3 0.9%

35
DCF 44.67 0.10 0.31 44.55 1.08 Node 0 Node 3 46.8%

HBCC 40.55 26.76 23.98 40.99 1.21 Node 0 Node 3 4.3%

Table 4. Adjustment effect of the HBCC algorithm.

Load
Packet/s

Node
Combination

Congestion
Conditions

Strategies of
CW

Average Queue Length Change Compared with
DCF

Node0 Node1 Node3 Node4

20
0–3 0–0, 0–1 DCF, HRCC similar decline
1–3 0–0, 0–1 DCF, HRCC similar decline
3–4 0–0, 1–0 DCF, HSCC decline similar

25
0–3 0–1, 1–1 HRCC, HPCC rise decline
1–3 0–0, 0–1 DCF, HRCC rise decline
3–4 0–0, 1–0 DCF, HSCC decline similar

30
0–3 0–1, 1–1 HRCC, HPCC decline decline
1–3 0–1 HRCC rise decline
3–4 1–0 HSCC decline rise

35
0–3 1–1 HPCC decline decline
1–3 0–1, 1–1 HRCC, HPCC rise decline
3–4 1–0 HSCC decline rise

According to the above analysis, when the network is congested, the HBCC algorithm improves the
average saturation throughput and packet loss ratio performance of the network without substantially
increasing the delay. In order to verify that the algorithm has good practicability and robustness,
this paper proceeds to perform verification experiments in a relatively complex network environment
with convergent and stochastic topology.

4.3. Aggregation Network Topology

4.3.1. Parameter Settings

The aggregation network topology is shown in Figure 12. The related parameter settings are
consistent with the simple tree topology, as shown in Table 2. After 10 seconds from the start of the
simulation time, the transmitting node starts to generate CBR packets, which are forwarded by the
intermediate node and transmitted to the sink node0. Node7, node9, and node 11 generate packets
at a fixed rate of 10 packets/s, gradually changing the packet transmission rate of node8, node 10,
and node12 (from 10 to 80 packets/s) to make the network change from no congestion to gradual
congestion. Network performance indicators are tested under the DCF, HBCC, HSCC, and HRCC
congestion control algorithms.

Sensors 2019, 19, 3484 20 of 25

4.3.2. Simulation Results and Algorithm Effectiveness Analysis

In the network topology of Figure 12, the average saturation throughput, buffer overflow packet
loss ratio, and average end-to-end delay are shown with load variation curves under the DCF,
HBCC, HSCC, and HRCC algorithms, respectively. It can be seen from Figure 13 that the average
saturation throughput and buffer overflow packet loss ratio performance under the HBCC algorithm
are greatly improved.

Sensors 2019, 19, x FOR PEER REVIEW 20 of 25

DCF, HBCC, HSCC, and HRCC algorithms, respectively. It can be seen from Figure 13 that the
average saturation throughput and buffer overflow packet loss ratio performance under the HBCC
algorithm are greatly improved.

Figure 12. Aggregation network topology.

(a) (b)

(c)

Figure 13. Performance simulation of aggregation topology networks. (a) The curves of average
saturation throughput; (b) The curves of buffer overflow loss ratio; (c) The curves of average
end-to-end delay.

From Figure 13b, we can see that the packet loss ratio of HRCC has decreased, but its saturation
throughput has not improved. This is because HRCC reduces the chance of the previous hop node
accessing the channel after detecting congestion at the node. Although the packet loss ratio is
reduced to some extent, the frequency at which the receiving node receives data, that is, the average
saturation throughput, is also suppressed. The test indexes of the HBCC algorithm and the HSCC
algorithm are close to each other, but the HBCC algorithm is relatively stable. The congestion of

Figure 12. Aggregation network topology.

Sensors 2019, 19, x FOR PEER REVIEW 20 of 25

DCF, HBCC, HSCC, and HRCC algorithms, respectively. It can be seen from Figure 13 that the
average saturation throughput and buffer overflow packet loss ratio performance under the HBCC
algorithm are greatly improved.

Figure 12. Aggregation network topology.

(a) (b)

(c)

Figure 13. Performance simulation of aggregation topology networks. (a) The curves of average
saturation throughput; (b) The curves of buffer overflow loss ratio; (c) The curves of average
end-to-end delay.

