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Abstract: This paper presents a nondestructive analysis of debonds in an adhesively-bonded
carbon-fibre reinforced composite structure under variable temperature conditions. Towards this,
ultrasonic guided wave propagation based experimental analysis and numerical simulations are
carried out for a sample composite structure to investigate the wave propagation characteristics and
detect debonds under variable operating temperature conditions. The analysis revealed that the
presence of debonds in the structure significantly reduces the wave mode amplitudes, and this effect
further increases with the increase in ambient temperature and debond size. Based on the debond
induced differential amplitude phenomenon, an online monitoring strategy is proposed that directly
uses the guided wave signals from the distributed piezoelectric sensor network to localize the hidden
debonds in the structure. Debond index maps generated from the proposed monitoring strategy
show the debond identification potential in the adhesively-bonded composite structure. The accuracy
of the monitoring strategy is successfully verified with non-contact active infrared-thermography
analysis results. The effectiveness of the proposed monitoring strategy is further investigated for the
variable debond size and ambient temperature conditions. The study establishes the potential for
using the proposed damage index constructed from the differential guided wave signal features as a
basis for localization and characterization of debond damages in operational composite structures.

Keywords: adhesive bonds; carbon-fibre composites; debond; guided wave; infrared-thermography;
piezoelectric transducer

1. Introduction

Carbon-fibre reinforced composite (CFRC) structures are widely used in the aerospace, automotive
and marine industries, due to their effective fire and corrosion resistance, acoustic insulation,
high stiffness/weight ratios, construction flexibilities and lightweight advantages [1–4]. In several
construction requirements, two or more such composite laminates are bonded with epoxy adhesives
and debonds can occur at such adhesive interfaces, due to temperature fluctuations, improper handling,
impact, fatigue and ageing [5–9]. Hence, fast and effective nondestructive evaluation and structural
health monitoring (SHM) strategies are required to detect such hidden debonds under variable ambient
temperature conditions, in order to avoid catastrophic failures while the structure is in-service [9,10].
Moreover, study of temperature effects on debond response is also important, as the change in
temperature can significantly affect the results from such monitoring strategies [11].

Ultrasonic guided wave propagation-based SHM strategies have proven their potential to
effectively identify hidden defects in complex layered materials [7–15]. As the piezoelectric transducer
(PZT)-induced guided wave propagation-based SHM techniques offer long-distance inspection potential
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due to the penetration capacity into different layers in the composites with less attenuation [12–15]. In
guided wave propagation-based techniques, analysis of dispersion characteristics is crucial for the
development of an effective SHM strategy using PZT actuator-sensor networks [12].

In several studies [8,15–17], the finite element method (FEM) based numerical simulations
of guided wave propagation in composite structures is presented. The FEM simulation has
proven its potential to effectively model the ultrasonic guided wave propagation phenomenon
in composite/metallic structures.

A global matrix formation-based theoretical model is presented for high-frequency wave
propagation in composite structures [18]. The two-dimensional (2D) model has proven its potential
to effectively represent the modal characteristics of the propagating guided signal in multi-layered
composite structures.

Active thermography measurement-based non-contact NDE techniques for layered structures are
also proposed by many authors [19–28]. The infrared thermography (IRT) test based NDE techniques is
applicable to a wide range of materials, including CFRCs [22–24]. Moreover, the IRT test is applicable
in production as well as in maintenance works, which makes it a versatile and flexible technique
compared to other conventional NDE technologies. In active IRT, the infrared (IR) camera receives
different levels of IR radiation from the surface of the target structure, which has been thermally
stimulated and based on the distribution of the recorded radiation an image called ‘thermogram’ is
generated. The existence of structural defect creates different thermal conduction in the material
that affects the heat flow. In the process, the existence of discontinuities (e.g., cracks, debondings,
indentations) in the target structure will make it colder or warmer at a different ratio that will ultimately
lead to the appearance of different thermal contrasts in the simulated thermograms [24–28].

