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Abstract: A bio-inspired polarization sensor with lenses for navigation was evaluated in this study.
Two new calibration methods are introduced, referred to as “central-symmetry calibration” (with an
integrating sphere) and “noncontinuous calibration”. A comparison between the indoor calibration
results obtained from different calibration methods shows that the two proposed calibration methods
are more effective. The central-symmetry calibration method optimized the nonconstant calibration
voltage deviations, caused by the off-axis feature of the integrating sphere, to be constant values
which can be calibrated easily. The section algorithm proposed previously showed no experimental
advantages until the central-symmetry calibration method was proposed. The outdoor experimental
results indicated that the indoor calibration parameters did not perform very well in practice outdoor
conditions. To establish the reason, four types of calibration parameters were analyzed using the
replacement method. It can be concluded that three types can be easily calibrated or affect the
sensor accuracy slightly. However, before the sensor is used outdoors every time, the last type must
be replaced with the corresponding outdoor parameter, and the calculation needs a precise rotary
table. This parameter, which is mainly affected by the spectrum of incident light, is the main factor
determining the sensor accuracy. After calibration, the sensor reaches an indoor accuracy of ±0.009◦

and a static outdoor accuracy of ±0.05◦ under clear sky conditions. The dynamic outdoor experiment
shows a ±0.5◦ heading deviation between the polarization sensor and the inertial navigation system
with a ±0.06◦ angular accuracy.

Keywords: navigation sensor; scattered polarization skylight; calibration; outdoor accuracy;
integrating sphere

1. Introduction

Polarization vision, the ability of some animals to detect the oscillation plane of an electric-field
vector of light, has inspired scientists for decades. In 2004, Cochran reported that migrating songbirds
recalibrate their internal magnetic compass daily from twilight polarization cues [1]. In 2006, Muheim
reported that polarized light cues, in general, underlie the compass calibration of migratory songbirds [2].
The dynamic polarization vision in mantis shrimps was investigated in 2016 [3]. Furthermore,
polarization cues also play an important role in homing ants [4]. Polarization navigation based on
polarization cues (i.e., the scattered skylight) is an important application of polarization vision. Its
advantages are the anti-interference and lack of error accumulations.

A mechanism for bio-inspired polarization sensors for navigation was proposed in [5], and a study
of angle measurements using an optoelectronic model to emulate the polarization-sensitive compound
eyes of insects was proposed in [6]. Bio-sensors for navigation [7] attempt to imitate the orthogonal
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structure of insects’ compound eyes [8], which can improve sensor resolution. In 2008, an outdoor
accuracy of±0.2◦was obtained using a normalization process for the final polarization angle [7]. In 2014,
both a new angle-computation method and a new calibration method were proposed [9]. In 2016,
the Non-dominated Sorting Genetic Algorithm- II (NSGA-II) [10] was used to minimize both angle of
polarization (AOP) residuals and degree of linear polarization (DOLP) dispersions, which resulted in
±0.2◦ indoor accuracy. In addition, Xu obtained an outdoor accuracy [11] of ±0.2◦ in the same year.
In 2018, a bionic polarization-navigation sensor based on a polarizing beam-splitter [12] reached ±0.42◦

outdoor accuracy after calibration. The abovementioned sensors can determine polarization angles in
real-time. A sensor, which can measure ultraviolet (UV) light, achieved an accuracy of ±0.3◦ in clear
sky in 2017 [13]; however, it requires scanning. The following measurement offers a median angular
error of 0.39◦ in 2019 [14], and this sensor was used on a six-legged walking robot in an outdoor
environment in 2019 [15]. By analyzing the multi-source errors, in indoor experiments in 2019 the
unscented Kalman filter (UKF) and the extended Kalman filter (EKF) calibration methods [16] achieved
accuracies of 0.0459◦ and 0.0348◦, respectively. In conclusion, after a decade of research, bio-inspired
sensors can now perform both short- and long-range navigation tasks well, with just a few pixels [17].
However, the currently achieved outdoor accuracy, between ±0.2◦ and ±0.42◦, is not very high.

When only one polarization-navigation bio-sensor is used, only the orientation information can be
obtained. If more sensors are used to measure the scattered skylight, which can be described using the
Rayleigh scattered model [18], more complex tasks can be performed. A novel autonomous real-time
position-determining method, which uses both polarized light and the geomagnetic field, was reported
in 2015 [19]. An orthogonal vector algorithm, used to obtain navigation information, can avail the
advantage of redundancy of the Rayleigh model [20]. The polarization-navigation bio-sensor can also
help to determine the attitude of a device [21].

Imaging polarimetry is another research field of polarization navigation. It is reported that the
Vikings possibly used the polarization patterns of skylight for solving challenging navigation tasks,
such as sailing to Greenland from Norway. The authors determined the accuracy [22] of hypothetical
sky-polarimetric Viking navigation for 1080 different sky conditions that were characterized by
parameters such as solar elevation and cloudiness [23]. A simulation based on a large amount of
actual data [23], obtained using imaging polarimetry, shows that Viking sailors could have travelled
to Greenland from Norway using polarization information [24]. Furthermore, the angle algorithm
has also been improved. An angle algorithm using the Hough transform was proposed in 2015 [25],
and outdoor accuracy became 0.37◦ before any error correction. A novel camera-based bio-inspired
polarization navigation sensor was proposed in 2016 [26], and “80% of AOP deviations are less than 2◦

and 40% less than 1◦”. A real-time polarization imaging algorithm was proposed in 2017 [27] that has
a refresh rate of about 33 Hz. The angles for skylight polarization, derived using the digital images
of sky under various conditions, were studied in 2017 [28]. An integrated polarized skylight sensor
and Micro Inertial Measurement Unit (MIMU) with a metric map for urban ground navigation were
proposed in 2018 [29].

After comparing the two types of devices described above, we found that imaging polarimetry
can reach moderate outdoor polarization-angle accuracy and a lower refresh rate than conventional
bio-sensors [5,7,9,12]. Bio-inspired sensors do not have a very high outdoor accuracy. In a practical
application, complex tasks such as determining the global position or the attitude of a device require
high polarization-angle accuracy for several observed directions, not just high accuracy in one direction.
This paper focused on improving the outdoor accuracy. As a result, the relevant devices can perform
better in complex navigation tasks. In essence, a bio-sensor can be regarded as one pixel of an imaging
system. Therefore, its calibration result is meaningful for the development of an imaging system.

Calibration is necessary to ensure a high accuracy. During the calibration, a light source that
can provide uniform light is needed because of the operating principle of a polarization sensor. An
integrating sphere is suitable for measuring optical irradiation. It functions based on the radiation
exchange within an enclosure of diffuse surfaces. The tested sensor is often placed coaxial with the
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sphere, but at some distance away from the port of integrating sphere source. The uniformity is 100%
at the plane of port. However, it is almost impossible to position the sensor accurately, because the
linear-polarizing laminated films which generate linear polarization light are located at the port, and the
sensor has a complex inner structure. Therefore, the measured sensor is often placed at some distance
away from the port of integrating sphere, thus decreasing uniformity. This effect leads to systematic
errors. To weaken this effect, both the sphere and sensor are generally positioned coaxial. However, in
practice, there is always a slight off-center distance. As a result, the section algorithm [30], proposed by
us in 2012 to use the redundancy of sensor’s light path when detecting the linear polarization light,
shows no advantage in indoor calibration experiments. Both the problem of a slight off-center distance
and the unavailability of section algorithm are solved in this paper.

