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Abstract: Spectral measurement techniques, such as the near-infrared (NIR) and Raman spectroscopy,
have been intensively researched. Nevertheless, even today, these techniques are still sparsely applied
in industry due to their unpredictable and unstable measurements. This paper put forward two
data fusion strategies (low-level and mid-level fusion) for combining the NIR and Raman spectra
to generate fusion spectra or fusion characteristics in order to improve the in-line measurement
precision of component content of molten polymer blends. Subsequently, the fusion value was
applied to modeling. For evaluating the response of different models to data fusion strategy, partial
least squares (PLS) regression, artificial neural network (ANN), and extreme learning machine (ELM)
were applied to the modeling of four kinds of spectral data (NIR, Raman, low-level fused data, and
mid-level fused data). A system simultaneously acquiring in-line NIR and Raman spectra was built,
and the polypropylene/polystyrene (PP/PS) blends, which had different grades and covered different
compounding percentages of PP, were prepared for use as a case study. The results show that data
fusion strategies improve the ANN and ELM model. In particular, mid-level fusion enables the in-line
measurement of component content of molten polymer blends to become more accurate and robust.

Keywords: data fusion; in-line spectroscopy; component content; polymer blends

1. Introduction

The modified polymer generally possesses much better physical or chemical properties when
compared with the virgin polymer, and therefore has found wide applications in industry. Polymer
blending is one of the most commonly used polymer modification methods [1]. The properties of
polymer blends are determined dominantly by the component content. Therefore, accurate and
reliable technology is required for measuring the component content for ensuring the performance of
the blending polymer. Nowadays, the measurement tasks are commonly accomplished off-line by
methods, such as nuclear magnetic resonance [2] and thermogravimetric analysis [3]. Unfortunately, the
post-processing examinations are incapable of identifying the unexpected changes of the component
content timely, and the late reminder may lead to substantial scraps and pollutions. Because of
these, the researchers and the polymer processing industry have paid growing attention to the in-situ
measurement of the component content.
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Spectroscopic techniques that are based on ultraviolet, infrared (IR), Raman, and fluorescence
spectroscopy are commonly applied by analytical chemists to obtain qualitative and quantitative
information of materials [4–7]. When combined with the fiber optics, these techniques allow for
the on-line, in-line, or at-line measurement further. In the polymer field, there have been some
reports of in-situ spectral measurement devices for polymer processing. Ingo et al. [8] developed an
in-line measurement system of near-infrared (NIR), Raman, and ultrasound in polymer melt extrusion.
Coates et al. [9] developed an in-process vibrational spectroscopy and ultrasound measurement system
in polymer melt extrusion, and this system pump polymer melt out of the extruder, which collects
spectrum in the outside channel. Jr et al. [10] developed an in-process measurement system of polymer
chemical reaction in a microreactors. In real-time measurement system of polymer, spectroscopic
have been widely applied in polymer synthesis [10,11] and the properties of polymer, such as particle
size distribution [12], rheological properties [13], and component content [8,9,14–16]. However, for
enriching the application of in-situ spectroscopy measurement of polymer properties (e.g., low-filled
polymers), can the measuring accuracy be further improved?

Data fusion is defined as a combination of multiple sources to obtain improved information,
which may improve the accuracy of the spectral analysis [17]. Generally, the data fusion methods
can be categorized into three levels: low-level, intermediate-level (Mid-level), and high-level [17].
Low-level fusion is a concatenation of all the raw data, mid-level is a concatenation of extracted
features of each raw data, and high-level fusion is the fusion of the results that were obtained from
individual models [18]. Up to now, the data fusion has been applied to the spectral characterization in
various fields. Dearing et al. [19] adopted the fused data of Raman, infrared, and nuclear magnetic
resonance spectra to character the crude oil products. The result shows that the root mean square error
of prediction (RMSEP) of model built by the fused data is lower than the model built by the separate
spectra. Comino et al. [20] fused the data of NIR and X-ray fluorescence spectroscopy to analyze olive
leaf and determine crop nutritional status. Two fusion strategy, feature fusion (Mid-level fusion) that is
based on principal component scores, and measurement fusion (Low-level fusion) are applied. The
prediction accuracy of nutrients is significantly promoted by applying the data fusion strategy and the
feature fusion is superior to the measurement fusion.