The present study is devoted towards the development of a reliable, fast and efficient online SHM
strategy to identify the hidden debonds in an adhesively-bonded carbon-fibre composite structure
(ACCS) under variable operating temperature conditions. In the process, combined experimental
investigations in the laboratory and FEM-based 3D numerical simulations in ABAQUS are carried out
for the analysis of ultrasonic guided wave propagation in a sample ACCS under different temperature
conditions are carried out using an edge-reflection free sparse network of PZTs. A probabilistic analysis
based SHM strategy is also prepared in MATLAB, in order to detect debonds under variable ambient
temperature conditions. The proposed monitoring strategy uses the differential changes in guided
wave signals obtained from the pre-assigned sensor network. The effectiveness of the SHM strategy is
cross-verified with the non-contact active IRT analysis results.

2. Experimental Analysis

Laboratory experiments are conducted on a sample ACCS (25 cm × 25 cm × 0.7 cm) with a
purposely-built circular debond region at the bond-interphase. The debond diameter (ϕ) is measured
to be 0.8 cm (approximately). The sample ACCS is composed of two 0.344 cm thick eight-layer twill
(±45

◦

) CFRC laminates, and the laminates are bonded with a 0.012 cm (approximate) thin layer of
epoxy adhesive. The experimental studies on PZT network-based guided wave propagation and the
non-contact IRT based inspections are separately carried out on a sample ACCS as described below.

2.1. Experimental Analysis Using Guided Wave Propagation

In order to study the characteristics of ultrasonic guided wave propagation and its interaction
with debond in ACCS under variable temperature conditions, a series of laboratory experiments has
been carried out using a temperature-control chamber and a pre-defined actuator�sensor network of
PZTs assigned on the ACCS surface. A multi-channel signal generator-cum-data acquisition (DAQ)
instrument is deployed to operate (guided wave actuation and reception) the assigned PZTs. A detailed
description of the experimental setup is shown in Figure 1.
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Figure 1. Experimental setup for the temperature-dependent analysis of debond effects on guided
waves in the adhesively-bonded carbon-fibre composite structure (ACCS).

The PZT (actuator/sensor) arrangement on the sample surface against the debond is described
in Figure 2 and the coordinates (x,y) of the PZTs are specifically given in Table 1. A selected set of
operating temperatures (0 ◦C, 20 ◦C, 60 ◦C, and 100 ◦C) is selected for the temperature-chamber, in
order to carry out the temperature dependent experiments.
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Figure 2. Schematic representation of the assigned piezoelectric transducer (PZT) network on the
sample ACCS.

Table 1. Coordinates (x,y) of the PZTs on the ACCS surface.

PZT (No.) X-Coordinate (cm) Y-Coordinate (cm)

1 0.5 2.5
2 24.5 2.5
3 0.5 7.5
4 24.5 7.5
5 0.5 12.5
6 24.5 12.5
7 0.5 17.5
8 24.5 17.5
9 0.5 22.5

10 24.5 22.5

In the guided wave propagation-based analysis of ACCS, a Hanning-window modulated 150
kHz five-cycle tone-burst sine pulse, as shown in Figure 3, is applied as actuation signals for the PZTs.
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2.2. Experimental Analysis Using Active IRT Test

In the study, the non-contact transient IRT test is considered for the NDE of hidden debonds in
the target structure. In IRT, a surface of the analysed ACCS specimen is stimulated by a heat pulse and
the thermal response of the material is measured and analysed. The response in the form of thermal
decay after the heat-flux contains information about sub-surface material defects (if any). After the
heat pulse, the temperature decrease rate is different for damaged and undamaged areas. The idea of
transient IRT measurements uses a halogen lamp for generating the thermal source, an IR camera to
capture the thermal images and a computing device for the recorded thermal image data processing.
The experimental set-up in the laboratory is described in Figure 4. In the experiment, the thermal
source from the halogen lamp is directly applied to the ACCS surface and the thermal response of the
structure is captured by a FLIR(R): SC-6540 IR camera equipped with a cooled indium antimonide
detector. The recorded sequences of thermal images (i.e., thermograms) are processed with an IR-NDT
software from the Automation Technology.
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3. Finite Element Analysis

Numerical simulations of guided wave propagation in the sample ACCS (25 cm × 25 cm × 0.7 cm)
panel have been carried out using the explicit and implicit finite element analysis codes in ABAQUS.
In the process, the ACCS panel is modelled in the explicit-code and the PZTs are modelled using the
implicit-code. The standard explicit co-simulation technique is assigned to link the explicit and implicit
analysis codes [9,12].