In addition, in this study, a polarization bio-sensor with plano-convex lenses was constructed.
Because we found that there is no lens in [5,7,9,14], the imitation of compound eyes of insects is not very
good. The accuracy limit, determined by a 16-bit analog-to-digital converter (ADC), was calculated in
our simulation for different degrees of polarization of incident light.

We also studied and improved the calibration method by exploring two new calibration techniques.
To increase the light uniformity decreased by the slight off-center distance when using an integrating
sphere, we introduce, what we named as, the “central-symmetry method”. The second calibration
technique is the “noncontinuous method”, which is an extension of the section algorithm and serves
to further improve the calibration. Subsequently, indoor calibration experiments were performed
and compared, and the effect of different calibration parameters on the accuracy was analyzed.
Finally, outdoor experiments were performed, and the calibration results were studied using the
replacement method.

Table 1 includes the main mathematical variables as below.

Table 1. Mathematical variables.

Variable Annotation

Vi_ideal Theoretical voltages, i ∈ [1, 2, 3]
Vi_AD Theoretical voltages of 16-bit ADC, i ∈ [1, 2, 3]
Vref Reference voltage for logarithmic amplifier
Vi Voltages, i ∈ [1, 2, 3]

Vimr
Voltages obtained using the central-symmetry method, also mean values of Vibr and

Viar, i ∈ [1, 2, 3]
Vinc Voltages obtained using the noncontinuous method, i ∈ [1, 2, 3]
Vbr Voltage before 180◦ rotation
Var Voltage after 180◦ rotation
Vicf Theoretical voltages calculated by the calibration parameters in Equation (21)
θ Polarization angle

θ12, θ13, θ23 Polarization angles from three voltages
θR Rotational angle of precise rotary table in simulation
θsec Polarization angle obtained using the section algorithm

d Polarization degree

dcm
Polarization degree obtained using the iterative least-squares estimation method, m ∈

[1, 2, 3, 4, 5, 6]
da Polarization degree determined by the authors

OIS Center of integrating sphere
OS Center of polarization sensor
OR Center of rotary table
Lo Length between the port and the photosensitive surface
Eo Irradiance at the center
Ee Irradiance at the off-axis edge

E1, E2, E’1, E’2 Irradiance at Point 1, 2, 1’, 2’
Lphoto Length between OS and the photosensitive surface
αIS Eccentric angle between OR and OIS
αS Eccentric angle between OR and OS
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Table 1. Cont.

Variable Annotation

LIS Eccentric distance between OR and OIS
LS Eccentric distance between OR and OS

LR1 Eccentric distance between OR and Point 1
LR2 Eccentric distance between OR and Point 2

L1, L2, L1’, L2’ Off-axis distance between OIS and Point 1, 2, 1’, 2’
BSD Standard deviation of a 360◦ range before the central-symmetry method is used
ASD Standard deviation of a 360◦ range after the central-symmetry method is used
gup Gain of unpolarized light
gtp Gain of totally polarized light

τM
Transmittance when the reference angle and main polarization angle of incident light

are parallel

τm
Transmittance when the reference angle and main polarization angle of incident light

are orthogonal
τf Transmittance of blue filter

Ein Irradiance of incident light
Ep Irradiance at photodiode
sr Spectral responsivity of photodiode
Ar Active area size of photodiode
kci Constant value generated by the integrating sphere method, i ∈ [1, 2, 3]
ki Additive coefficient of calibration, i ∈ [1, 2, 3]
kvi Deviation parameter of reference voltage of logarithmic amplifier, i ∈ [1, 2, 3]
kdm Coefficient of non-ideal polarizer, m ∈ [1, 2, 3, 4, 5, 6]
αm Installation angles of polarizer, m ∈ [1, 2, 3, 4, 5, 6]

2. Bio-Sensor for Navigation

2.1. Structure

The sensor proposed in this paper mainly consisted of a blue filter, six linear-polarizing laminated
films, six plano-convex lenses, six photodiodes, and an electronic circuit (see Figure 1a). The height of
the sensor is 100 mm and the diameter is 63 mm. The focal length of the plano-convex lens is 50 mm.
The diameter is 0.5 inch (12.7 mm). The photodiode is a ceramic package photodiode. Its spectral
response range is 320 to 730 nm. The pixel of the photodiode is 1.3 mm × 1.3 mm. The electronic circuit
mainly contains a MSP430 with four 16-bit ADCs inside. The refresh rate of the sensor is 150 Hz. There
are six light paths that share the same blue filter. In each path, there is a linear-polarizing laminated film
(i.e., polarizer), a plano-convex lens, and a photodiode (see Figure 1b). The plano-convex can narrow
the field of view and shield stray light, such as direct sunlight. Inspired by insects, six direct-current
signals, which are derived from six photodiodes, are divided into three groups. In each group, the two
main polarization directions of linear-polarizing films are orthogonal, and the two current signals act
as the inputs to a logarithmic amplifier, which has an exponential response to the sunlight that varies
from 0.0000146 to 14.64 W/m2 when the elevation varies from –6◦ to 15◦. The six main polarization
angles are 0◦ (the reference direction), 90◦, 60◦, 150◦, 120◦, and 210◦ (see Figure 1c). The corresponding
photodiode numbers are 1, 2, 3, 4, 5, and 6.
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Figure 1. Photograph and schematic of bio-inspired polarization sensor. (a) Photograph of sensor;
(b) light path of scattered light; (c) directions of the six polarizers.

2.2. Polarization Angle Calculation

The outputs of the three groups [7] are direct voltages. V1_ideal, V2_ideal, and V3_ideal are the ideal
outputs of photodiodes 1 and 2, 3 and 4, 5 and 6, respectively. They can be described as follows:

V1_ideal = 0.5 log 1+d cos(2θ)
1−d cos(2θ)

V2_ideal = 0.5 log 1+d cos(2θ−120◦)
1−d cos(2θ−120◦)

V3_ideal = 0.5 log 1+d cos(2θ+120◦)
1−d cos(2θ+120◦)

(1)

where “0.5” is the parameter of logarithmic amplifier; d is the (dimensionless) polarization degree
of incident light. The output of sensor, θ, is the angle between the reference direction and the main
polarization direction of incident light. The values d = 0.5 and θ = [0◦, 180◦] with a 0.1◦ interval for
Equation (1) are shown in Figure 2.
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We can obtain three equal outputs (θ12, θ13, θ23) simultaneously. These are derived from V1_ideal
and V2_ideal, V1_ideal and V3_ideal, V2_ideal and V3_ideal, respectively.

θ12 =
1
2

arctan
(A− 1)(B + 1) cos(120◦) − (B− 1)(A + 1) cos(0◦)
(A− 1)(B + 1) sin(120◦) − (B− 1)(A + 1) sin(0◦)

, (2)

where A = 102V1_ideal and B = 102V2_ideal. In Equation (2), the entire range for θ12 is 90◦. However, this
value should be 180◦ for linear polarized light. Hence, a method is needed to extend the range. Each
θ12 has a corresponding d12. If the sign of d12 is negative or positive, then the output angle for V1_ideal
and V2_ideal is θ12+90◦ or θ12 and the final degree of polarization is −d12 or d12. In other words, the sign
of d12 is used to extend the range to 180◦. In a similar manner, we can obtain θ13 and θ23.

2.3. Section Algorithm

Three groups of outputs can be obtained, because there are three equations and only two unknown
variables. The section algorithm [30] is proposed to use the redundancy of the sensor’s light path
when detecting the linear polarization light. The basic principle is to avoid using V, for which the
corresponding derivative is 0.

