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Abstract: In recent years, Energy Efficiency (EE) has become a critical design metric for cellular systems.
In order to achieve EE, a fine balance between throughput and fairness must also be ensured. To this
end, in this paper we have presented various resource block (RB) allocation schemes in relay-assisted
Long Term Evolution-Advanced (LTE-A) networks. Driven by equal power and Bisection-based
Power Allocation (BOPA) algorithm, the Maximum Throughput (MT) and an alternating MT and
proportional fairness (PF)-based SAMM (abbreviated with Authors’ names) RB allocation scheme is
presented for a single relay. In the case of multiple relays, the dependency of RB and power allocation
on relay deployment and users’ association is first addressed through a k-mean clustering approach.
Secondly, to reduce the computational cost of RB and power allocation, a two-step neural network (NN)
process (SAMM NN) is presented that uses SAMM-based unsupervised learning for RB allocation and
BOPA-based supervised learning for power allocation. The results for all the schemes are compared in
terms of EE and user throughput. For a single relay, SAMM BOPA offers the best EE, whereas SAMM
equal power provides the best fairness. In the case of multiple relays, the results indicate SAMM NN
achieves better EE compared to SAMM equal power and BOPA, and it also achieves better throughput
fairness compared to MT equal power and MT BOPA.

Keywords: machine learning; LTE-A; energy efficiency; resource block allocation; bisection based
optimal power allocation; water filling algorithm; proportional rate constraint

1. Introduction

Green Radio communication has received a lot of attention in the past few years with an aim to
decrease the carbon foot print of wireless networks. It has been estimated that nearly 70% of the energy
being used by cellular operators is on the radio part [1] and around 9% of the global CO2 emission is
from the communication systems [2]. In addition, one of the main concerns is the User Equipment
(UE) battery, which has not shown progression at par with the Radio Access Technology (RAT). This
phenomena is highly visible for the cell edge users that despite spending higher energy (due to high
pathloss shadow fading and adjacent cell interference) are unable to achieve fair share of the radio
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resources. In this context, Green communications employing cooperative and fair resource allocation
techniques can help in reducing the carbon footprint and increasing Energy Efficiency (EE).

Most of the existing wireless systems use Orthogonal Frequency Division Multiple Access (OFDMA)
to distribute radio resources among UEs. One of the existing RAT to use OFDMA is Long Term
Evolution-Advanced (LTE-A), which has a similar structure to its predecessor LTE. In LTE, each Resource
Block (RB) is a time frequency grid element. The basic RB structure contains 15 subcarriers of 12 KHz
each and a 10 ms frame. Each frame is subdivided into 10 subframes of 1 ms and each subframe is
further divided into 2 slots of 0.5 ms each. Each slot may contain 6 or 7 OFDM symbols depending on a
normal or an extended cyclic prefix. The RB allocation can be changed after every Transmission Time
Interval (TTI) based upon channel conditions or RB allocation algorithm. OFDMA offers flexibility of RBs
Allocation to tailor user and network requirement, such as throughput, fairness, Energy EfficiencyEE,
and Spectral Efficiency (SE). For example, in order to support higher peak data rates Carrier Aggregation
(CA) is introduced to obtain wider bandwidth. Compared to LTE, CA in LTE-A can support maximum
5 adjacent/non-adjacent component carriers of maximum 20 MHz to achieve 100 MHz bandwidth.

In addition, LTE-A allows Layer 3 (L3) relays to be incorporated in the network that can decode
and forward the data to a UE [3]. This cooperative communication addresses EE and throughput
of the cell edge users by providing channel diversity. As the network can only accommodate finite
relays, their placement is, therefore, crucial to manage the overall throughput. The RB allocation
between direct link that is Base Station (BS)–UE and two hop link that is (BS)–Relay Node (RN)–UE
can be done independently or in a shared manner. In [4], the authors have presented a thorough
comparison of basic RB allocation schemes, which are Round Robin (RR), Proportional Fairness (PF),
Maximum Throughput (MT), and Maximum Minimum (MM); they presented an alternating MT and
PF based resource allocation scheme SAMM (abbreviated with Authors’ names) without considering
any relay. The paper considered LTE system with a basic RB structure [5], 5 MHz bandwidth with fixed
10 users that are uniformly placed from the BS. These schemes have been compared in terms of sum
throughput, individual user throughput and fairness based on JFI (Jains fairness index). The SAMM
scheme provides a better tradeoff between throughput and fairness. Cell edge users show some
throughput gains due to proportional fairness, however, this scheme fails to address EE. Authors in [6]
considered EE for generic OFDMA based downlink system. They presented Bisection based Optimal
Power Allocation (BOPA) algorithm for a given RB assignment. The BOPA works as an iterative
approach based on water filling principle. This work uses equal power allocation among users for
initial users’ rate calculation, whereas, a modified algorithm in [7] uses equal power per resource block.

In [8], the authors proposed a quality of service (QoS) aware optimization problem for relay-based
multi-user cooperative OFDMA uplink system. The main goal is to find optimal solutions for
relay selection, power allocation and subcarrier assignment that maximize the system throughput.
Aiming to support and attain the green wireless LTE network, an energy-efficient resource allocation
scheduler with QoS aware support for LTE network is proposed in [9]. The authors of [10] proposed
a two-stage method to solve the inter-cell interference problem. In the first stage, the subcarrier
allocation and time scheduling are jointly conducted with sequential users’ selection and without
considering the interference. The power control optimization is left to the second stage, using a
geometric programming method.

In [11], energy efficient resource block and power allocation optimal and low complexity
suboptimal schemes are presented for OFDMA relay-assisted downlink. Authors use fractional
programming to make the non-linear mixed integer problem to convex subtractive problem. In order
to reduce the computational complexity of the optimal solution, they present two-stage RB allocation
and transmission power control algorithms. The system model of this paper is similar to our model
but they use relays (small eNB in that paper) with frequency reuse factor of one, and the users employ
maximal ratio combining to maximize the received signal-to-noise ratio (SNR). In our case, we use
multiplexing gain instead of the diversity gain at users’ end by exploiting the knowledge of their
location in relay selection and users association algorithm. We have compared our proposed schemes
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with the low complexity energy-efficient resource block and power allocation (LERPA) algorithm 3
and 4 of [11].