From Figure 13b, we can see that the packet loss ratio of HRCC has decreased, but its saturation
throughput has not improved. This is because HRCC reduces the chance of the previous hop node
accessing the channel after detecting congestion at the node. Although the packet loss ratio is
reduced to some extent, the frequency at which the receiving node receives data, that is, the average
saturation throughput, is also suppressed. The test indexes of the HBCC algorithm and the HSCC
algorithm are close to each other, but the HBCC algorithm is relatively stable. The congestion of

Figure 13. Performance simulation of aggregation topology networks. (a) The curves of average
saturation throughput; (b) The curves of buffer overflow loss ratio; (c) The curves of average
end-to-end delay.

Sensors 2019, 19, 3484 21 of 25

From Figure 13b, we can see that the packet loss ratio of HRCC has decreased, but its saturation
throughput has not improved. This is because HRCC reduces the chance of the previous hop node
accessing the channel after detecting congestion at the node. Although the packet loss ratio is reduced
to some extent, the frequency at which the receiving node receives data, that is, the average saturation
throughput, is also suppressed. The test indexes of the HBCC algorithm and the HSCC algorithm are
close to each other, but the HBCC algorithm is relatively stable. The congestion of nodes in the actual
network is accidental, so the HBCC algorithm combining the HSCC and HRCC algorithms has better
congestion processing capability in the actual network.

4.4. Random Network Topology

4.4.1. Parameter Settings

The two random network topologies analyzed in this section are shown in Figure 14. The parameter
settings are shown in Table 5. The generated nodes are randomly distributed in the simulation area,
and 10 transmitting nodes and 10 receiving nodes are randomly selected. The sending node starts
sending data at any time. By changing the packet transmission rate, the network is changed from no
congestion to congestion, and the network performance is observed under the four algorithms DCF,
HBCC, HSCC and HRCC.

Table 5. Parameter Settings.

Name Settings

Environment Win7 + VMware + Ubuntu10.04 + NS − 2.35
Queue management Droptail

Routing Protocol AODV
Node communication radius 250 m

Packet type CBR
Packet size 1024 B

Maximum buffer queue length 50 packet
Simulation duration 300 s

Simulation area 800 m × 800 m
Number of nodes 50

Number of communicable nodes 50
Sending node 10

Receiving node 10
CWmin 31
CWmax 1023

Sensors 2019, 19, x FOR PEER REVIEW 21 of 25

nodes in the actual network is accidental, so the HBCC algorithm combining the HSCC and HRCC
algorithms has better congestion processing capability in the actual network.

4.4. Random Network Topology

4.4.1. Parameter Settings

The two random network topologies analyzed in this section are shown in Figure 14. The
parameter settings are shown in Table 5. The generated nodes are randomly distributed in the
simulation area, and 10 transmitting nodes and 10 receiving nodes are randomly selected. The
sending node starts sending data at any time. By changing the packet transmission rate, the network
is changed from no congestion to congestion, and the network performance is observed under the
four algorithms DCF, HBCC, HSCC and HRCC.

Table 5. Parameter Settings.

Name Settings
Environment Win7 + VMware + Ubuntu10.04 + NS - 2.35

Queue management Droptail
Routing Protocol AODV

Node communication radius 250 m
Packet type CBR
Packet size 1024 B

Maximum buffer queue length 50 packet
Simulation duration 300 s

Simulation area 800 m × 800 m
Number of nodes 50

Number of communicable nodes 50
Sending node 10

Receiving node 10
CWmin 31
CWmax 1023

(a) (b)

Figure 14. Two random network topologies. (a) Random network topology 1; (b) Random network
topology 2.

4.4.2. Simulation Results and Algorithm Effectiveness Analysis

Figures 15–17 are the graphs of average saturation throughput, buffer overflow packet loss
ratio, and average end-to-end delay with load for the four algorithms in the two random network
topologies shown in Figure 14. It can be seen from the figure that the average saturation throughput

Figure 14. Two random network topologies. (a) Random network topology 1; (b) Random network
topology 2.

Sensors 2019, 19, 3484 22 of 25

4.4.2. Simulation Results and Algorithm Effectiveness Analysis

Figures 15–17 are the graphs of average saturation throughput, buffer overflow packet loss ratio,
and average end-to-end delay with load for the four algorithms in the two random network topologies
shown in Figure 14. It can be seen from the figure that the average saturation throughput and buffer
overflow packet loss ratio performance under the HBCC algorithm are greatly improved under the
condition that the average end-to-end delay is almost unchanged. When the load increases gradually,
the performance of the HBCC algorithm is better, that is, the effect of congestion alleviation is better.
In the case of random network topology, the HRCC algorithm hardly works, while the HSCC algorithm
and the HBCC algorithm almost coincide with the performance curve, but the performance curve of
HBCC is relatively stable.