The derivatives are 0 when the denominators in Equation (1) are minimal. In this case, the electrical
noise produces large errors. For each V, there are two bad points, the derivatives of which are 0. Then,
there are six such bad points for our sensor. Therefore, we obtain six sections by averaging the range
(0◦–180◦). The middle point of each section corresponds with the bad point. For each section, V with a
bad point is excluded and the other two remaining V are used to calculate the final output θsec. In this
section algorithm, when θ is in the different section, the corresponding θ is considered as the final
output. The functional diagram is shown in Figure 3. θ12 is used to determine the selected section
in this paper. For instance, if we assume that θ12 is 60◦, θ13 is 60.1◦, and θ23 is 60.2◦. Then, because
θ12 lies within the section [45◦, 75◦), the final output θsec is θ13 (60.1◦), and θ23 is meaningless. More
details can be seen in Sections 4.4 and 5.1.
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2.4. Accuracy Limit for Different d Values

The accuracy limit for the sensor depends on the 16-bit ADC as well as the degree of polarization d.
The digital output of the 16-bit AD is from −32,767 to +32,767. In our simulation, aimed at calculating
the best theoretical accuracy determined by the integer effect, the voltages can be described as follows:

Vi_AD = round (Vi/Vre f × 215) ×Vre f /215, (3)

where Vi_AD is rounded to the nearest integer by the rule known as round half up and i is 1, 2, or 3.
Because Vi_AD includes both positive and negative values, the power of 2 is 15 and not 16 for the 16-bit
AD. Vref is the reference voltage for the logarithmic amplifier, and its value is 600 mV in this paper.
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The difference between V1_ideal and V1_AD is shown in Figure 4. The horizontal axis represents
the theoretical values of linear angle with a 0.1◦ interval without any errors. The differences between
V2_ideal and V2_AD and between V3_ideal and V3_AD are not shown because they look similar.Sensors 2019, 19, x FOR PEER REVIEW 7 of 28 
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Figure 5. Errors for θ12 when d = 0.5.

The maximum of Vi_AD and the maximum absolute error (accuracy limit) of θ12 that change with
d are shown in Figure 6. The accuracy limit for θ13 and θ23 is identical to that for θ12. Therefore, only
one curve is shown. Vref is inserted (red) into Figure 6. The corresponding d for Vref is 0.8813. This
number is high enough for outdoor measurement [31].
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3. Calibration Method

3.1. Central-Symmetry Method with Integrating Sphere

In the calibration process, a precise rotary table is used to provide precise angle variations,
which generate the accuracy of the polarization sensor. The centers of the integrating sphere
(OIS), the polarization sensor (OS), and the rotary table (OR) should coincide, in ideal conditions.
The central-symmetry method with the integrating sphere is proposed to improve calibration when
the three centers do not coincide in the practical application.

Figure 7a shows a light-source diagram, where the black solid arc above the black dashed line
represents the integrating sphere with lamps. The black dashed line represents the port of sphere.
The blue solid line represents the projection of photosensitive surface of sensor. Lo is the length between
the port and the photosensitive surface. The irradiance at the center is Eo. The irradiance at the off-axis
edge is Ee. L is the off-axis distance between the off-axis edge and the center. Φ is the intersection angle
between the two lines in Figure 7a.

Figure 7b shows the eccentric features of the three centers on the photosensitive surface. OR is
considered the center. OIS is at the position of Eo in Figure 7a. OS is the center of circle, where the six
photodetectors are located. The active photodetector area is considered as a point in the simulation.
Point 1 represents the position of photodetector 1. Lphoto is 14 mm. The coordinate system OR-XY is
built. Axis X is parallel to Line OS1. The eccentric distances of the integrating sphere and the sensor
are LIS and LS, respectively. The eccentric angles are αIS and αS, respectively. This figure is also the
initial state of the anticlockwise rotation in Section 3.2.

Figure 7c shows how the central-symmetry method is used in the rotation. Rotating the sensor by
180◦ around OR, Points 1 and 2 results in positions 1’ and 2’. The off-axis distances between Point 1, 2,
1’, and 2’ and OIS are L1, L2, L1’, and L2’, respectively. The eccentric distances of Points 1 (1’) and 2
(2’) are LR1 and LR2, respectively. Assuming that the scattered light in Figure 1b is the light from the
sphere, the positions of the six photodiodes with respect to the sphere can be visualized with the aid of
Figure 1b,c.



Sensors 2019, 19, 3448 9 of 28

Sensors 2019, 19, x FOR PEER REVIEW 8 of 28 

 

3. Calibration Method 

3.1. Central-Symmetry Method with Integrating Sphere 

In the calibration process, a precise rotary table is used to provide precise angle variations, 
which generate the accuracy of the polarization sensor. The centers of the integrating sphere (OIS), 
the polarization sensor (OS), and the rotary table (OR) should coincide, in ideal conditions. The 
central-symmetry method with the integrating sphere is proposed to improve calibration when the 
three centers do not coincide in the practical application. 

Figure 7a shows a light-source diagram, where the black solid arc above the black dashed line 
represents the integrating sphere with lamps. The black dashed line represents the port of sphere. 
The blue solid line represents the projection of photosensitive surface of sensor. Lo is the length 
between the port and the photosensitive surface. The irradiance at the center is Eo. The irradiance at 
the off-axis edge is Ee. L is the off-axis distance between the off-axis edge and the center. Φ is the 
intersection angle between the two lines in Figure 7a. 

Figure 7b shows the eccentric features of the three centers on the photosensitive surface. OR is 
considered the center. OIS is at the position of Eo in Figure 7a. OS is the center of circle, where the six 
photodetectors are located. The active photodetector area is considered as a point in the simulation. 
Point 1 represents the position of photodetector 1. Lphoto is 14 mm. The coordinate system OR-XY is 
built. Axis X is parallel to Line OS1. The eccentric distances of the integrating sphere and the sensor 
are LIS and LS, respectively. The eccentric angles are αIS and αS, respectively. This figure is also the 
initial state of the anticlockwise rotation in Section 3.2. 

Figure 7c shows how the central-symmetry method is used in the rotation. Rotating the sensor 
by 180° around OR, Points 1 and 2 results in positions 1’ and 2’. The off-axis distances between Point 
1, 2, 1’, and 2’ and OIS are L1, L2, L1’, and L2’, respectively. The eccentric distances of Points 1 (1’) and 
2 (2’) are LR1 and LR2, respectively. Assuming that the scattered light in Figure 1b is the light from 
the sphere, the positions of the six photodiodes with respect to the sphere can be visualized with 
the aid of Figure 1b,c. 

 
Figure 7. (a) Schematics illustrating the integrating sphere; (b) Schematics illustrating the eccentric 
feature of the three centers; (c) Schematics illustrating how to use the central-symmetry method in 
calibration. 

According to the integrating sphere manual, the irradiance (W/m2) at the off-axis edge can be 
expressed as Ee = Eocos4φ. Then, the irradiances at Points 1, 2, 1’ and 2’ are: 

422
22

4
2

422
11

4
1

422
22

4
2

422
11

4
1

)(cos

)(cos

)(cos

)(cos

oooo

oooo

oooo

oooo

LLLEEE

LLLEEE

LLLEEE

LLLEEE

















. (4) 

Figure 7. (a) Schematics illustrating the integrating sphere; (b) Schematics illustrating the eccentric
feature of the three centers; (c) Schematics illustrating how to use the central-symmetry method
in calibration.