Artificial intelligence techniques can be used in highly dynamic and stringent constraint
Next-Generation networks. Since machine learning is a most promising technique of artificial intelligence,
it can be directly/indirectly employed to achieve the goals of 5 G in cognitive radios, massive
multiple-input multiple-output (MIMO), hybrid beamforming, femto/small cells, smart grid, wireless
power transfer, device-to-device communications, non-orthogonal multiple access (NOMA) etc. [12].
This paper [12] gives an overview of the applications of machine learning in Next-Generation wireless
networks. Specifically, supervised learning techniques are suitable for massive MIMO channel
estimations and spectrum sensing, unsupervised learning could be helpful in users grouping and
clustering; and reinforcement learning can be applied in resource allocation problems.

A detailed review on existing techniques and methods have been provided in [13]. For example,
in [14], a cooperative Q-learning approach was applied as an efficient approach to solve the resource
allocation problem in a multi-agent network. The quality of service QoS for each user and fairness in
the network are taken into account and more than a four-fold increase in the number of supported small
cells. The authors in [15], proposed a machine learning framework for resource allocation to determine
the optimal or near-optimal solutions based on the learning of the most similar historical scenario.

In paper [16], the authors proposed an approximated solution to a wireless network capacity
problem using flow allocation, link scheduling, and power control. The Support Vector Machine
(SVM) was used to classify each link to be assigned maximal transmit power or be turned off, whereas,
the deep belief networks (DBNs) computes an approximation of the optimal power allocation. Both
learning approaches have been trained on offline computed optimal solutions. A novel resource
allocation method using deep learning to squeeze the benefits of resource utilization was developed
in [17]. It was reported that when the channel environment is changing fast, the deep learning method
outperforms traditional resource optimization methods. The resource allocation is to be optimized
by a convolutional neural network using channel information. A similar problem has been explored
in [18] that use Upper Confidence Bound learning for Greedy Maximal Matching (GMM) when the
channel statistics are unknown. Since the subchannel and power allocation problem is a non-convex
combinatorial problem, the optimal solution of the subchannel and power allocation problem requires
an exhaustive search over all possible combinations of subchannels and power levels. In order to train
the deep neural network (DNN) for an optimal solution, Ref. [19] utilizes the genetic algorithm to
get the training data for DNN. It shows that the prediction accuracy increases with the size of dataset
and the number of hidden layers. A four-step reinforcement learning based intercell interference
coordination (ICIC) scheme is presented in [20]. The users selection, resource allocation, power
allocation, and retransmit packet identification are handled by reinforcement learning to reduce the
intercell interference.

However, to the best of our knowledge no available literature discusses LTE-A with L3 relays for
SE and EE consideration. In this work,

• We present an energy efficient algorithm based on SAMM and BOPA for LTE-A system with a L3
relay. Performance evaluation in terms of throughput, fairness, power consumption, SE and EE
is shown between two best performing schemes i.e., MT and SAMM considering equal power
and BOPA.

• Considering the practical deployment, where there may be more than one relay supporting the
cell edge users, we devise a clustering strategy to obtain near optimal placement of L3 relays and
users’ association.

• In a multiple relay scenario, to optimize EE and reduce computational complexity of running
algorithm every TTI, we present a two step machine learning process that uses both the SAMM
and BOPA approach for resource and power allocation of the cell users. The proposed approach is
compared to MT equal power, MT BOPA and SAMM equal power in terms of users’ throughput
and EE.
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A complete list of notations used in this paper is given in Table 1.

Table 1. List of notations.

Notation Definition

µk,n the RB assignment indicator
Rk capacity of user k is given by the Shannon Capacity
SNRk,n the signal-to-noise ratio for user k on RB n
B System bandwidth
N Number of RB
W = B

N the RB bandwidth
PRN

total , PBS
total the total power at which RN and BS transmit

gRelay_link
k,n , gDirect_link

k,n channel gains for user k on RB n for RN and BS

hRelay_link
k,n , hDirect_link

k,n random channel coefficients for user k on RB n for RN and BS
SNRDirect_link

k,n signal-to-noise ratio for user k via Direct Link

SNRRelay_link
k,n signal-to-noise ratio for user k via Relay Link

SINRDirect_link
k,n signal-to-Interference-and-noise ratio for user k via Direct Link

αk proportional rate constraint for user k
λk rate parameter for user k
Dk allocated RB set for user k
Rk rate matrix for user k
p̂k,n optimal power allocation
PT total transmit power
θ Lagrangian multiplier

Rest of the paper is organized as follows: system model is described in Section 2, algorithms and
performance for MT, SAMM and BOPA with single relay network are given in Section 3. Multiple relay
users’ association and deployment with machine learning based power and RB allocation for SAMM
is presented in Section 4. Complexity analysis is given in Section 5, followed by the conclusions in
Section 6.