Sensors 2019, 19, x FOR PEER REVIEW 22 of 25

and buffer overflow packet loss ratio performance under the HBCC algorithm are greatly improved
under the condition that the average end-to-end delay is almost unchanged. When the load increases
gradually, the performance of the HBCC algorithm is better, that is, the effect of congestion
alleviation is better. In the case of random network topology, the HRCC algorithm hardly works,
while the HSCC algorithm and the HBCC algorithm almost coincide with the performance curve,
but the performance curve of HBCC is relatively stable.

(a) (b)

Figure 15. Average throughput curves of random network topology. (a) The topology of Figure 14a;
(b) The topology of Figure 14b.

(a) (b)

Figure 16. Buffer overflow packet loss ratio curves of random network topology. (a) The topology of
Figure 14a; (b) The topology of Figure 14b.

Figure 15. Average throughput curves of random network topology. (a) The topology of Figure 14a;
(b) The topology of Figure 14b.

Sensors 2019, 19, x FOR PEER REVIEW 22 of 25

and buffer overflow packet loss ratio performance under the HBCC algorithm are greatly improved
under the condition that the average end-to-end delay is almost unchanged. When the load increases
gradually, the performance of the HBCC algorithm is better, that is, the effect of congestion
alleviation is better. In the case of random network topology, the HRCC algorithm hardly works,
while the HSCC algorithm and the HBCC algorithm almost coincide with the performance curve,
but the performance curve of HBCC is relatively stable.

(a) (b)

Figure 15. Average throughput curves of random network topology. (a) The topology of Figure 14a;
(b) The topology of Figure 14b.

(a) (b)

Figure 16. Buffer overflow packet loss ratio curves of random network topology. (a) The topology of
Figure 14a; (b) The topology of Figure 14b.

Figure 16. Buffer overflow packet loss ratio curves of random network topology. (a) The topology of
Figure 14a; (b) The topology of Figure 14b.

Sensors 2019, 19, 3484 23 of 25Sensors 2019, 19, x FOR PEER REVIEW 23 of 25

(a) (b)

Figure 17. Average end-to-end delay curves of random network topology. (a) The topology of Figure
14a; (b) The topology of Figure 14b.

Compared with fixed topology, the effect of the HBCC algorithm in a random topology
environment is slightly reduced, because all kinds of random topology situations are generated
randomly. There are many sending nodes in a random network topology, which results in collisions
between nodes competing for channels. The environment of the network is relatively vicious, but the
HBCC algorithm still has the effect of alleviating network congestion. As can be seen from the figure,
the performance curves of the HBCC algorithm and the HSCC algorithm almost coincide, and the
HRCC algorithm has little effect on network congestion. In a random topology environment, with
the increase of load, network congestion occurs. At this time, the number of congested nodes is
greater and the distribution is dense, so network congestion cannot be greatly alleviated. Under the
HRCC algorithm, when a node is congested, the transmission rate of the previous hop node is
suppressed, and at this time, the previous hop node is also congested. The HRCC algorithm
aggravates the congestion of the previous hop node, and the packet loss increases. This is only the
transfer of packet loss for the entire network, so the congestion is not alleviated. Therefore, the
performance curve of the HBCC algorithm combined with the HRCC and HSCC algorithms is
almost the same as the HSCC congestion mitigation.

It can be seen from the above experiments that the HBCC algorithm has alleviated the
congestion of the network under different network environments. Furthermore, when the
congestion nodes in the network are relatively dispersed, the performance of the algorithm is better.
In the actual ad-hoc network, the congestion is caused by a small number of nodes. Therefore, the
HBCC algorithm can effectively alleviate the congestion of the network.

5. Conclusions

This paper first analyzed the two problems in the existing congestion control protocols and then
proposed a competition-based hop-by-hop bidirectional congestion control algorithm—HBCC. The
algorithm divides the congestion of two nodes in one hop into four categories, namely, 0–0, 0–1, 1–0,
1–1, and adopts corresponding congestion control strategies for four different congestion conditions.
Under a simple tree topology, an aggregation network topology and a random network topology,
the HBCC algorithm is simulated and compared with the DCF algorithm, HRCC algorithm, HSCC
algorithm and CA-MAC algorithm. The HRCC algorithm and HSCC algorithm are unidirectional
congestion control methods. CA-MAC is a congestion control method based on receiving, and its
effect is similar to HRCC. Compared with the two-way HBCC algorithm, the effect of congestion
mitigation has been greatly improved. The simulation results show that the HBCC algorithm greatly
improves the average saturation throughput, greatly reduces the buffer overflow rate, effectively
reduces the queue length of the congested nodes, and alleviates network congestion under different
network environments.