According to the integrating sphere manual, the irradiance (W/m2) at the off-axis edge can be
expressed as Ee = Eocos4ϕ. Then, the irradiances at Points 1, 2, 1’ and 2’ are:

E1 = Eo cos4 ϕ1 = Eo(Lo/
√

L1
2 + Lo2)

4

E2 = Eo cos4 ϕ2 = Eo(Lo/
√

L22 + Lo2)
4

E′1 = Eo cos4 ϕ′1 = Eo(Lo/
√

L′12 + Lo2)
4

E′2 = Eo cos4 ϕ′2 = Eo(Lo/
√

L′22 + Lo2)
4

. (4)

The voltage derived from the amplifier of photodetectors 1 and 2, before rotation, is V1br, while
the voltage after rotation is V1ar. Assuming that the spectral responsivity (A/W) and the active area
size (m2) for each photodiode are the same, we obtain:

V1br = V1_ideal + 0.5 log (E1/E2)

V1ar = V1_ideal + 0.5 log (E′1/E′2)
. (5)

The mean value (V1mr) of two voltages is used—and not V1br or V1ar—for calibration using the
central-symmetry method for indoor experiments.

3.2. Simulation of the Central-Symmetry Method

The performance of the central-symmetry method, namely the voltage deviation between Vmr

and Videal, was studied in detail during the simulation. During the anticlockwise rotation in Figure 7c,
the polarization angle, namely the rotational angle (θR) of the precise rotary table, kept varying and had
a big influence on the voltage deviation. However, the polarization degree (d) had no influence on the
voltage deviation, according to Equation (5). Four parameters (LIS, LS, αIS, and αS) were investigated,
and Lo was set to 20 mm.

First, the influences of the two eccentric centers (OIS and OS in Figure 7b) on the voltage were
analyzed separately. Figure 8a shows the separate influence of OIS, when OS and OR coincide.
The voltage deviations between V1ar and V1_ideal, and V1br and V1_ideal can be considered approximate
sine curves. It is easy to conclude that the amplitude depends on the eccentric distance (LIS) and the
phase depends on the eccentric angle (αIS). The other two groups of voltage deviations were omitted
because of the similarity. The voltage deviation between V1mr and V1_ideal was close to 0, which proved
the validity of the central-symmetry method preliminarily. Figure 8b shows the separate influence of
OS, when OIS and OR coincide. The three deviations between Vmr and Videal seemed constant. Under
this condition (LIS = 0 mm), Var was the same as Vbr, according to Equation (5). Therefore, they were
both the same as Vmr. The other two groups of deviations were omitted.
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Figure 8. (a) The separate influence of OIS when LIS = 0.05 mm and αIS = 0◦. (b) The separate influence
of OS on voltages when LS = 0.02 mm and αS = 70◦.

Second, the integrated influence of the two eccentric centers on the voltage is shown in Figure 9.
It was found that Figure 9 was the superposition of Figure 8a,b. The influences of the two eccentric
centers were not stuck to each other. On the contrary, they were independent of each other.Sensors 2019, 19, x FOR PEER REVIEW 10 of 28 
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Based on Equation (6), there was a general regular: The method optimized the nonconstant 
voltage deviations generated by the off-axis distance of the integrated sphere during rotation. 
Constant voltage deviations, which can be calibrated easily, were the final outputs of the 
central-symmetry method during rotation. 
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Figure 9. The integrated influence of OIS and OS when LIS = 0.05 mm, αIS = 0◦, LS = 0.02 mm, and
αS = 70◦.

Third, the analytical expression was used to explain the geometric patterns in Figures 8 and 9,
and the general regular was proposed. The deviations between V1mr and V1_ideal in the four calculation
steps are shown as Equation (6): three intermediate results and one final result. Substituting V1br and
V1ar with Equations (4) and (5), the first intermediate result was obtained. During the anticlockwise
rotation in Figure 7c, the off-axis distances (L1, L2, L’1, and L’2) can be calculated using the coordinates
of the moving points (1 and 2) and the fixed points (OIS) directly, because the moving points can be
calculated easily with the constant eccentric distances (LR1 and LR2). Therefore, the second intermediate
result was obtained. An approximate assumption in Equation (7) was proposed to obtain the third
intermediate result, because LIS was chosen to be 0.02 mm, LR2 was 14 mm, and Lo was 20 mm. Finally,
the simplification of the deviation between V1mr and V1_ideal, based on the assumption, was found
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without θR or αIS. Hence, the deviation was constant, as the solid lines shown in Figure 8a,b and
Figure 9. In addition, it is 0 if LR1 is equal to LR2, as shown in Figure 8a.

V1mr −V1_ideal = 0.5 log
(L2

2+L0
2)(L′2

2+L0
2)

(L1
2+L0

2)(L′12+L0
2)

= 0.5 log
(L0

2+L2
IS+L2

R2
2
−4L2

R2L2
IS cos2(θR−60−αIS)

(L0
2+L2

IS+L2R1
2−4L2R1L2

IS cos2(θR−αIS)

≈ 0.5 log
(L0

2+L2
IS+L2

R2
2

(L0
2+L2

IS+L2R1
2

= log L0
2+L2

IS+L2
R2

L0
2+L2

IS+L2R1

, (6)

If L2
IS � L0

2 + L2
IS + L2

R2

Then : 4L2
R2L2

IS cos2(θR − 60− αIS) ≈ 0
4L2

R1L2
IS cos2(θR − αIS) ≈ 0.

(7)

Based on Equation (6), there was a general regular: The method optimized the nonconstant
voltage deviations generated by the off-axis distance of the integrated sphere during rotation. Constant
voltage deviations, which can be calibrated easily, were the final outputs of the central-symmetry
method during rotation.

In addition, LR1 and LR2 in Equation (6) were expanded further. Then we obtained:

V1mr −V1_ideal = log
L0

2 + L2
IS + L2

S + L2
photo + 2LS cos(αS + 60)

L02 + L2IS + L2S + L2
photo + 2LS cosαS

. (8)

A new assumption, as shown in Equation (9), was proposed to investigate the derivation of
Equation (8) when αS is the unknown parameter. As a result, when αS was 240◦, Equation (8) reached
the maximum. The three deviations between Vmr and Videal are as shown in Figure 10 when the
resolution of αS is 1◦.

If 2LS << L2
IS + L2

S + L2
photo + L0

2 Then :
2LS

L2IS + L2S + L2
photo + L02 ≈ 0 (9)
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Figure 10. The influence of αS on the three voltage deviations after using the central-symmetry method.

Fourth, the standard deviations of voltage deviations were used to evaluate the central-symmetry
method, which does not change mathematical expectations. During a rotation of 360◦ with 1◦ intervals,
the number of samples is 360. Standard deviations were investigated when LS and LIS were both
between 0.001 and 1 mm. The standard deviations, before and after the central-symmetry method is
used, are defined as BSD and ASD, respectively. ASD, the percent of ASD to BSD, the expectation, and
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the deviation percent of the expectation are shown in Figure 11, when LS is 1 mm and LIS is between
0.001 and 1 mm, and in Figure 12 when LS is between 0.001 and 1 mm and LIS is 1 mm, respectively.
Only the first one of the three voltage deviations was chosen to be studied because of the similarity
between them. αS was set to be 240◦ because the corresponding voltage deviation was the maximum,
as shown in Figure 10.
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(b) the influence of LS on expectation and deviation percent.