2. System Model

We consider a two-tier LTE-A system with a BS supported by L3 relays as shown in Figure 1.
The relays are assumed to be In-band type 1b [3] and full duplex, placed in the center of BS to the
most distant user. A total of K users and N RBs are considered with users placed at a uniform distance
from BS. The total powers of BS and RN are denoted by PBS

total and PRN
total , respectively. The LTE-A

system uses OFDMA transmission in the downlink. Let the system bandwidth is B with N number of
RB, then, W = B

N is the bandwidth of one RB. We express the channel gains gDirect_link
k,n and gRelay_link

k,n
for user k where k ∈ K = {1..., K} on RB n where n ∈ N = {1..., N} for BS and RN respectively.
Practically, the channel gain depends upon various factors, including thermal noise at receiver, receiver
noise figure, antenna gains, distance between transmitter and receiver, path loss exponent, log normal
shadowing and fading. Therefore, for all the links, we can write

gk,n = −$− φ10 log10 dk − ζk,n + 10 log10 hk,n (1)

In the above equation, $ (83.46 dB) is a constant depending upon thermal noise at receiver, receiver
noise figure, and antenna gains, φ is path loss exponent, dk is the distance in Km from UE k to the
BS/relay, ζk,n (10.5 dB) is shadowing parameter modeled by a normally distributed random variable
with standard deviation 8 dB, and hk,n corresponds to the Rayleigh fading channel coefficient of user k
in subchannel n [21].
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Figure 1. Topology.

The throughput of user k is given by,

Rk =


1
2

B
N

N
∑

n=1
µk,nlog2(1 + SNRk,n), Access link users

B
N

N
∑

n=1
µk,nlog2(1 + SNRk,n), Direct link users

(2)

where the factor 1/2 in access link shows the two time-slots transmission from BS-RN and RN-UE,
and µk,n is the binary variable such that µk,n = 1 when RB n is allocated to the user k, SNRk,n is the
maximum average signal-to-noise ratio for user k between direct and relay links. Let SNRDirect_link

k,n be

the signal-to-noise ratio for user k via Direct Link, and SNRRelay_link
k,n be the signal-to-noise ratio for

user k via Relay Link, then, the SNRk,n is given as

SNRk,n = max(E{SNRDirect_link
k,n },E{SNRRelay_link

k,n }), (3)

SNRDirect_link
k,n =

pBS
k,ngDirect_link

k,n

N0
B
N

, (4)

SNRRelay_link
k,n = min(SNRbackhaul_link

k,n , SNRaccess_link
k,n ), (5)

where, SNRbackhaul_link/access_link
k,n is

SNRbackhaul_link/access_link
k,n =

pBS/RN
k,n gbackhaul_link/access_link

k,n

N0
B
N

(6)

The Energy Efficiency EE in terms of bits/s/Watts can be expressed as

EE =

K
∑

k=1

N
∑

n=1
µk,nlog2(1 + SNRk,n)

K
∑

k=1

N
∑

n=1
pk,n

. (7)
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The EE optimization problem for the above scenario can be written as

maximize EE

subject to
K

∑
k=1

N

∑
n=1

pk,n ≤ Ptotal

pk,n ≥ 0, ∀ k, n

µk,n = {0, 1}, ∀ k, n
K

∑
k=1

µk,n = 1, ∀ n

R1 : R2 : .........RK = α1 : α2 : .........αK

(8)

where αk is the proportional rate constraint [22]. We assume that channel state information (CSI) of all
the users is known to the BS. Also, it is assumed that the RB allocation decision and assignment is done
in less than channel coherence time so that CSI information can be used. This further puts constraints
on the RB allocation algorithm complexity. The two-hop transmission to the RN users will be carried
out in two TTI’s. In the first TTI, the BS will only send data to the RN users that are in close proximity
of RN or have better RN-UE channel conditions than the direct link BS-UE. In the second TTI RN-UE
data will be sent. BS will choose the path to the user (direct or via RN) with best channel coefficient in
each TTI. The centralized scheduling minimizes the possibility of interference for In-band type of RNs.
Frequency division duplexing ensures that the RN may handle backhaul data simultaneously with
the access link data so that from the second TTI onwards backhaul BS-RN transmission is carried out
simultaneously with the access link RN-UE transmission.

The LTE-A downlink is an OFDM based system which supports M-ary quadrature amplitude
modulation (MQAM). We can use Equation (2) to calculate the throughput of user k on RB n for both
direct and relay-link paths. The two paths provide channel diversity to increase the users and system
level throughput. We use MT and SAMM criteria for RB allocation with equal power allocation to all
RBs or BOPA as explained below.

3. Fairness-Aware Power and Resource Block Allocation with Single Relay LTE-A Network

There are several well-known resource allocation schemes for cellular systems, namely, round
robin RR, maximize throughput MT, maximize the minimum throughput (max-min), and proportional
fairness PF. An improved hybrid MT and PF scheme, SAMM is presented in [4]. We briefly summarize
MT, PF, and SAMM, and then present our fairness-aware power and resource allocation algorithm.

3.1. Maximum Throughput

In a Maximize Throughput MT scheme, the aim is to maximize the sum throughput of the
network. It assigns more RBs to the user which has better channel conditions on direct link or two
hop link thereby adding more throughput to the system but its drawback is that users with the worst
channel conditions are essentially ignored. The maximum throughput criterion in mathematical form
is given as,

Dk = arg max
k

(Rk) (9)

where Dk is RB allocation matrix and Rk is rate matrix.
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3.2. Proportional Fairness

The proportional fairness based resource allocation schemes are widely used in practical wireless
communication systems. In this scheme, the system allocates the resource to a user who has the
maximum PF metric. The PF criterion in mathematical form is given as,

Dk = arg max
k

Rk(t)
R̄k(t)

(10)

where Rk(t) is the throughput of user k at scheduling time t, and R̄k(t) is the average user throughput
(moving average) over a past window of length Tw = 1/α [23], as

R̄k(t) = αRk(t− 1) + (1− α)R̄k(t− 1), (11)

3.3. SAMM

In SAMM [4] PF and MT are run one after the other, i.e., in first TTI PF run for K users and
in second TTI MT run for K − 1 users ignoring the user with highest throughput in previous TTI.
This results in maximizing fairness and throughput alternatively in each TTI.