Figure 17. Average end-to-end delay curves of random network topology. (a) The topology of
Figure 14a; (b) The topology of Figure 14b.

Compared with fixed topology, the effect of the HBCC algorithm in a random topology environment
is slightly reduced, because all kinds of random topology situations are generated randomly. There are
many sending nodes in a random network topology, which results in collisions between nodes
competing for channels. The environment of the network is relatively vicious, but the HBCC algorithm
still has the effect of alleviating network congestion. As can be seen from the figure, the performance
curves of the HBCC algorithm and the HSCC algorithm almost coincide, and the HRCC algorithm
has little effect on network congestion. In a random topology environment, with the increase of load,
network congestion occurs. At this time, the number of congested nodes is greater and the distribution
is dense, so network congestion cannot be greatly alleviated. Under the HRCC algorithm, when a
node is congested, the transmission rate of the previous hop node is suppressed, and at this time,
the previous hop node is also congested. The HRCC algorithm aggravates the congestion of the
previous hop node, and the packet loss increases. This is only the transfer of packet loss for the entire
network, so the congestion is not alleviated. Therefore, the performance curve of the HBCC algorithm
combined with the HRCC and HSCC algorithms is almost the same as the HSCC congestion mitigation.

It can be seen from the above experiments that the HBCC algorithm has alleviated the congestion
of the network under different network environments. Furthermore, when the congestion nodes in
the network are relatively dispersed, the performance of the algorithm is better. In the actual ad-hoc
network, the congestion is caused by a small number of nodes. Therefore, the HBCC algorithm can
effectively alleviate the congestion of the network.

5. Conclusions

This paper first analyzed the two problems in the existing congestion control protocols and
then proposed a competition-based hop-by-hop bidirectional congestion control algorithm—HBCC.
The algorithm divides the congestion of two nodes in one hop into four categories, namely, 0–0, 0–1, 1–0,
1–1, and adopts corresponding congestion control strategies for four different congestion conditions.
Under a simple tree topology, an aggregation network topology and a random network topology,
the HBCC algorithm is simulated and compared with the DCF algorithm, HRCC algorithm, HSCC
algorithm and CA-MAC algorithm. The HRCC algorithm and HSCC algorithm are unidirectional
congestion control methods. CA-MAC is a congestion control method based on receiving, and its
effect is similar to HRCC. Compared with the two-way HBCC algorithm, the effect of congestion
mitigation has been greatly improved. The simulation results show that the HBCC algorithm greatly
improves the average saturation throughput, greatly reduces the buffer overflow rate, effectively
reduces the queue length of the congested nodes, and alleviates network congestion under different
network environments.

Sensors 2019, 19, 3484 24 of 25

Author Contributions: J.W.: Formal analysis, Methodology, Software, Conceptualization, Writing—original
draft. X.Y.: Data administration, Project administration, Resources, Supervision, Confirmation, Writing—review
& editing. Y.L.: Investigation, Confirmation, Writing—review & editing. Z.Q.: Data administration, Funding
acquisition, Investigation, Project administration, Resources, Supervision, Writing—review & editing.

Funding: The special fund project of Jilin Province School co-construction plan (No. SXGJQY2017-9). The high-level
technology innovation team building project of Jilin University (No.2017TD-19). The National natural science
foundation of China (61771219).

Conflicts of Interest: The authors state that there is no conflict of interest.

References

1. Murtadha, M.N.A. A summary survey on recent applications of wireless sensor networks. In Proceedings of
the 2013 IEEE Student Conference on Research and Development, Putrajaya, Malaysia, 16–17 December
2013; pp. 485–490.

2. Wang, C.; Sohraby, K.; Li, B.; Daneshmand, M.; Hu, Y. A survey of transport protocols for wireless sensor
networks. IEEE Netw. 2006, 20, 34–40. [CrossRef]

3. Jan, M.A.; Jan, S.R.U.; Alam, M.; Akhunzada, A.; Rahman, I.U. A comprehensive analysis of congestion
control protocols in wireless sensor networks. Mob. Netw. Appl. 2018, 4, 456–468. [CrossRef]

4. Wan, C.Y. CODA: Congestion detection and avoidance in sensor networks. In Proceedings of the 1st
International Conference on Embedded Networked Sensor Systems, Los Angeles, CA, USA, 5–7 November
2003; pp. 266–279.