In Figure 12a, ASD and the percent vary very slightly and can be approximately considered as a
constant value. This also happens when LIS is another value between 0.001 and 1 mm. The smaller the
LIS, the more precise is this phenomenon. Therefore, it is concluded that LS hardly makes an effect on
ASD and the deviation percent when LS and LIS are between 0.001 and 1 mm. Therefore, as shown in
Figure 11a, the standard deviations have been largely reduced by the central-symmetry method in the
simulation. This result supports the general regular derived from Equation (6).

A similar conclusion to the ASD is made that LIS hardly affects expectations, based on the red
curve in Figure 11b. Therefore, Figure 12b shows the influence of LS on the expectations of voltage
deviation when LS and LIS are between 0.001 and 1 mm. The expectations will be handled in the
following calibration part.

The expectations remain unchanged when the method is used. During the 360◦ rotation,
the expectations of Vbr and Var are the same, because Vbr and Var contain the same elements, which are
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exactly one period (360◦) of a periodic function. The difference is that there is a 180◦ phase deviation.
Then, the expectations of Vbr–Videal and Var–Videal are the same. Therefore, the expectations of Vmr–Videal
are the same as Vbr–Videal or Var–Videal. In other words, the central-symmetry method does not change
the expectations of voltage deviation.

To further verify Equation (6), the “constant” values calculated using Equation (6) are added to
both Figures 11b and 12b. To be exact, the deviation percent between the “constant” values (CV) and
the expectations (ME), namely (CV–ME)/ME × 100%, was investigated. The deviation percentages are
below 0.23% in Figures 11b and 12b, which verify Equation (6).

At the beginning of this part, Lo was set to 20 mm, which is close to the actual value. If its value
meets the requirements of Equation (7), the above conclusion of the method can still be made. Because
LR2 itself has already met the requirements of Equation (7), Lo is allowed to be any real number. We
suggest that it should be [0, 40] mm.

3.3. Noncontinuous Method

Not all voltages determined using the central-symmetry method were used in calibration
parameter estimation. More precisely, voltages with small derivatives (dV/dθ) were rejected, and
only the remaining values were used to calculate the calibration parameter. The derivative is given
by Equation (10). The voltage (V1_ideal) and its derivative are shown in Figure 13 when d is 0.5.
Generally, when voltages are close to 0, the corresponding derivatives are close to their extreme
values. When voltages are close to their extreme values, the corresponding derivatives are close to 0.
The mathematical regular between voltages and their derivatives is similar to a sine function. Note
that at least six points remained; otherwise, a poor result will be obtained. More details are shown in
Section 4.4.

dV1_ideal

dθ
=

2d sin 2θ
ln 10× (d2 cos2 2θ− 1)

. (10)
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3.4. Calibration Parameters

The incident skylight of the polarization sensor includes two components: unpolarized light and
totally polarized light. The two respective gains [32] can be described as follows:

gup = (τM + τm)/2 = τ
gtp = τM cos2 θ+ τm sin2 θ

, (11)
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where gup represents the gain of unpolarized light; gtp is the gain of totally polarized light. τM is the
transmittance when the reference angle and main polarization angle of incident light are parallel. τm is
the transmittance when the two directions are orthogonal.

Then, the irradiance at one photodiode and the output of one photodiode are as follows:

Ep = τ fτcEin((1− d)τ+ d(τM cos2 θ+ τm sin2 θ)), (12)

Iout = srArEp, (13)

where Ein is the irradiance of incident light. τf is the transmittance of the corresponding blue filter. τc is
the transmittance of the corresponding plano-convex lens. sr is the spectral responsivity of photodiode.
Ar is the active area size of photodiode. Then, Vi can be formulated as follows:

Vi = 0.5kvi log kτi
1+d(1+kdj) cos(2θ+α j)

1−d(1+kdh) cos(2θ+αh)
+ kci

kτi =
0.5τ f jτcjsrjArjEi j(τMj+τmj)

0.5τ f hτchsrhArhEih(τMh+τmh)

kdj = −2τmj/(τMj + τmj)

, (14)

where j is 2i – 1; h is equal to 2i. kv1 is the deviation parameter of reference voltage of logarithmic
amplifier. The installation angles of polarizer 0◦ and polarizer 90◦ are α1 and α2, respectively. kci is the
constant value generated by the integrating sphere method, namely the expectation in Figure 12b. kdi
is the coefficient of the non-ideal polarizer.

Then, Equation (1) can be written as follows:

Vi = 0.5kvi log
1 + d(1 + kdj) cos(2θ+ α j)

1− d(1 + kdh) cos(2θ+ αh)
+ ki. (15)

Additionally, ki is:
ki = 0.5kvi log kτi + kci. (16)

To obtain the final output θ, Equation (15) should be transformed as follows.

Ai =
(1 + d(1 + kdj) cos(2θ+ α j)

(1− d(1 + kdh) cos(2θ+ αh)
= 102(Vi−ki)/kvi . (17)

By eliminating the unknown number d and expanding all cosine functions, we obtain:

θi(i+1) =
1
2 arctan

(Ai−1)(Ai+1wch+2+wc j+2)−(Ai+1−1)(Aiwch+wc j)

(Ai−1)(Ai+1wsh+2+ws j+2)−(Ai+1−1)(Aiwsh+ws j)

wcm = (1 + kdm) cosαm

wsm = (1 + kdm) sinαm m ∈ [1, 2, 3, 4, 5, 6]

. (18)

3.5. Decoupling Method for Calibration Parameters

The iterative least-squares estimation method was used to obtain the calibration parameters.
There are four types of calibration parameters (k, kv, kd, α) (see Equation (15)). Among them, k, kv, and
α are easy to obtain. However, the exact value for kd cannot be determined. Clearly, d and (1 + kd) are
coupled, because there are seven unknown numbers (d and kd1-6) but only six equations (see Equation
(19)). Therefore, the decoupling method is necessary. The coupled parts are as follows:

d(1 + kdm) = dcm, (19)
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where dcm is obtained using the iterative least-squares estimation method. The value (da) for d was
determined by the authors and is not an exact value obtained by an algorithm of decoupling method.
Note that da cannot be zero. Then, we can obtain kd.

kdm =
dcm

da
− 1. (20)

Then, Equation (15) becomes:

Vi = 0.5kvi log
1 + dcj cos(2θ+ α j)(d/da)

1− dch cos(2θ+ αh)(d/da)
+ ki. (21)

The unknown variable in Equation (21) can be considered as θ and d/da. The inaccurate da is a
part of the unknown variables and does not affect other calibration parameters. Therefore, it can be
concluded that the decoupling method does not affect θ but d.

4. Indoor Results

The indoor calibration experiments were performed and the performances of different methods in
Section 3 were analyzed by three different types of calibrations, as shown in Figure 14. Before the least
squares were used to calculate the calibration parameters, the three calibrations were distinguished by
arrows with different colors. After the least squares, they shared the same process.