3.4. BOPA Algorithm

Bisection based optimal power allocation BOPA Algorithm 1 allocates the power to the RBs
assigned to a particular user. Given the RB allocation from MT or SAMM and throughput of each user
at equal power allocated to all RBs we can calculate λ “rate parameter” as given below:

λk =
R1

α1
=

R2

α2
= ... =

RK
αK

(12)

where Rk is the rate of each user and αk is proportional rate constraint set for fairness [6]. Optimal
power allocation is water filling operation and obtained for single user as

p̂k,n = max
{

1
θL ln 2

− 1
gk,n

, 0
}

(13)

where θL is Lagrangian multiplier and its value is chosen such that Rk is satisfied. Hence, the user
power can be expressed as Pk(λαk|Dk) and the total transmit power PT(λ) can be rewritten as

PT(λ) = ∑
k∈K

Pk(λαk|Dk) (14)

EE can be given as user rate divided by power consumed to achieve that rate.

EE(λ) =
λ ∑

k∈K
αk

PT
, (15)

and total transmit power is also limited by

λ ≤ λmax. (16)

According to [24] if transmit power PT(λ) is strictly convex in rate then EE(λ) is quasi-concave,
global optimal solution proof is given in the appendix of paper [22]

f (λ) = PT(λ)− λ ln 2 ∑
k∈K

minn∈Dk

{
1 + p̂k,ngk,n

gk,n

}
αk (17)
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Bisection method is a simple and robust. Since the method brackets the root, it is guaranteed to
converge. We apply BOPA on the RB allocation scheme SAMM, an alternating MT and PF scheme
for the relay-assisted LTE-A for the optimal power allocation with the objective of maximizing the
EE. In addition, we trained neural network with the dataset generated by the BOPA. Since power is a
monotonically increasing function of the rate parameter λ, we apply bisection method on the following
equation to find the root,

P(λ) = ∑
k

∑
n

2λαk N − 1
gk,n

− Ptotal = 0 (18)

Algorithm 1 BOPA Algorithm

1: Require:p̂k,n is the optimal power allocation matrix.
2: Ensure: Prior RB allocation through any algorithm and given as Dk.
3: Getting all the λ then calculate λmax which gives the max energy Efficiency by substitution in

Equation (6).
4: Using λmax set user rate as αk λmax , do water filling using Equation (13) and calculate f(λmax )

based on Equation (17).
5: If f (λmax ) ≥ 0
6: Return ; p̂k,n
7: Else Go to Step 9;
8: End if
9: Set λhigh = λmax , λlow = 0, λcurrent = λmax /2

10: Repeat: Set user rate according to αk λmax , do water filling using Equation (13) and calculate

f(λmax) based on Equation (17).
11: If f (λcurrent ) > 0
12: Set λlow = λcurrent
13: Else Set λhigh = λcurrent
14: End if
15: Set λcurrent = λhigh + λlow / 2
16: Return p̂k,n
17: End if

3.5. Performance Evaluation

A single cell is considered for generating simulations results. The cell consists of a BS, RN and
UEs equipped with Omni-directional antennas. The throughput, energy and spectral efficiency is
averaged over 1000 TTIs, with the duration of a TTI being 0.5 ms. The channel involves Raleigh fading
and distance based path loss as shown in Figure 1. BS is located in the center of the cell coverage and
most distant user is 1 Km distant from BS with RN in between at 0.55 Km. RN are In-band full duplex
relays and bit error rate (BER) considered for MQAM modulation is 10−3. Table 2 below summarizes
all simulation parameters used to derive results shown next.

Figure 2 shows the result of average throughput for MT and SAMM with equal power and BOPA
based power allocation. It can be seen that SAMM curves remain on top of MT curves for most of the
users due to inherent fairness which ensures all users get due share of RBs. However as evident from
Figure 3 Sum throughput of MT is higher as compared to SAMM for overall averaged throughput of
sum users due to channel exploitation of users with good channel conditions. This makes MT better
than SAMM as BOPA has proportional rate constraint set for assigning user priorities.



Sensors 2019, 19, 3461 9 of 25

Table 2. Simulation Parameters.

Parameter Value

Cell Radius 1 Km
Noise Density (σ) −171 dBm/Hz

No of users (K) 10
Bandwidth (B) 5 MHz

Number of resource blocks (RB) (N) 25
No of subcarriers per RB 12

Subcarrier bandwidth 15 KHz
BS Transmitter Power 46 dBm

Relay Power 34 dBm
TTI duration 0.5 ms

Relay distance from BS 0.55 Km
Bit Error Rate (BER) 10−3

OFDM symbols per TTI 7
Relay Type (In-band / Out-band Type 1 / Type 2) In-band with Type 1b (full duplex)
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Figure 2. User vs. Throughput averaged over thousand times for SAMM and MT with equal power
and BOPA.
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Figure 3. Sum throughput of all users.
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Figure 4 shows energy efficiency per user in bits per seconds per watts. SAMM BOPA outperforms
for initial users and remains considerably lower for rest of the users. Whereas MT BOPA compared to
all other schemes performs better for every user of the system with consistency due to convergence of
BOPA to maximize throughput and minimize energy.

1 2 3 4 5 6 7 8 9 10
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SAMM Equal Power
SAMM BOPA
MT Equal Power
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Figure 4. Users vs. Energy Efficiency (bits per second per watts) for all four schemes.

Figure 5 shows fairness Index using Jains fairness Index [25] using below equation

FI =

(
K
∑

k=1
rk

)2

K
K
∑

k=1
r2

k

, (19)

where rk can be throughput or EE. Figure 5 shows SAMM has better fairness in terms of throughput
due to PF in its algorithm. Figure 6 depicts the system’s energy efficiency EE with and without power
allocation. The BOPA-based power allocation algorithm allocates the available power to the RB to
maximize the energy efficiency EE, therefore, both MT-BOPA and SAMM-BOPA outperforms their
corresponding MT and SAMM schemes with equal power allocation.
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Figure 5. Jains fairness Index for Throughput.
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Energy Efficiency with and without BOPA based power allocation
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Figure 6. The system energy efficiency with and without BOPA based power allocation.