IR spectroscopy is absorption spectrum, while Raman spectroscopy is the scattering spectrum. IR
spectroscopy yields information pertaining to hydrogen bonding and asymmetric polar groups while
Raman spectroscopy offers information pertaining to the molecular backbone as well as symmetrical
non-polar groups [19]. The information that is contained in these two spectroscopy techniques has
some complementarity. Therefore, this paper investigated the possibility to fuse the NIR spectroscopy
and the Raman spectroscopy in order to find a reliable and accurate technique for in-situ measuring
the component content of molten polymer blends. To achieve this aim, first, a data acquisition (DAQ)
system was developed for synchronously collecting NIR and Raman spectroscopy of molten polymer
during the extrusion. Subsequently, the data fusion, including the low-level fusion and the mid-level
fusion, was applied for NIR and Raman spectra. Subsequently, three modelling methods, including
a traditional linear model, namely the partial least squares (PLS) regression, a traditional nonlinear
model, namely the artificial neural network (ANN), and a new simple and fast learning algorithm,
namely the extreme learning machine (ELM) [21], were utilized for mapping the fused spectroscopic
to the component content. Ultimately, the polypropylene/polystyrene (PP/PS) blends with different
grades and different blending ratios were prepared for experimental verification.

2. Materials and Methods

2.1. Sample Preparation

In practical industrial production, the same polymers always have differences between grades,
and it is not possible to use a single grade of plastic to prepare the blend. Thus, in this study, the
used polymers were PP of three different grades and PS of two different grades, as shown in Table 1.
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Thirty-seven different blend samples, including 10 calibration samples and 27 prediction samples, were
prepared and the details are exhibited in Table 2. These samples were firstly prepared by melt blending
in a twin-screw extruder (Plasti-Corder Lab-Station, Brabender Technologie, Duisburg, Germany) at
200 ◦C and 150 rpm, then by air, and finally cut into pellets through a pelletizer.

Table 1. The details of materials.

Material Grades Density (g/cm3) Melt Flow Index (g/10 min)

PP
EP548R-Basell 0.905 21
HP741T-Basell 0.9 60

7033N-Exxon Mobil 0.9 8

PS
158K-BASF 1.05 3.15

PG33-QIMEI 1.05 8

Table 2. The details of sample set.

Sets Grades PP Contents

Calibration sets PP-EP548R/PS-158K From 95 to 5 wt. % at 10 wt. % intervals
Prediction sets 1 PP-EP548R/PS-158K From 90 to 10 wt. % at 10 wt. % intervals
Prediction sets 2 PP-HP741T/PS-158K From 90 to 10 wt. % at 10 wt. % intervals
Prediction sets 3 PP-7033N/PS-PG33 From 90 to 10 wt. % at 10 wt. % intervals

2.2. In-Line Spectra Collection

Driven by a single-screw extruder (MESI-20, POTOP, Guangzhou, China) that was operated at
a constant screw speed of 50 rpm, the PP/PS blends melts extruded through the sampling cell at a
constant rate. The spectra data of PP/PS blends melts were collected in the sampling cell, which was a
25 mm width and 4 mm height slit channel at 210 ◦C. Figure 1 displays the measurement scheme. The
in-line measurement system consisted of a sampling cell for spectral data collecting, two temperature
and pressure resistant shells for protecting NIR and Raman optical probes, a Halogen source (QSPEC
LS-3000, BIAOQI, Guangzhou, China), a Raman laser (Laser785-5HSB, QSPEC, Guangzhou, China) that
was set at 400 mW, a NIR spectrometer (QUEST 512, Ocean Optics Inc., Orlando, FL, USA), a Raman
spectrometer (QE65 Pro, Ocean Optics Inc., Orlando, FL, USA), a NIR fiber probe (QR400-7-VIS-NIR,
Ocean Optics Inc., Orlando, FL, USA), a Raman fiber probe (The Raman Probe II, In Photonics, Los
Angeles, CA, USA), and one computer. In-line NIR spectra of molten PP/PS blends were all collected
from 1000–1600 nm, with a spectral resolution of 3.1 nm, and the Raman spectra were 1600–600 cm−1

with a spectral resolution of 4 cm−1. The NIR and Raman spectra of PP/PS molten blend of each ratio
were all simultaneously collected 50 times, and the time duration of NIR and Raman for a single scan
were 6 s.
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Figure 1. Schematic diagram of in-line near-infrared (NIR) and Raman spectroscopy
measurement system.

2.3. Data Modeling

After the sampling, all of the collected data were imported into MATLAB for analysis. Pre-processes
are usually required before the chemometric bi-linear modeling [22], which can increase the
signal-to-noise ratio (SNR) and improve the multivariate regression model. In this paper, the
baseline correction, the maximum and minimum normalization, as well as the nine-point smoothing
were applied for pre-processing. Afterwards, the PLS, ANN, and ELM calibration model were built.
The parameters of PLS and ELM model were optimized using cross-validation, and the number of
hidden nodes in the ANN model was calculated by empirical formula as the following [23].

s = log2 n

where s represents the number of hidden nodes and n represents the number of input data. In this case,
n equaled 500, so the number of hidden nodes in the ANN model was 9.