The first type of calibration, which is indicated in Section 4.2 and is shown by the blue arrows
and the black arrows, only included the section algorithm. The voltages were sent to the least squares
directly. The same process shown by the black arrows was a combination of Sections 2.3, 3.4, 3.5
and 4.5. Section 4.5 indicates “Accuracy”. Section 2.3 indicates “Section”. Sections 3.4 and 3.5 indicate
the remaining part.Sensors 2019, 19, x FOR PEER REVIEW 15 of 28 
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4.1. Calibration Device

The calibration tools, as shown in Figure 15, include an integrating sphere and a precise rotary
table. The integrating sphere provides uniform light, which is unpolarized. A linear polarizer is fixed
at the port of the sphere. Then, the light from the sphere becomes linear polarization light after passing
through the polarizer. Note that the lamps in the sphere need at least 15 min before using, otherwise
the light intensity might not be stable. The model of the sphere is JF-500 (Hefei Xingyue Luminous
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Technology Applications Institute, Hefei, China). Its diameter is 500 mm. The diameter of its port,
where light comes out, is 100 mm. The rotary table, equipped with an optical incremental encoder, has
a 1” accuracy (0.000277◦).
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The rotary table stops for 1 s every 10◦ with an angular speed of 5◦/s, and a full range of 360◦. As a
result, one experiment lasts for 108 s. The values derived from the encoder are considered as “theoretical
values”. The mean values of 40 samples at each position were recorded as the measured values.

4.2. Section-Only Algorithm

The error curves for θ12, θ13, θ23, and θsec after calibration, without using the integrating sphere
central-symmetry method but by using the section algorithm, are shown in Figure 16.
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4.3. Adding the (Integrating-Sphere) Central-Symmetry Method

The 57 (3 × 19) points (Vmr) were obtained using the central-symmetry method (see Figure 17).
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The performance of the central-symmetry method is shown in Figure 18. Vicf are the outputs
of Equation (21) when the inputs are the angle provided by the precise rotary table. The calibration
parameters in Equation (21) are the indoor parameters as shown in Table 2. Vicf are considered as
ideal values, corresponding to Vi_ideal in Figure 9, in this performance analysis. The three vertical
lines with red, blue, and green color are used to indicate three intersection points (see more details
in the discussion). The error curves for θ12, θ13, θ23, and θsec, after calibration, using both the
central-symmetry method and section algorithm are shown in Figure 19a.Sensors 2019, 19, x FOR PEER REVIEW 3 of 3 
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4.4. Adding the Noncontinuous Method

The points (Vnc), marked as triangles, were used with the iterative least-squares estimation
to obtain the calibration parameters (see Figure 17). The error curves for θ12, θ13, θ23, and θsec

after calibration, obtained using the central-symmetry method, noncontinuous method, and section
algorithm are shown in Figure 19b. Note that the start point of the x-axis was normalized from−10.3803◦

to 0◦. The 19 origin actual theoretical polarization angles are −10.3803◦, −0.3781◦, 9.6292◦, 19.6247◦,
29.6280◦, 39.6358◦, 49.6294◦, 59.6338◦, 69.6377◦, 79.6341◦, 89.6369◦, 99.6438◦, 109.6430◦, 119.6375◦,
129.6430◦, 139.6358◦, 149.6355◦, 159.6300◦, 169.6194◦ in Figures 16–19. According to the actual angles,
how the section algorithm works can be seen.

4.5. Comparison of Three Calibration Methods

To compare the calibration results, the half value of difference between the maximum and
minimum in the error curve is defined as the accuracy of the sensor. For example, the maximum and
minimum of black dashed error curve (Error_θsec) in Figure 19 are 0.00226◦ and −0.01530◦, respectively.
Then, the calibration accuracy is ±0.0088◦. The calibration results of Sections 4.2–4.4 are summarized
in Figure 20.Sensors 2019, 19, x FOR PEER REVIEW 18 of 28 
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4.6. Analysis of Four Calibration Parameters

The calibration parameters derived from Section 4.4 are considered as the indoor calibration
parameters because of the highest accuracy. They are shown in the third line in Table 2. The theoretical
calibration parameters are shown in the second line.

Table 2. Calibration parameters.

Parameter Theory Indoor Outdoor1 Outdoor2 Sun1 Sun2

α1 (◦) 0 0.7554 0.7813 0.9189 0.7887 0.9344
α2 (◦) 0 0.5500 0.8017 0.4385 0.8236 0.4540
α3 (◦) −120 −117.6462 −117.8128 −118.0658 −117.7964 −118.0503
α4 (◦) −120 −116.5699 −116.3585 −116.3233 −116.3421 −116.3078
α5 (◦) 120 123.0730 123.3667 122.9320 123.3727 122.9510
α6 (◦) 120 120.6994 120.6410 120.6542 120.6634 120.6634

k1 (mV) 0 −10.1519 −7.4487 −7.8456 −7.4461 −7.8455
k2 (mV) 0 7.9230 8.8675 9.3682 8.8674 9.3681
k3 (mV) 0 −9.4542 −18.5845 −18.7583 −18.5778 −18.7604

kd1 0 −0.0438 −0.0229 −0.0277 −0.0203 −0.0246
kd2 0 −0.0365 −0.0074 −0.0153 −0.0100 −0.0158
kd3 0 −0.0457 −0.0118 −0.0050 −0.0127 −0.0086
kd4 0 −0.0492 −0.0255 −0.0163 −0.0217 −0.0166
kd5 0 −0.0555 −0.0151 −0.0179 −0.0136 −0.0140
kd6 0 −0.0166 −0.0137 −0.0217 −0.0134 −0.0172
kv1 1 1.0224 1.0064 1.0119 1.0066 1.0119
kv2 1 1.0081 1.0135 1.0029 1.0135 1.0029
kv3 1 1.0183 1.0070 1.0125 1.0054 1.0073
da —– 0.5500 0.6550 0.7100 0.6600 0.7150

Origin-Accuracy (◦) —– ±0.0088 ±0.0177 ±0.0140 ±0.0207 ±0.0119
Accuracy (◦) —– ±0.009 ±0.018 ±0.014 ±0.021 ±0.012

Figure 21 shows the accuracies, when parts of the indoor calibration parameters shown in Table 2
were replaced with the corresponding theoretical calibration parameters. For example, the fifth column
“kdkv-” represents the accuracy when indoor kd and kv were replaced with the corresponding theoretical
calibration parameters (0 and 1), respectively. Furthermore, “-” was used to distinguish the comments
between different columns. Considering the accuracy limit in Figure 6, all accuracies are correct to
three decimal places when the unit is 1◦. For example, the original accuracy of the indoor calibration
was ±0.0088◦, and the accuracy limit was about ±0.001◦ when d was ~0.7. As a result, the accuracy
was ±0.009◦ (see the last row in Table 2). The unit for accuracy is 0.001◦ in Figure 21.
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5. Outdoor Results

5.1. Static Outdoor Experiments

Two groups of static outdoor experiments were performed on the roof (121◦32’38”E, 38◦52’45”N)
of the School of Mechanical Engineering at Dalian University of Technology on November 16, 2018 (see
Figure 22). The sky was clear and the polarization degree was high (from 0.65 to 0.71). The rotary table
followed the same process as the indoor experiments. The end time of the first group was 16:11:28
(Beijing time). The end time of the second group was 16:43:08 (Beijing time). Each experiment lasted
108 s for a 360◦ range, and the data were calibrated. Note that both the noncontinuous method and
the section algorithm were used in the calibration. However, the central-symmetry method was not
used because the light source was the light originating from the sky and not from the integrating
sphere. The outdoor calibration parameters are shown in the fourth (outdoor1) and fifth columns
(outdoor2) of Table 2. The error curves for outdoor2 experiment after calibration are shown in Figure 23.
The polarization angle error, the polarization degree, and the standard deviation of 40 samples are
shown in Figure 23a–c, respectively. The 40 samples at the start point in Figure 23a–c are shown in
Figure 23d. The degree error was ±0.003◦ when outdoor2 da (0.71) in Table 2 was considered the
theoretical value. Most standard deviations were smaller than 0.01◦. The error curves for outdoor1
were omitted, because they were very similar. The polarization angle of sky (the reference in this
calibration) was assumed to be constant during a short time, such as 54 s for a 180◦ range, to ensure
that the way to calculate the accuracy is the same as the manner in [7,9,10,12].Sensors 2019, 19, x FOR PEER REVIEW 20 of 28 
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Moreover, the outdoor calibration parameters, when the slight variation of the reference was
compensated, are shown in the sixth (sun1) and the seventh column (sun2) in Table 2. According to
the single-scattering Rayleigh model, the variation of the reference equals the variation of the solar
azimuth when the sensor is measuring the zenith.