4. Fairness-Aware Machine Learning Based Power and RB Allocation with Multiple Relays

In practical scenarios, multiple relays are deployed to facilitate the cell-edge users as shown in
the Figure 7. The multiple relay deployment causes inter-relay interference. This interference can
be minimized by the careful deployment of relays, transmit power control, and the scheduling of
time/frequency resources. Though, L3 relays incur more processing delay as compared to the L1 and
L2 relays but they provide robust transmission in the presence of interference [26]. Assume there are
Q relays in a cell, such that relay q ∈ Q = {1, ..., Q}. The signal-to-interference-and-noise ratio (SINR)
at UE k in direct link is given as

SINRDirect_link
k,n =

pBS
k,ngDirect_link

k,n

∑q∈Q pq
k′ ,ngq

k,n + N0
B
N

(20)

where pq
k′ ,n is the transmit power of relay q assigned to its associated user k′ and gq

k,n is the channel
gain between relay q and the UE k. Similarly, the SINR at UE k in relay q link is given as

SINRq
k,n =

pq
k,ngq

k,n

∑q′∈Q−{q} pq′
k′ ,ngq′

k,n + pBS
k,ngDirect_link

k,n + N0
B
N

(21)

As seen from the above equation, the interference and fairness causes a significant increase in
the computational cost when deploying multiple relays. Therefore, we present a machine learning
based approach that utilizes relay deployment and users’ association data to develop RB allocation and
Power allocation strategy that maximizes the sum EE. Once trained, the proposed approach can save
cost of scheduling in every TTI. This is shown in Figure 8, the machine learning model takes the inputs:
number of relays, relays’ coordinates, CSI, SNR, and total transmit power and produces the outputs:
optimal relays’ coordinates with associated users, set of RBs assigned to each user k, and the optimal
power allocation (p∗k,n) to each user k in the RB n. Based on single relay performance, the RB allocation
block is trained using SAMM and power allocation block is trained using BOPA. Since the relay
deployment can significantly alter the RB and power allocation, a clustering approach is presented
that determines relay positioning and corresponding users’ association based on a pre-defined metric.
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Figure 7. LTE-A Network with Multiple L3 Relays.
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Figure 8. Block diagram of machine learning based resource and power allocation.

4.1. Relays Deployment and Users Association

In this section, we present an autonomous unsupervised machine learning scheme that provides
users association with optimally deployed relay nodes in the cell-edge area. Machine learning
algorithms can broadly be divided into two main categories, namely supervised learning and
unsupervised learning algorithms. The former class of algorithms learn by training on the input
labeled examples, called training dataset, {(x(1), y(1)), (x(2), y(2)), (x(3), y(3)), ..., (x(m), y(m))}, where
the ith example (x(i), y(i)) consists of the ith instance of feature vector x(i) and the corresponding
label y(i). Given a labeled training dataset, these algorithms try to find the decision boundary that
separates the positive and negative labeled examples by fitting a hypothesis to the input dataset.
Unsupervised machine learning algorithms, on the other hand, are given an unlabeled input dataset.
These algorithms are used for extracting information or features from the dataset. These features might
be related, but not confined, to the underlying structures or patterns in the input data, relationships
in data items, grouping/clustering of data items, etc. Discovered features are meant to provide a
deeper insight into the input dataset that can subsequently be exploited for achieving specific goals.
Clustering algorithms make an important part of unsupervised learning where the input examples are
grouped into two or more separate clusters based on some features. The K-Means (KM) algorithm, is
probably the most popular clustering algorithm. It is an iterative algorithm that starts with a set of
initial centroids given to it as input. During each iteration, it performs the following two steps.

1. Assign Cluster: For every user, the algorithm computes the distance between the user and every
centroid. The user is then associated to the cluster with the closest centroid. During this step,
a user might change its association from one cluster to another one.

2. Recompute centroids: Once all users have been associated to their respective cluster, the new
position of centroid for every cluster is then calculated.
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Let us define the following notations to be used later in this section.

K = Total number of clusters being formed.

x(i) = Location coordinates of user u(i). In our case, x(i) ∈ IR2

c(i) = Cluster to which the user u(i) is currently associated.

µk = Centroid of kth cluster, µk ∈ IR2

µc(i) = Centroid of the cluster to which the user u(i) is currently associated.

Now the cost function J can be defined as

J(c(1), c(2), ..., c(m), µ1, µ2, . . . , µK) =
1
m

m

∑
i=1
||x(i) − u(ci)||

2 (22)

with the following optimization objective function.

min
c(1),,...,c(m),µ1,...,µK

J(c(1), c(2), ..., c(m), µ1, µ2, . . . , µK)

It may be pointed out that Equation (22) allows us to compare multiple clustering layouts based
on their cost and select the one with the lowest cost.

In this section, we use the KM algorithm for optimal clustering of m users competing for resources
in a particular cell. The clustering is performed based on their geographic location, thus our input
dataset {u(1), u(2), u(3), ..., u(m)} has m vectors u(i), 1 ≤ i ≤ m, consisting of location coordinates,
of ith user. For the sake of simplicity, we assume these users are deployed in a two dimensional
area, i.e., a plane and so u(i) = (x(i)1 , x(i)2 ), i.e., an ordered pair of location coordinates. Our clustering
algorithm is summarized in Algorithm 2.