In ABAQUS, the eight-noded C3D8R standard explicit linear brick-elements are used for the
modelling of ACCS. The element size for the CFRC and epoxy-adhesive layers are assigned as (0.05



Sensors 2019, 19, 3454 5 of 14

cm × 0.05 cm × 0.025 cm) and (0.05 cm × 0.05 cm × 0.01 cm), respectively. The homogenised elastic
properties of the CFRC laminate and the adhesive layer are calculated as per the Vinson and Sierakowski
(1993) in [29]. The temperature-dependent material properties are then obtained as per Chamis (1984)
in [30]. The engineering properties of the layered ACCS for the temperature-dependent numerical
simulations are presented in Table 2.

Table 2. Temperature-dependent material properties of the ACCS.

Material E11
(GPa)

E22
(GPa)

E33
(GPa)

G12
(GPa)

G23
(GPa)

G13
(GPa) ν12 ν13 ν23

ρ

(kg/m3)
Tmp
(◦C)

CFRC

73.95 73.95 11.17 4.26 4.02 4.02 0.04 0.37 0.37 1568 –60
73.78 73.78 11.12 4.11 3.86 3.86 0.04 0.37 0.37 1568 –40
73.53 73.53 10.7 3.95 3.71 3.71 0.04 0.37 0.37 1568 –20
73.28 73.28 10.26 3.78 3.55 3.55 0.03 0.37 0.37 1568 0
73.02 73.02 9.8 3.61 3.38 3.38 0.03 0.37 0.37 1568 20
72.74 72.74 9.31 3.42 3.21 3.21 0.03 0.37 0.37 1568 40
72.44 72.44 8.79 3.23 3.02 3.02 0.03 0.37 0.37 1568 60
72.12 72.12 8.22 3.017 2.83 2.83 0.03 0.37 0.37 1568 80
71.77 71.77 7.62 2.79 2.61 2.61 0.03 0.37 0.37 1568 100

Adhesive

4.82 4.82 4.82 1.71 1.71 1.71 0.4 0.4 0.4 1250 –60
4.63 4.63 4.63 1.65 1.65 1.65 0.4 0.4 0.4 1250 –40
4.45 4.45 4.45 1.59 1.59 1.59 0.4 0.4 0.4 1250 –20
4.26 4.26 4.26 1.52 1.52 1.52 0.4 0.4 0.4 1250 0

4.052 4.052 4.052 1.45 1.45 1.45 0.4 0.4 0.4 1250 20
3.84 3.84 3.84 1.37 1.37 1.37 0.4 0.4 0.4 1250 40
3.61 3.61 3.61 1.29 1.29 1.29 0.4 0.4 0.4 1250 60
3.37 3.37 3.37 1.2 1.2 1.2 0.4 0.4 0.4 1250 80
3.11 3.11 3.11 1.11 1.11 1.11 0.4 0.4 0.4 1250 100

In PZT models (1 cm dia. and 0.04 cm thin), the eight-noded C3D8E standard implicit linear
piezoelectric brick elements of size (0.05 cm × 0.05 cm × 0.025 cm) are assigned. The C3D8E elements
offer the electro-mechanical-coupling property of PZTs. In the actuator PZTs, the driving signals
(voltage) are applied to the top-surface nodes and 0-voltage is assigned to the bottom nodes. Whereas
for the sensor-PZTs, the propagated signals (voltage) are registered at the top nodes and 0-voltage is
applied to the bottom nodes. The fixed boundary conditions are assigned to the ACCS edges and to
the PZT top-surfaces that implies no rotations and translations along the X,Y and Z directions. In the
simulation, the NCE51 PZT (actuators/sensors) properties are considered as per the manufacturer’s
(Noliac(R)) information:

mass-density, ρ = 7210 [kg/m3],

elastic-stiffness, [C] =



132 8.8 90.5 0 0 0
0 132 90.5 0 0 0
0 0 121 0 0 0
0 0 0 20.2 0 0
0 0 0 0 20.2 0
0 0 0 0 0 22.6