Note that, similar to Figure 19, the start point of the x-axis was normalized to 0◦. The 19 origin
actual theoretical polarization angles are 82.2772◦, 92.2855◦, 102.2847◦, 112.2788◦, 122.2894◦, 132.2861◦,
142.2780◦, 152.2813◦, 162.2777◦, 172.2850◦, 2.2763◦, 12.2780◦, 22.2711◦, 32.2619◦, 42.2766◦, 52.2694◦,
62.2608◦, 72.2697◦, 82.2633◦ in Figure 23a–c.
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The same replacement method as in Section 4.6 was used to analyze the four calibration parameters.
For example, the fifth column “kvkd” of Figure 24a is the accuracy, when outdoor2 kd and kv were
replaced with the corresponding theoretical values (0 and 1), indoor or outdoor1 calibration parameters,
respectively. The other parameters (α and k) were still the same for outdoor2. The results are divided
into two parts, as shown in Figures 24a and 25a, with respect to the calibration parameter k (i.e., ki),
because the accuracy was lower when k was replaced. For all the replacements, all the measured data
were the same as those in the experiment at 16:43:08. In Figures 24a and 25a, the red, green, and blue
columns represent that outdoor2 calibration parameters were replaced with the theoretical values,
indoor, and outdoor1 calibration parameters, respectively. In Figures 24b and 25b, the red, green, and
blue columns represent that sun2 calibration parameters were replaced with the theoretical values,
indoor, and sun1 calibration parameters, respectively.
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5.2. Dynamic Outdoor Experiments

The dynamic outdoor experiment was performed on the small square roof nearby the stadium of
Dalian University of Technology at 19:01 on 1 July 2019 (Beijing time) (see Figure 26). The sky was
clear and the polarization degree was high. The polarization sensor and the inertial navigation system
with a high accuracy were fixed on the shelf, which has two layers. The shelf was fixed on the wheel
barrow, which also has two layers. The path of the dynamic outdoor experiment was a “Z” path.
Figure 27 shows the path offered by the inertial navigation system. Figure 28 shows both headings of
the polarization sensor and the inertial navigation system, and the partial data is enlarged to show
more details. Figure 29 shows their deviations. The polarization degree was about 0.61 during the
dynamic outdoor experiment.
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The inertial navigation system is SPAN-CPT, the price of which is 250,000 RMB or $36,700. SPAN
is synchronized position attitude navigation and CPT is a specific type of SPAN. SPAN-CPT brings
together two different but complementary positioning and navigation systems: Global Navigation
Satellite System (GNSS) and an inertial navigation system (INS). By combining the best aspects of GNSS
and INS into one system, SPAN technology offers a solution that is more accurate and reliable than
either GNSS or INS alone. The heading accuracy can be ±0.06◦ if a good initial calibration is finished.
The Y-axis points forward through the front of the vehicle, in the direction the vehicle is moving.

The way to obtain the head using the polarization sensor is the single-scattering Rayleigh model.
The e-vector in the body coordinate system and the solar vector in the navigation coordinate system or
the horizontal coordinate system are:

Eb = (cosθ, sinθ, 0) T

Sn = (cosh s cos As, cosh s sin As, cos hs) T , (22)

where As is the solar azimuth and hs is the solar elevating angle. They can be calculated when the
geographic position (latitude and longitude) and the time are known.

The solar vector in the body coordinate system is:

Sb = Cb
nSn. (23)

The navigation coordinate system of SPAN-CPT has the definition: Z-axis pointing up; Y-axis
pointing north; X-axis pointing east. Therefore, we can obtain:

Cb
n =


cosγ 0 − sinγ

0 1 0
sinγ 0 cosγ




1 0 0
0 cosλ sinλ
0 − sinλ cosλ




cos H − sin H 0
sin H cos H 0

0 0 1

, (24)

where γ is the roll angle. λ is the pitch angle. H is the heading. Both the roll angle and the pitch angle
are offered by SPAN-CPT.

Based on the single-scattering Rayleigh model, the e-vector is perpendicular to the solar vector.
Then, we can obtain:

Eb·Sb = 0. (25)

The heading (H) can be calculated by Equations (22)–(25) because there is only one
unknown number.

6. Discussion

The integer effect caused by the 16-bit ADC was considered in Figures 4 and 5 in our simulation
derived from Equation (3). Note that the max error is ±0.02◦ when d is equal to 0.05. In practice,
electrical noise can strongly reduce the accuracy because the max V is very small (21.73 mV). In other
words, the signal-to-noise ratio decreases. Methods to maintain the accuracy as high as when d is large
(e.g., 0.5) when d is small will be investigated in a future study, where we will focus on improving the
electronic circuit.

Figure 18 shows the deviations between Vimr and Vicf, Viar and Vicf, Vibr and Vicf. Overall,
the experimental results are similar to the simulation results. In particular, the three red curves support
the simulation in Figure 9 well. Figure 9 shows one intersection point in the range (0◦–180◦). The same
intersection points are also observed and indicated by vertical lines. The angles of blue, red, and
green vertical lines are about 32◦, 98◦, and 150◦, respectively. The deviations are 66◦, 52◦, and 62◦,
respectively. This regular is also similar to the relative angular relationship (0◦, 60◦, and 120◦) of the
polarizers in Figure 1c. Therefore, the central-symmetry method performs well.

In addition, kci in Equation (14), which is not solved by the central-symmetry method, is handled
well by the calibration equation (namely, Equation (15)). When LS is 0.02 mm, kci is between −0.5 and
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0.5 mV, as shown in Figure 8. ki is between −10 and 10 mV, as shown in Table 2. Therefore, kci is a
small part of ki. The value of LS depends on the mechanical processing accuracy of the threads that fix
the sensor to the rotary table. Generally, the modern mechanical processing accuracy is better than 0.01
mm. Even though LS reaches 1 mm, the central-symmetry method still offers a low ASD, as shown in
Figure 12a.

The only differences between the three calibration processes, as shown in Figure 14, are the
voltages used in the least-square estimation method. Note that if the number of elements of Vinc in
Figure 17 is too low, the estimation method cannot provide good calibration parameters, and the
accuracy may be very low.

Equation (21) shows that independent of da, the accuracy remains the same. Therefore, use of
the decoupling method to obtain the calibration parameter kd does not change the accuracy. It just
changes the degree of polarization slightly. In this paper, da is slightly larger than dc to ensure that kd
is negative, consistent with its physical significance, and the degree of polarization after calibration
approaches the real value as close as possible.

Figure 20 shows that the values of accuracies of θ12, θ13, θ23, and θsec decrease from left to
right. Therefore, the central-symmetry method (with the integrating sphere) and the noncontinuous
method play important roles in the calibration. In the first group of columns, the accuracies of θ12,
θ13, θ23, and θsec are similar, indicating that the section algorithm does not perform well without
the central-symmetry method for indoor calibration. The central-symmetry method can be used to
calibrate different types of linear polarization devices, not only the sensor used in this paper.