The proposed algorithm takes the location coordinates of m users as input. It also takes two
numbers mink and maxk as additional inputs. The algorithm outputs the best number of clusters, k,
such that mink ≤ k ≤ maxk, and corresponding members of each cluster. It starts with k = mink and
randomly selects k user locations as the initial centroids (line 6). It assigns the closest centroid to each
user (line 8) and then computes new centroids by calculating the center/average location of all nodes
in each cluster (line 11). So, in effect, the location of centroids keeps moving in successive iterations.
It repeats the above two steps until the change in centroids’ positions is zero or negligible. We repeat
the test maxt times with a new set of randomly chosen initial centroids every time. During every test,
the discovered centroids, corresponding centroid assignment to users, and the cost are saved (lines
14–16) for later comparison. After running the loop for maxt times, we select and store the best k
centroids resulting from the test with the lowest cost while discarding the remaining (lines 19–21).
The same is repeated for the next value of k, i.e., k = k + 1, until k > maxk. At the end we have
cnt = maxk −maxk vectors µk, one for each value of k, the corresponding assignment vector ak and
cost ck. Finally, we choose the vector µ having the lowest cost and corresponding assignment vector
a among cnt stored cases. That is the best number of clusters and corresponding centroids that the
algorithm found. A snapshot of the relay deployment and users’s association algorithm output is
shown in Figure 9.
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Algorithm 2 Users association clustering algorithm

1: cnt = 0
2: for k = mink : maxk do

3: cnt = cnt + 1
4: for t = 1 : maxt do

5: repeat

6: Randomly choose initial k centroids µ1, µ2, µ3, ..., µk

7: for i = 1 : m do

8: a(i) = j, 1 ≤ j ≤ k, such that µj is the centroid closest to u(i)

9: end for
10: for l = 1 : k do

11: µl = mean of all users/points u(i) assigned to lth centroid
12: end for
13: until converges
14: µ(t) = (µ1, µ2, µ3, . . . , µk)

15: a(t) = (a(1), a(2), a(3), . . . , a(m))

16: c(t) = cost(µ1, µ2, µ3, . . . , µk)

17: end for
18: idx = argmin{c(t), 1 ≤ t ≤ maxt}
19: µk

(k) = µ(idx), 1 ≤ idx ≤ maxt

20: ak
(k) = a(idx),1 ≤ idx ≤ maxt

21: c(k)k = c(idx), 1 ≤ idx ≤ maxt

22: end for
23: index = argmin{c

(k)
k , 1 ≤ k ≤ cnt}

24: µ = µk
(index), 1 ≤ index ≤ cnt

25: a = ak
(index), 1 ≤ index ≤ cnt

26: n = index
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Figure 9. A snapshot of the relay deployment and users’ association algorithm output in a
120 degree sector.
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4.2. Resource Allocation by Multiclass Classification

The resource block allocation problem has multiple discrete outputs, i.e., the users, therefore,
we use the multiclass classification to classify one out of K users. The multiclass classification is an
extension of One-Vs-All classification. The input of the training network comprises of channel state
information in terms of the SNR and the output consists of a particular user that maximizes the utility
function (throughput for MT and PF metric for the proportional fairness). The training data is obtained
from the implementation of SAMM algorithm of [4] as 25,000 K-dimensional samples of received SNR
and the corresponding selected users. The dataset is partitioned into three parts, the training dataset,
the validation dataset, and the test dataset. These are divided in 70%, 15%, and 15% ratio, respectively.
The Matlab Neural Network Pattern Recognition Apps is used to train and deploy the neural network.
It uses Scaled Conjugate Gradient algorithm [27] for training. Our application requires K = 10 neurons
in input layer and 10 neurons in output layer. A hit and trial choice of eight neurons in hidden layer
gave the best result. The neural network architecture is shown in Figure 10.

K‐
dimensional 
input layer

1 hidden layer with 8 neurons
Activation function=Sigmoid

K‐ dimensional 
output layer.
Activation 

function=Softmax

f(SNR)

Input 
Features

Output Labels
(Users’ set selection using 

One‐Vs‐All classifier)

(K) by (K) 
binary 

diagonal 
matrix with 1's 
in the diagonal

                                                  

Figure 10. Neural network architecture for RB allocation, K = 10.

The neural network loss function is a generalization of the logistic regression’s loss function.
In logistic regression classification problem, we try to find the weighted parameter θ, such that the
mean square error between the predicted output and the actual output is minimized. This is called
loss function (LF) or the cost function and is given by

LF(θ) =
1
m

m

∑
i=1

(hθ(x(i))− y(i))2 (23)

where the prediction or hypothesis function hθ(x) is a sigmoid function, i.e., hθ(x) = 1
1+e−θT x

. In the

above equation, (x(i), y(i)) is a training dataset with 1, ..., m input-output pairs. However, loss function
with sigmoid function leads to a non-convex function, therefore, a cross entropy based loss function is
used to make it convex function as,

LF(θ) = − 1
m

m

∑
i=1

[y(i) log(hθ(x(i))) + (1− y(i)) log(1− hθ(x(i)))] +
λR
2m

n

∑
j=1

θ2
j (24)

where the second summation is for the regularization of weight or bias units θj and λR is a
regularization parameter.

In case of neural networks with multiclass classification, the prediction variable becomes
K-dimension, hΘ(x) ∈ RK, therefore, the loss function is given as

LF(Θ) = − 1
m ∑m

i=1 ∑K
k=1[y

(i)
k log(hΘ(x(i)))k + (1− y(i)) log(1− (hΘ(x(i)))k)] +

λR
2m ∑L−1

l=1 ∑sl
i=1 ∑

sl+1
j=1 (Θ

(l)
j,i )

2 (25)
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where L is the number of layers in neural network, sl is the number of neurons in layer l, and λR =

5× 10−4 is a regularization parameter to control the tradeoff between fitting the training dataset and
keeping the parameter Θ small. The neural network is trained using the stochastic gradient descent
algorithm. The gradient or partial derivative is calculated by the backpropagation algorithm and
weights (θ) are updated. The amount at which the weights are updated is called learning rate. It our
case, we set learning rate to 0.01. Batch size is a matrix of input (or output) vectors applied to the
network simultaneously to produce the update on network weights and biases. In our work, batch size
of 128 (MATLAB default), 10× 1 input vectors is used.

We use MATLAB 2019a App, Neur al Network Pattern Recognition (nprtool) which is a
two-layer (one for hidden layer activation functions and other for output layer activation functions)
feedforward network.