[GPa],,

charge-constant, [e] =


0 0 0 0 13.35 0
0 0 0 13.35 0 0
−6.16 −6.16 15.77 0 0 0

[C/m2] and

permittivity, [ε] =


1947 0 0

0 1947 0
0 0 1911

× 8.85× 10−12[F/m],,

The numerical model of the sample ACCS with the selected network of PZTs (actuators/sensors)
is described in Figure 5. The simulation is further extended for the variable debond sizes (ϕ = 0.4
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cm, 0.8 cm (reference), 1.2 cm, 1.6 cm, 2.0 cm, and 2.4 cm) and for a series of ambient temperature
conditions (−60 ◦C, −40 ◦C, 0 ◦C, 20 ◦C (reference), 40 ◦C, 60 ◦C, 80 ◦C and 100 ◦C). In all the simulation
cases, the time-step of calculation is controlled to be 1e−7 < (minimum distance of any two connecting
nodes/maximum accountable propagation velocity of the wave modes).
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4. Results and Discussion

Guided wave dispersion curves up to an operating frequency range are theoretically obtained
based on the semi-analytical model described in [18] and the same formulations are not repeated here
for brevity. The theoretically obtained phase-velocity dispersion curves for the ACCS presented in
Figure 6 show the presence of two independent guided wave modes (primary anti-symmetric (a0) and
primary symmetric (s0) modes) at 150 kHz.
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4.1. Numerical and Experimental Analysis of Debond Effects

Numerical simulation signals are obtained for the model described in Figure 5. A waveform plot
from the simulation is shown in Figure 7, which clearly shows the debond influence on the guided
wave propagation in the ACCS. In all the simulation signals, the wave modes are effectively identified
and a comparison of bonded (pair: 7-8) and debond influenced (pair: 3-4) signals (Figure 2) at the
reference temperature is presented in Figure 8.
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Experimental analysis signals are then collected from the assigned network of PZTs (Figure 2)
on the sample surface. A comparison between the bonded (actuator�sensor pair: 7–8) and debond
influenced (actuator�sensor pair: 3–4) signals at the reference temperature (i.e. 20 ◦C) are shown in
Figure 9. In the signals, the ‘a0’ and ‘s0’ wave modes are accurately identified based on the dispersion
curves in Figure 6. The results show that the presence of debond region in the ACCS significantly
reduces the modal amplitudes as in the case of numerical simulation. Such reductions might have
happened due to the reflections and major attenuation in the debond region.
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4.2. SHM Strategy for Debond Detection

In order to identify debonds in the ACCS, a debond index (DI) algorithm-based SHM strategy
is proposed that uses the continuous wavelet transform (WT) of the guided wave signals from the
assigned PZT sensors on the target structure. The algorithm calculates debond index values based on
the difference in WT coefficient (WTC) magnitudes of the input signals at each pre-defined actuator–
sensor combinations. The algorithm is prepared in the MATLAB environment that calculates a (10 × 10)
matrix with 100 individual guided wave signals as inputs corresponding to the following combinations
of actuator–sensor paths: path# 1–1, . . . , 1–10; path# 2–1, . . . , 2–10; 3–1; path# 3–1, . . . , 3–10; path# 4–1,
. . . , 4–10; path# 5–1, . . . , 5–10; path# 6–1, . . . , 6–10; path# 7–1, . . . , 7–10; path# 8–1, . . . , 8–10; path#
9–1, . . . , 9–10; path# 10–1, . . . , 10–10 to detect debonds in the target structure (Figure 2). The debond
index at any point ni(x, y) in the selected grid on the structure is defined as

Di(x, y) =
10∑

A=1

10∑
S=1

∫ t2

t1

(WTC)2dt (1)

where ‘i = 1, . . . , 100’ is the number of sensors configurations, ‘D’ is the debond index, ‘A’ is the actuator
number, ‘S’ is the sensor number and ‘t1’ is the time required for the ‘a0’ wave mode to travel from
any actuator to a particular sensor, which is calculated from t1 = d/VgA0 where ‘Vga0’ is the a0 mode
velocity, ‘d’ is the actuator�sensor distance and t2 = (t1 + tB), where ‘tB’ is a width of time window
considering the a0 mode in the signals. In the study, only the ‘a0’ modes in the guided wave signals are
considered for debond detection owing to their lesser propagation speeds and high sensitivity against
minor defects.