2.4. Performance of Model

The performance of models was evaluated by the below criteria. The root mean-square error of
calibration (RMSEC) is computed as:

RMSEC =

√∑n
i=1

(
yi,actual − yi,predicted

)2

n

where yi,actual and yi,predicted represents the actual value and predicted value, respectively. Here, n is the
sample number of calibration sets.

When it comes to the prediction set, the root mean-square error of prediction (RMSEP) is given by:

RMSEP =

√∑m
i=1

(
yi,actual − yi,predicted

)2

m

where m is the number of the prediction set. Usually, the model performs better at lower RMSEC and
RMSEP values.
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The coefficient of determination (R2) is used to estimate the entire correlation between the spectral
data and concentration. It is calculated via:

R2 = 1−

∑m
i=1 (yi,actual − yi,predicted)

2∑m
i=1 (yi,actual − yi,actual)

2

where yi,actual represents the actual average value. Given the same range of ratios, the accuracy of the
model will increase when R2 approaches 1.

The average value of each ratio’s standard deviation in the prediction results is applied to evaluate
the robustness of the model, and it is calculated via:

S =

∑n
i=1 S
n

where S represents the standard deviation, n represents the number of ratios, and the S is calculated via:

S =

√∑m
i=1 (yi,predicted − yi,predicted)

2

m

where yi,predicted represents the predicted average value of a single ratio and m is the sample number of
a single ratio in the prediction sets. Usually, S reveals the undulation of data and a smaller S indicates
that the model become more robust.

3. Result and Discussion

3.1. Analysis of Spectra

The NIR and Raman spectra of virgin PP and PS melt are shown in Figure 2a,b respectively.
The featured wavelength and wavenumber are marked in the figures and assigned in Table 3 [24,25].
Figure 2c,d show the in-line NIR and Raman spectra (the average of 50 spectra) after the pre-process
of calibration sets. It can be seen that both the NIR and Raman spectra change regularly with the
change of the blending ratio. The peak of PP decreases gradually with the decreasing PP content, and
then be covered by the peak of PS. The NIR spectrum has a lot of noise despite smoothing Due to the
complex environment in the extruder. Therefore, the NIR spectra ranging from 1100 nm to 1300 nm
and the Raman spectra from 1600 cm−1 to 600 cm−1, which contain most of the feature information,
are extracted to build the model. The extracted NIR and Raman spectra are concatenated to form the
low-level fused data because the normalization process has been performed. The mid-level fused
data is produced by the connection of extracted features that are gained by principal component
analysis (PCA). Choosing the number of components by the high fraction of variation explained is one
of the most frequently-used method [26]. In this study, the explained variance of first five principal
components is 99.9%, which indicates that five principal components can represent the original data
well. Therefore, five principal components are utilized to represent the spectral data. The schematic of
both two fusion strategies is shown in Figure 3; 500 is the number of samples and 125 and 532 are the
dimensions of NIR and Raman spectra, respectively.
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Figure 2. (a) Raw NIR spectra of polypropylene (PP) and polystyrene (PS), (b) Raw Raman spectra of
PP and PS, (c) In-line NIR spectra of calibration sets, and (d) In-line Raman spectra of calibration sets.

Table 3. Band assignments of in-line NIR and Raman spectra of PP and PS.

Component NIR Band (nm) Assignment Raman Band (cm−1) Assignment

PP

1194 Methyl C-H 1454 -CH2- scissoring
1215/1395 Methylene C-H 1324 -CH2- twisting

1150 C-C skeleton stretching
967/832 -CH3 rocking

PS

1143 Aromatic C-H 1447 -CH- asymmetric bending
1211/1395 Methylene C-H 1185 C-Ph asymmetric stretching

1154/789 C-Ph asymmetric stretching

1028 C-C asymmetric stretching in
the benzene ring

998 Benzene ring breathing
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3.2. Comparison of Models

Table 4 summarizes the validation results. Obviously, there are significant differences in the
prediction results for different prediction sets, and the prediction result is worse when the grade of
polymer in the prediction set is different from that in the calibration set. In the comparison of three
calibration models, it can be clearly seen that the prediction results of non-linear models ANN and
ELM are much more accurate than that of the PLS linear model, except the results of prediction set 3
using individual NIR spectra as the inputs, and the performance of ELM model is a little better than
the ANN model. The prediction results of PLS models that are based on Raman data are very poor due
to the nonlinearity of Raman spectra.

Table 4. Summary of model validation results.