The theoretical-indoor replacement to process the indoor data is shown in Figure 21. When only
one type of calibration parameters was replaced, the accuracies can be divided into three groups. kv and
kd are in the good group. α is in the modest group. k is in the bad group. In addition, the accuracy of
“kvα” or “kdα” column is the same as for “α” column. Similarly, the accuracy of “kkv” or “kkd” column
is the same as that for “k” column. Therefore, it can be concluded that k has the strongest effect on
accuracy, whereas kv or kd has a minimal effect with regard to the polarization sensor used in this paper.
The “all” column shows that, without calibration, the sensor has a poor initial accuracy (±1.708◦).
When theoretical-outdoor2 replacement was used to process the outdoor data, see Figures 24a and 25a,
the same conclusion can be made as for theoretical-indoor replacement.

In addition, when Figures 24a and 25a were analyzed, it was found that the indoor calibration
parameters did not perform very well (a ±0.85◦ accuracy) in practice outdoor implications (see the
green column “all” in Figure 25a). Further analysis was done to study this problem. After analyzing the
good group, it was found that the accuracy of “kvkd” column is lower than for “kv” and “kd” columns in
Figures 24a and 25a, except for indoor-outdoor2 replacement. This indicates that kv and kd are closely
connected and should be processed together.

For the modest group, the calibration parameters are shown in Table 2. Here, α for indoor,
outdoor1, and outdoor2 are similar. In addition, the blue and green columns of “α” in Figure 24a show
a similar accuracy (±0.036◦), slightly larger than outdoor2 calibration accuracy (±0.014◦). Therefore,
the directions of linear polarizers were well calibrated for both indoor and outdoor.

For the bad group, the green columns in Figure 25a show a similar accuracy (±0.850◦), indicating
that indoor k is significantly different from outdoor2 k. We suggest that the indoor light source is also
significantly different from the scattered skylight. In addition, the blue columns in Figure 25a show a
similar accuracy, indicating that outdoor1 k is similar to outdoor2 k. Both Equations (14) and (15) show
that k is mainly affected by the spectrum of incident light. Therefore, the spectrum of outdoor light
(the scattered skylight) varies very slightly.

Not only the effects of the three groups but also the full effect of the four types of parameters was
analyzed. The indoor-outdoor2 replacement values in Figures 24a and 25a indicate that the indoor
calibration parameters cannot be used to process outdoor data directly, even though the results are
better than theoretical-outdoor2 replacement values. The blue columns in Figures 24a and 25a show
the highest accuracy, and the outdoor1 and outdoor2 parameters in Table 2 are very similar. Therefore,
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it can be concluded that the outdoor calibration parameters can be used to process the subsequently
outdoor data, and a high accuracy can be obtained.

As with the analysis of Figures 24a and 25a, in which the sun drift is not compensated, the same
conclusion can be made when the sun drift is compensated, because Figure 24a,b are very similar and
Figure 25a,b are also very similar. The similarity is an open question. During 54 s, the total sun drifts
of “sun1” and “sun2” are 0.14746◦ and 0.13792◦, respectively. If the compensation is not very precise,
the accuracy after calibration will be decreased. For example, in the “sun2” calibration, when only the
start point and the end point are compensated precisely by the total sun drift (0.13792◦) and the medial
points are compensated by linear inserting other than direct compensating, the accuracy is ±0.051◦,
which is much bigger than ±0.012◦ in Table 2.

Because the outdoor calibration and the indoor calibration obtain similar accuracies as shown in
Table 2, we conclude that a clear sky and a high polarization degree is the best condition under which
the sensor is used in practice application.

In the outdoor calibration process, every time before the sensor is used outdoors it needs a
precise rotary table to calculate four types of parameters. This complex process should be simplified.
In particular, when kd and kv are the theoretical parameters (0 and 1), α is the indoor parameter, and k is
the outdoor parameter. The static accuracy of outdoor2 data is ±0.050◦. The calculation process of the
accuracy (±0.050◦) is like the blue column of “all” in Figure 25a, with a combination of the theoretical,
indoor, and outdoor calibration parameters as the input calibration parameters. Hence, to obtain more
accurate outdoor data, we suggest that kd and kv should be the theoretical parameters; α should be
the indoor parameter; and k must be the outdoor calibration parameter. This indicates that outdoor
calibration is necessary to obtain only k before the measurement, which makes it easier to remove the
precise rotary table in the next research work. As a result, ±0.05◦ is considered as the actual static
accuracy when the polarization bio-sensor is used outdoors. It is better than the outdoor accuracy
(between ±0.2◦ and ±0.42◦) of the previous bio-sensors. Therefore, both the plano-convex lens and the
calibration achieve substantial improvements.

The dynamic outdoor experiment shows a ±0.5◦ heading deviation between the polarization
sensor and the inertial navigation system. The data in the two red rectangles in Figure 29 are bigger
than ±0.05◦. The reason might be data synchronous deviation. The polarization sensor’s frequency is
decreased to 70 Hz to avoid loss of data in the transmission process. The inertial navigation system’s
frequency is 10 Hz. The big angular velocities (about 30◦/s) of the two turns in the experiment may
cause big heading deviations when there is a little synchronous deviation, such as 0.1 s.

The deviation above (±0.5◦) between the two heading measuring systems is bigger than the static
experiments, even though the k has been replaced with the outdoor calibration parameter that is offered
by outdoor calibration. There are many reasons. First, the observing direction of the polarization
sensor, which is the light path as shown in Figure 1b, should coincide with the Z-axis of the inertial
navigation system. The reference coordinate system deviation between the polarization sensor and the
inertial navigation system needs a good calibration. Second, the polarization sensor should not be
single. Many sensors should be used together when measuring different E-vectors, such as the device
in the reference [20] which has five sensors. Finally, the wheel barrow, as shown in Figure 26, does not
offer good shock absorption, thus the vibration is obvious.

In a future study, the blue filter will be replaced with a narrower band filter. Further optimization
will be performed using the results described in this paper, which makes it possible to extend the
effective range of calibration parameters while maintaining a high accuracy. New dynamic outdoor
experiments, which are designed and calibrated well, will be performed.

7. Conclusions

A navigation bio-sensor that uses plano-convex lenses and two new calibration methods are
described in this paper. The two methods are the central-symmetry calibration method (with an
integrating sphere) and the noncontinuous calibration method. After calibration, the bio-sensor shows
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±0.009◦ indoor accuracy and ±0.018◦ outdoor accuracy for clear-sky conditions. If more bio-sensors
are used together, an even better accuracy might be obtained. In addition, the bio-sensor has a higher
refresh rate (150 Hz) than the 30 Hz rate of conventional imaging polarimetry. The plano-convex lens
is an essential component in this bio-sensor. The central-symmetry calibration method prominently
decreased the standard deviation of voltage deviations during calibration and generated a constant
value that could be easily calibrated. As a result, the redundancy of the sensor’s light path has
advantages when detecting the linear polarization. The calibration parameters that were mainly
determined by the spectrum of incident light dominate the accuracy, according to the analysis of
calibration parameters. Before the sensor is used outdoors every time, the indoor calibration parameters
k must be replaced with the corresponding outdoor parameters, and a static accuracy of ±0.05◦ can
be regarded as the actual static outdoor accuracy. The dynamic outdoor experiment shows a ±0.5◦

heading deviation between the polarization sensor and the inertial navigation system.
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