4.2.1. Detection of Debonds Using Experimental Signals

The debond region in the sample ACCS is identified using the experimental sensor signals to
the proposed SHM strategy. In the process, the guided wave signals for the 10 actuator�sensor
combinations are collected from the PZT network (Figure 2). The time domains WT of all the registered
signals are then applied to the DI algorithm to calculate the differential WTCs, as shown in Figure 10a.
The DI maps are obtained for the sample ACCS with a 0.8 cm ϕ debond region from the SHM
framework. The map (contour pattern) is presented in Figure 10b that clearly indicates the debond
location in the structure.
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4.2.2. Detection of Debonds Using Simulation Signals

The debond region in the ACCS model is identified by using the simulated sensor signals to the
SHM strategy. The WT of all the recorded signals from the PZT network are applied to the algorithm
that calculates the differential WTCs as shown in Figure 11a. The DI map in Figure 11b is obtained
from the SHM framework for the ACCS model with the 0.8 cm ϕ debond region. Good agreement is
noticed between the experimentally and numerically obtained DI maps for the target ACCS.
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4.3. Active IRT Analysis Based Non-Destructive Inspection of Debonds in the ACCS

The non-contact active IRT test results are obtained from the experimental analysis described
in Figure 3, in order to verify the reliability of results from the proposed SHM strategy (Figures 10b
and 11b). In the IRT measurement, the thermograms are recorded for a duration of five seconds after
thermal excitation. Further, in each measurement point, the polynomials approximating recorded
signals are calculated. This method, called thermographic signal reconstruction [31], is one of the
most widely used techniques. The evolution of the measured temperature is fitted to an n degree
polynomial as

T(t) = a0 + a1t1 + . . .+ an−1tn−1 + antn (2)

Analyzing polynomial coefficients and/or derivatives of the polynomials it is possible to observe
the thermal propagation difference between pixels corresponding to damaged and undamaged
areas. The maps of the selected polynomial coefficients are presented in Figure 12 for two different
colour patterns. The maps distinctly represent the hidden debond location in the sample and
fairly justifies the debond prediction potential of the proposed guided wave propagation based
SHM framework that offers the possibility of in-service monitoring of such complex structures in
safety-critical engineering applications.
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sizes) influenced signals under variable temperature conditions. 

Figure 12. Debond localization maps corresponding to the selected polynomial coefficients for the
recorded thermograms in (a) grey-scale and (b) colour-scale showing the actual debond location in the
sample ACCS.

4.4. Analysis of Debond Size and Temperature Variation Influence on the Difference in WTCs

An extensive temperature-dependent study is experimentally and numerically carried out on the
target ACCS to understand the influence of variable debond size and operating temperature on the
differential WTC magnitudes (a critical component for the SHM strategy) of the propagated guided
wave signals. In the study, the WTCs of experimental signals are obtained only for the signals collected
from the ACCS sample with a 0.8 cm ϕ debond for a pre-defined range of operating temperature (0 ◦C,
20 ◦C, 60 ◦C, 100 ◦C) conditions. Whereas, the differential WTCs of simulation signals are separately
obtained for ACCS models with 0.4 cm, 0.8 cm, 1.2 cm, 1.6 cm, 2.0 cm and 2.4 cm ϕ debond under a
wide range of temperature conditions (−60 ◦C, −40 ◦C, 0 ◦C, 20 ◦C (reference), 40 ◦C, 60 ◦C, 80 ◦C and
100 ◦C), as per the practical scenarios. In all the cases, the sensor configurations in the PZT-network
are maintained as per the details are given in Figure 2 and Table 1. The operating temperature versus
differential WTC magnitude plots corresponding to different debond sizes is presented in Figure 13 for
the typical case (WTC difference between the signals from path# 7–8 and path# 3–4). The results show
the increase in the debond size and the ambient temperature significantly increases the differential WTC
magnitudes of the guided wave signals. Good agreements between the experiment and simulation
results are observed in all the study cases.
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4.5. Analysis of Temperature Variation Influence on the Debond Index Magnitudes