Data
Source

Sets
PLS Model ANN Model ELM Model

R2 RMSEP/wt. % R2 RMSEP/wt. % R2 RMSEP/wt. %

NIR
spectra

Prediction set 1 0.9916 (11) a 2.3725 0.9978 (9) 1.2211 0.9984 (99) 1.0241
Prediction set 2 0.9858 (11) 3.0795 0.9916 (9) 2.3819 0.9928 (99) 2.1863
Prediction set 3 0.9904 (11) 2.5311 0.9794 (9) 3.5072 0.9854 (99) 3.1249

Raman
spectra

Prediction set 1 0.8335 (5) 10.5365 0.9954 (9) 1.6918 0.9986 (78) 0.9789
Prediction set 2 0.0049 (5) 25.7559 0.9836 (9) 3.1308 0.9917 (78) 2.3571
Prediction set 3 0.7095 (5) 13.9166 0.9929 (9) 2.2324 0.9974 (78) 1.3133

Low-level
fused data

Prediction set 1 0.9963 (8) 1.6011 0.9983 (9) 1.0877 0.9994 (124) 0.6583
Prediction set 2 0.9939 (8) 2.0200 0.9973 (9) 1.2911 0.9986 (124) 0.9507
Prediction set 3 0.9607 (8) 5.1196 0.9946 (9) 1.8388 0.9955 (124) 1.7408

Mid-level
fused data

Prediction set 1 0.9945 (9) 1.9159 0.9987 (9) 0.9417 0.9985 (47) 0.9923
Prediction set 2 0.9909 (9) 2.4595 0.9972 (9) 1.3755 0.9970 (47) 1.4142
Prediction set 3 0.9554 (9) 5.4502 0.9961 (9) 1.6176 0.9958 (47) 1.6803
a Values in parenthesis are the number of latent variables of PLS or neurons of hidden layer.

From the viewpoint of prediction, based on the ANN and ELM models, except for the result of
ELM on prediction set 3, the RMSEP is lower and R2 is closer to 1 when the low and mid-level fusion
are applied, especially for prediction set 2 and set 3. This confirms that the data fusion strategy is
satisfactorily applied, and prediction results of ANN and ELM model become more accurate. PLS linear
models built by low and mid-level fused data are affected by the nonlinearity of the Raman spectra, so
the prediction results of it for prediction set 3 (low-level fusion: R2 = 0.9607, RMSEP = 5.1196 wt. %;
mid-level fusion: R2 = 0.9554, RMSEP = 5.4502 wt. %) show a lower degree of accuracy and higher
RMSEP than the prediction results of the PLS model that was built by individual NIR spectra (R2 =

0.9904, RMSEP = 2.5311 wt. %). The results of the PLS models are not discussed below, due to the
nonlinearity of Raman spectra.

Figure 4 shows the predicted error distribution of ANN and ELM models while using different
data as inputs in order to show the superiority of the data fusion strategy more intuitively. Whether
in ANN model or ELM model, as compared with the predicted results of models built by individual
spectra, the error distribution is narrower and error is smaller by applying data fusion strategies, which
means that the analysis accuracy is improved. The standard deviation of ELM and ANN models using
different data as inputs are shown in Figure 5. Whether in the ANN model or ELM model, as compared
with the standard deviation of models built by individual spectra, the standard deviation is reduced
when the mid-level fusion is applied. It is the PCA step during the mid-level fusion that reduces
the undulation of data. The adoption of the mid-level fusion can further improve the robustness of
model when compared with the low-level fusion. Hence, considering both accuracy and robustness,
mid-level fusion is more suitable for in-line measurement of component content of molten polymer.
The optimal model is the ANN model built from mid-level fused data as shown in Figure 6. The
RMSEC is 0.2093 wt. % and the R2 and the RMSEP for prediction set 1, set 2 and set 3 are 0.9987 and
0.9417 wt. %, 0.9972 and 1.3755 wt. %, 0.9961 and 1.6176 wt. %.
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4. Conclusions

In this study, a combination of NIR and Raman spectroscopy using data fusion strategy is
researched, which aimed for an enhanced in-line measurement of component content of molten
polymer blends. As for the nonlinear regression model, the benefit of the data fusion strategy in the
present study is clear, because the prediction result is more accurate, especially when different grades
of polymer blends are inspected.

The mid-level fusion strategy dose further improves the robustness of predictions when compared
with the low-level fusion of the NIR and Raman spectroscopy. Therefore, the nonlinear regression model
adopting the mid-level fused data as input can greatly improve the in-line measurement of component
content of molten polymer blends while considering both accuracy and robustness. That then provides
the metrological basis for process optimization and control in plastics industrial applications.
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