5. Gambiroza, V.; Knightly, E.W. Congestion control in CSMA-based networks with inconsistent channel state.
In Proceedings of the WICON ‘06 2nd Annual International Workshop on Wireless Internet, Boston, MA,
USA, 2–5 August 2006.

6. Joanna, K. Negotiation-based protocols for disseminating information in wireless sensor networks. Wirel. Netw.
2002, 8, 169–185.

7. Feng, G.; Long, F.; Zhang, Y. Hop-by-Hop congestion control for wireless mesh networks with multi-channel
MAC. In Proceedings of the 2009 IEEE Global Telecommunications Conference, Honolulu, HI, USA, 30
November–4 December 2009; pp. 1–5.

8. Shah, S.A.; Nazir, B.; Khan, I.A. Congestion control algorithms in wireless sensor networks: Trends and
opportunities. J. King Saud Univ. Comput. Inf. Sci. 2017, 29, 236–245. [CrossRef]

9. Wang, G.; Liu, K. Upstream hop-by-hop congestion control in wireless sensor networks. In Proceedings
of the 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications,
Tokyo, Japan, 13–16 September 2009; pp. 1406–1410.

10. Kim, J.; Park, K.H. An energy-efficient, transport-controlled MAC protocol for wireless sensor networks.
Comput. Netw. 2009, 53, 1879–1902. [CrossRef]

11. Basaran, C.; Kang, K.; Mehmet, H.S. Hop-by-hop congestion control and load balancing in wireless sensor
networks. In Proceedings of the IEEE Local Computer Network Conference, Denver, CO, USA, 10–14
October 2010; pp. 448–455.

12. Qian, L.; Fang, C.F. CA-MAC: A novel MAC protocol to alleviate congestion in wireless sensor networks.
Adv. Electr. Comput. Eng. 2013, 13, 41–46. [CrossRef]

13. Yi, Y.; Shakkottai, S. Hop-by-Hop congestion control over a wireless multi-hop network. IEEE/ACM Trans.
Netw. 2007, 15, 133–144. [CrossRef]

14. Jang, B.; Yoon, W. CCDC: A congestion control technique for duty cycling WSN MAC protocols. KSII Trans.
Int. Inf. Syst. 2017, 11, 3809–3822.

15. Sadeghi, B.; Yamada, A.; Fujiwara, A.; Yang, L. A simple and efficient hop-by-hop congestion control protocol
for wireless mesh networks. In Proceedings of the WICON ’06 2nd Annual International Workshop on
Wireless Internet, Boston, MA, USA, 2–5 August 2006.

16. Shi, K.; Yang, O.; Shu, Y.; Lin, S.; Wang, J.; Luo, J. A distributed MAC layer congestion control method
to achieve high network performance for EAST experiments. IEEE Trans. Nucl. Sci. 2013, 60, 3758–3763.
[CrossRef]

17. Wang, X.; Perkins, D. Cross-layer hop-by-hop congestion control in mobile ad hoc networks. In Proceedings
of the 2008 IEEE Wireless Communications and Networking Conference, Las Vegas, NV, USA, 31 March–3
April 2008; pp. 2456–2461.

http://dx.doi.org/10.1109/MNET.2006.1637930
http://dx.doi.org/10.1007/s11036-018-1018-y
http://dx.doi.org/10.1016/j.jksuci.2015.12.005
http://dx.doi.org/10.1016/j.comnet.2009.03.002
http://dx.doi.org/10.4316/AECE.2013.04007
http://dx.doi.org/10.1109/TNET.2006.890121
http://dx.doi.org/10.1109/TNS.2013.2266776

Sensors 2019, 19, 3484 25 of 25

18. Lijun, C.; Low, S.H.; Doyle, J.C. Joint congestion control and media access control design for ad hoc
wireless networks. In Proceedings of the IEEE 24th Annual Joint Conference of the IEEE Computer and
Communications Societies, Miami, FL, USA, 13–17 March 2005; pp. 2212–2222.

19. Yu, P.H.; Kai, T.F. MCR: MAC-assisted congestion-controlled routing for wireless multihop networks.
Wirel. Commun. Mob. Comput. 2012, 12, 712–728.