Lower the cross entropy higher the classification accuracy, zero cross entropy means no error.
Figure 11 shows that cross entropy reaches 0.0078318 at iteration 136. Figure 12 shows variation in
gradient coefficient with respect to number of epochs. The final value of gradient coefficient at epoch
number 142 is 0.001787 which is approximately near to zero. Minimum the value of gradient coefficient
better will be training and testing of networks. From the figure, it can be seen that the gradient value
is decreasing with the increase in number of epochs. Large number of validation fails indicate the
overtraining. In Figure 12 validation fails are the iterations when validation mean square error (MSE)
increased its value. A lot of fails means overtraining. MATLAB automatically stops training after
6 fails in a row.

Figure 13 shows the error histogram of the trained neural network for the training, validation and
testing parts. In this figure we can see that the data fitting errors are minimum and they are distributed
within a closed range around zero. The confusion matrix Figure 14 visualizes the performance of
supervised learning. The rows correspond to the predicted user (Output Class) and the columns
correspond to the true user (Target Class). The diagonal cells correspond to observations that are
correctly assigned the user-RB pairs. The off-diagonal cells correspond to incorrectly assigned user-RB
pairs. The trained neural network provides 97.5% classification accuracy. The Figure 15 represent
the receiver operating characteristics (ROC) curves. The ROC curve plot shows the true positive
rate versus the false positive rate as the threshold is varied. A perfect test would show points in
the upper-left corner, with 100% sensitivity and 100% specificity [28]. In the RB allocation module,
it worked very well.
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Figure 11. The mean-squared-error for the training and testing of the RB allocation module.
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Figure 12. The neural network training states with gradient and validation fail statistics as a function
of number of epochs.
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Figure 15. Receiver Operating Characteristic (ROC curve).

4.3. Power Allocation through Two-Layer Feedforward Neural Network

In the power allocation problem, we have to map the numeric input dataset (SNR) to the numeric
output dataset (allocated power) per user per RB. Therefore, we use neural network curve fitting
technique. The training dataset is generated by the Algorithm 2 as input received SNR and output
allocated transmit power. Given the resource blocks allocation set Dk ∀k ∈ K, the power allocation
problem has been solved using two-layer feedforward neural network. The hidden layer neurons use
sigmoid function as activation function and output neurons implement linear function as shown in
Figure 16. We use Bayesian Regularization method to train the neural network. This method typically
requires more training time but gives good results for difficult and noisy dataset. The Bayesian
Regularization method uses Levenberg-Marquardt optimization to update the weight and bias values.
It minimizes a combination of squared errors and weights, and then determines the correct combination
for better generalization. In this method, the training does not stops after six consecutive validation
(improve) fails and by default max_fail = inf. The training continues until an optimal combination
of errors and weights is reached. More detail on the use of Bayesian regularization, along with
Levenberg-Marquardt training, can be found in [29].

We use MATLAB 2019a App, Neural Net Fitting (nftool) which is a two-layer (one for hidden
layer activation functions and other for output layer activation functions) feedforward network.

The mean-squared-error graph for the training and testing is shown in Figure 17. It shows that
the MSE reaches to 0.087358 in 498 epochs. Our input/output samples to training network were
channel gain/allocated power. Since, the total transmit power is a sum of linear functions of the
channel gain, therefore, the neural network is got trained in a single epoch. An epoch is a full pass
through the entire dataset and the calculation of new weights and biases. Figure 18 shows that the
gradient coefficient reaches to 0.00076591 in 499 epochs. The lower value of gradient ensures the
training and testing of the network. Other parameters such as Mu, Num Parameters, and Sum Squared
Param are the stop criteria defined in Bayesian regularization backpropagation function ’trainbr’ [30].
Error histogram in Figure 19 visualizes the errors between target values and the predicted values
after training a feedforward neural network. In this figure we can see that the data fitting errors
are minimum and they are distributed within a closed range around zero. Around 88.1% errors fall
between −0.3 and 0.33.
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Figure 16. Neural network architecture for power allocation, K = 10.
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Figure 17. The mean-squared-error for the training and testing of the power allocation module.

10-2

100

g
ra

d
ie

n
t

Gradient = 0.00076591, at epoch 499

100

m
u

Mu = 50,000,000,000, at epoch 499

200

400

600

g
a

m
k

Num Parameters = 422.6887, at epoch 499

102

ss
X

Sum Squared Param = 21.4842, at epoch 499

0 50 100 150 200 250 300 350 400 450
499 Epochs

-1

0

1

va
l f

a
il

Validation Checks = 0, at epoch 499

Figure 18. The neural network training states.



Sensors 2019, 19, 3461 20 of 25

0

1000

2000

3000

4000

5000

6000

In
st

a
n

ce
s

Error Histogram with 20 Bins

-0
.4

6
9
1

-0
.3

9
3
2

-0
.3

1
7
2

-0
.2

4
1
3

-0
.1

6
5
3

-0
.0

8
9
3
6

-0
.0

1
3
4
1

0
.0

6
2
5
4

0
.1

3
8
5

0
.2

1
4
4

0
.2

9
0
4

0
.3

6
6
3

0
.4

4
2
3

0
.5

1
8
2

0
.5

9
4
2

0
.6

7
0
1

0
.7

4
6
1

0
.8

2
2

0
.8

9
8

0
.9

7
3
9

Errors = Targets - Outputs

Training
Test
Zero Error

Figure 19. The error histogram.