The bond monitoring study is further extended for the analysis of debond size influences on the
debond index magnitudes obtained from the proposed SHM strategy. In the process, the numerical
sensor signals (Figure 2) are collected from the ACCS models with 0.4 cm, 0.8 cm, 1.2 cm, 1.6 cm, 2.0
cm, and 2.4 cm ϕ debond, respectively. WT of the collected signals are then applied to the monitoring
framework and the corresponding debond index magnitudes are recorded. A debond size versus
debond index magnitude plot is obtained and presented in Figure 14, which clearly shows the increase
in debond size significantly increases the debond index magnitudes of the localization maps. Therefore,
this strategy can be adopted for debond size prediction/characterization in a different type of composite
structures under specified conditions (operating temperature, frequency, moisture-content, sensor
configuration, type of PZTs).
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4.6. Analysis of Temperature Variation Influence on the Debond Index Magnitudes

In order to study the variable operating temperature influences on the debond index magnitudes,
WT of the experimental (Figure 1) as well as simulation (Figure 5) signals are applied to the proposed
SHM strategy. The experimental signals are collected for the ACCS sample with 0.8 cm ϕ debond
under operating temperature: 0 ◦C, 20 ◦C, 60 ◦C, 100 ◦C. Whereas, the simulation signals are separately
collected for ACCS models with 0.8 cm ϕ debond under operating temperature: −60 ◦C, −40 ◦C,
0 ◦C, 20 ◦C (reference), 40 ◦C, 60 ◦C, 80 ◦C, and 100 ◦C. The operating temperature versus debond
index magnitude plots are obtained for the simulation and experimental data and presented in
Figure 15. The results show the increase in ambient temperature significantly increases the debond
index magnitudes in the localization maps. This increment is possibly related to a reduction in E-values
with increasing temperature which can lead to ad hoc variations in wave mode amplitudes. A good
agreement between the experiment and simulation results is observed. Therefore, this study can be
adopted for the development of industry-grade SHM tools/frameworks for effectively identifying
debonds under variable operating temperature conditions.

Non-destructive analysis of adhesive bonds and a proposal of guided wave propagation-based
reliable SHM framework for the ACCS is the prime focus of this paper. However, a more detailed
investigation is required for a wide range of ACCSs and operating frequencies to develop robust
industry-grade online monitoring strategies.
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Non-destructive analysis of adhesive bonds and a proposal of guided wave propagation-based 
reliable SHM framework for the ACCS is the prime focus of this paper. However, a more detailed 
investigation is required for a wide range of ACCSs and operating frequencies to develop robust 
industry-grade online monitoring strategies. 

5. Conclusions 

The work presented in this paper demonstrates the novel idea of using differential signal 
features of guided waves to localize and quantify the size of debond in adhesive-bonded composite 
structures. The constructed damage index has been shown to be a useful metric for capturing the 
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• The proposed SHM strategy is verified with the non-contact active IRT measurements and it 
has proven the debond detection potential in the ACCS.  

• The proposed SHM strategy has further shown that the increase in debond size increases the 
debond index magnitudes of the localization maps, and the increase in ambient temperature 
also increases the debond index magnitudes in the localization maps.  

However, a more detailed investigation on adhesive bonds in a different type of ACCS would 
be the future research scope to develop robust industry-grade online monitoring tools/strategies, 
which is ongoing research by the authors. 
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5. Conclusions

The work presented in this paper demonstrates the novel idea of using differential signal features
of guided waves to localize and quantify the size of debond in adhesive-bonded composite structures.
The constructed damage index has been shown to be a useful metric for capturing the variation in size
of debond and is sensitive to the change in ambient temperature. Some of the important conclusions
from the study can be summarized as follows

• The existence of debond at the adhesive layer in the ACCS reduces the amplitudes of propagating
wave modes.

• Increase in the debond size and the ambient temperature significantly increases the a0 mode
amplitudes and leads to an increase in amplitude difference between the bonded and debond
influenced signals.

• The proposed SHM strategy is verified with the non-contact active IRT measurements and it has
proven the debond detection potential in the ACCS.

• The proposed SHM strategy has further shown that the increase in debond size increases the
debond index magnitudes of the localization maps, and the increase in ambient temperature also
increases the debond index magnitudes in the localization maps.

However, a more detailed investigation on adhesive bonds in a different type of ACCS would be the
future research scope to develop robust industry-grade online monitoring tools/strategies, which is
ongoing research by the authors.
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