20. Dbibih, I.; Iala, I.; Aboutajdine, D.; Zytoune, O. Collision avoidance and service differentiation at the MAC layer
of WSN designed for multi-purpose applications. In Proceedings of the 2016 2nd International Conference
on Cloud Computing Technologies and Applications (CloudTech), Marrakech, Morocco, 24–26 May 2016;
pp. 277–282.

21. Bouazzi, I.; Bhar, J.; Atri, M. Analysis of the IEEE 802.15.4 MAC parameters to achieve lower packet loss
rates. Comput. Sci. 2015, 73, 443–451. [CrossRef]

22. Ghaffari, A. Congestion control mechanisms in wireless sensor networks. J. Netw. Comput. Appl. 2015, 52,
101–115. [CrossRef]

23. Rezaee, A.A.; Yaghmaee, M.H.; Rahmani, A.M.; Mohajerzadeh, A.H. HOCA: Healthcare aware optimized
congestion avoidance and control protocol for wireless sensor networks. J. Netw. Comput. Appl. 2014, 37,
216–228. [CrossRef]

24. Aghdam, S.M.; Khansari, M.; Rabiee, H.R.; Salehi, M. WCCP: A congestion control protocol for wireless
multimedia communication in sensor networks. Ad Hoc Netw. 2014, 13, 516–534. [CrossRef]

25. Tao, L.Q.; Yu, F.Q. ECODA: Enhanced congestion detection and avoidance for multiple class of traffic in
sensor networks. IEEE Trans. Consum. Electron. 2010, 56, 1387–1394. [CrossRef]

26. Akan, O.B.; Akyildiz, I.F. Event-to-sink reliable transport in wireless sensor networks. IEEE/ACM Trans.
Netw. 2005, 13, 1003–1016. [CrossRef]

27. Ee, C.T.; Bajcsy, R. Congestion control and fairness for many-to-one routing in sensor networks. In Proceedings
of the 2nd International Conference on Embedded Networked Sensor Systems, Baltimore, MD, USA, 3–5
November 2004.

28. Brahma, S.; Chatterjee, M.; Kwiat, K.; Varshney, P.K. Traffic management in wireless sensor networks:
Decoupling congestion control and fairness. Comput. Commun. 2012, 35, 670–681. [CrossRef]

29. Vuran, M.C.; Akyildiz, I.F. XLP: A cross-layer protocol for efficient communication in wireless sensor
networks. IEEE Trans. Mob. Comput. 2010, 9, 1578–1591. [CrossRef]

30. Gasmelseed, H.; Ramar, R. Traffic pattern-based load-balancing algorithm in software-defined network using
distributed controllers. Int. J. Commun. Syst. 2018, e3841. [CrossRef]

31. Singh, J.; Rai, C.S. An efficient load balancing method for ad hoc networks. Int. J. Commun. Syst. 2018,
31, e3503. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.procs.2015.12.021
http://dx.doi.org/10.1016/j.jnca.2015.03.002
http://dx.doi.org/10.1016/j.jnca.2013.02.014
http://dx.doi.org/10.1016/j.adhoc.2013.10.006
http://dx.doi.org/10.1109/TCE.2010.5606274
http://dx.doi.org/10.1109/TNET.2005.857076
http://dx.doi.org/10.1016/j.comcom.2011.09.014
http://dx.doi.org/10.1109/TMC.2010.125
http://dx.doi.org/10.1002/dac.3841
http://dx.doi.org/10.1002/dac.3503
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problems of Existing Network Protocols in Congestion Control
	Network Topology
	Effectiveness Problem
	Limitations Problem

	HBCC Algorithm
	Congestion Detection
	Congestion Notification
	Congestion Control
	DCF Algorithm
	Hop-By-Hop Receiving-Based Congestion Control—HRCC
	Hop-By-Hop Sending-Based Congestion Control—HSCC
	Hop-By-Hop Priority Congestion Control—HPCC
	Contention-Based Hop-By-Hop Bidirectional Congestion Control—HBCC
	Complexity Analysis

	Simulation and Analysis
	Performance Metrics
	Simple Tree Topology
	Parameter Settings
	Simulation Results and Algorithm Effectiveness Analysis

	Aggregation Network Topology
	Parameter Settings
	Simulation Results and Algorithm Effectiveness Analysis

	Random Network Topology
	Parameter Settings
	Simulation Results and Algorithm Effectiveness Analysis

	Conclusions
	References