4.4. Performance Evaluation with Machine Learning Techniques

First, we apply the neural network for the RB and power allocation modules with a single relay.
For the SAMM scheme in Figure 20 shows 30.25% increase in the EE. This is because of the limitations
of the BOPA method which sometimes returns no result, whereas, the neural network is trained on
diverse dataset and always gives the output result. We also compare our proposed schemes with
LERPA of [11]. LERPA uses max–min criteria for RB allocation and fractional programming based
transmission power control. In case of LTE network with multiple relays as shown in Figure 7 or
Figure 9, the users associated with relay q experience interference due to the neighboring relays
qneigh. This interference decreases the users’ throughput as shown in Figure 21. However, the EE
maximization based NN power allocation continues to dominate in the multiple relay scenario. Since
the transmission is orthogonal between BS and RNs, only the relay’s associated users are affected by
the other relays transmissions. The equal power MT throughput does not affect because almost all
the users are associated with BS. This further reduces the required transmit power of the relay, hence
a net increase in EE has been observed in Figure 22. Addition of multiple relays slightly affect the
SAMM NN and SAMM equal power in positive and negative way, respectively. The PF component of
the SAMM forces the association of low throughput users to increase the fairness. This association
goes in positive way for the SAMM NN due to the EE based power allocation, but goes in negative
way for the SAMM equal power because of no compensation of the interference power. The increased
fairness of SAMM NN is evident from the Figure 21, where, even the farthest users 9 and 10 have
higher throughput. It can be seen that in LERPA, closer users get lower throughput but fairly large
throughput is given to the farther users. This is because it uses max-min criterion for the RB allocation,
which assigns the RB to the users who have lowest received SNR.
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Energy Efficiency with Neural Network based Power Allocation for SAMM
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Figure 20. The system energy efficiency with neural network for SAMM which is trained on waterfilling
based power allocation among users and BOPA based power allocation among subchannels in a single
relay scenario.
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Figure 21. The users’ throughput with neural network for SAMM along with LERPA of [11] in multiple
relays scenario.
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Energy Efficiency with Multiple Relays
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Figure 22. The system energy efficiency with neural network for SAMM which is trained on waterfilling
based power allocation among users and BOPA based power allocation among subchannels along with
LERPA of [11] in a multiple relays scenario.

Table 3 summarizes simulation results.

Table 3. Simulation Results.

KPI
SAMM
Equal
Power

SAMM
BOPA

SAMM
NN

MT Equal
Power MT BOPA LERPA [11]

Energy Efficiency
(Mbps/Watts) 0.5128 0.5481 1.0630 0.6660 0.5202 0.8862

System average throughput
(Mbps) 2.1471 1.1845 1.1037 4.0778 4.5775 0.4137

Throughput fairness index 0.3155 0.2337 0.2234 0.1453 0.1366 0.5797

It can be seen that SAMM with BOPA and NN compete well in fairness with best EE. Tradeoff has
to be done on system throughput. LERPA has better fairness performance but is less efficient in EE and
system throughput, whereas, the hypothetical MT performs better in average system throughput. We
say hypothetical because it only allocates the RB and power to the users with the highest SNR which
can not be applicable on practical scenarios.

5. Complexity Analysis

The RB allocation scheme SAMM uses alternate MT and PF metrics to assign the N RBs to K
users. MT assigns N

2 RBs to K users and PF assigns N
2 RBs to K− 1 users in alternate TTI. Therefore,

the computational complexity of SAMM is O
(

N(K− 1
2 )
)

. The BOPA Algorithm 1, first requires
λmin and λmax in line 4 using water-filling algorithm for which the worse-case complexity is O(2NK).
After that, BOPA uses binary search method to estimate the roots of Equation (17). In the worse
case, with Np points in the search space, binary search requires log2(Np) iterations to find the roots
of polynomial. In our case, Np = λmax−λmin

ε , where ε is the error tolerance. Therefore, the overall
complexity of the Algorithm 1 is O(2NK2 log2(Np)). In case of the optimal exhaustive search (KN) RB
allocation combining with the BOPA; the complexity isO(2NKN+2 log2(Np)), whereas, the complexity
of SAMM-BOPA is O((NK)2(2K + 1) log2(Np)).

The running-time complexity of the K-mean algorithm is O(kmdi) [31], where k is the number of
clusters, m is the number of objects to be clustered, d is the dimension of objects, and i is the number of
iterations. In our application of K-mean Algorithm 2, we use mink < k < maxk and two-dimensional
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geographical location of the users. Therefore, the worse-case computational complexity is given
as O(maxkKi).

6. Conclusions

In this paper, we have investigated the impact of using single and multiple L3 relays in terms
of EE and throughput. For a single relay scenario, equal power and BOPA are used in conjunction
with the SAMM and MT RB allocation algorithms. Simulation results show that SAMM BOPA has
26% power saving when compared with MT BOPA. Whereas, when comparing SAMM with equal
power allocation to all RBs, our proposed scheme gives 77% increase in EE. For a multiple relay
scenario, a clustering scheme is proposed that addresses relay placement and users’ association. This
information acts as an input to a machine learning process (SAMM NN) that cognizes both the SAMM
and BOPA approaches using One-Vs-All classification and feedforward neural networks, respectively.
The SAMM NN approach when compared with the SAMM Equal Power, gives a 2.07 times increase in
EE at the cost of 0.72 times decrease in throughput. A SAMM BOPA approach adopted in the case of
single relay still provided the best tradeoff in terms of energy efficiency EE, throughput and fairness in
the case of multiple relays.
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Abbreviations

The following abbreviations are used in this manuscript:

BER Bit Error Rate
BOPA Bisection based Optimal Power Allocation
BS Base Station
CA Carrier Aggregation
CoMP Coordinated Multipoint
CSI Channel State Information
EE Energy Efficiency
JFI Jains Fairness Index
L3 Layer 3
LTE-A Long Term Evolution Advanced
MIMO Multiple-input multiple-output
MQAM M-ary Quadrature Amplitude Modulation
MT Maximum Throughput
OFDM Orthogonal Frequency Division Multiplexing
PF Proportional Fairness
QoS Quality of service
RB Resource Block
RN Relay Node
RR Round Robin
SAMM hybrid proportional fairness scheme
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SINR signal-to-interference-and-noise ratio
SNR signal-to-noise ratio
TTI Transmission Time Interval
UE User Equipment
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