
sensors

Article

PARSUC: A Parallel Subsampling-Based Method for
Clustering Remote Sensing Big Data

Huiyu Xia 1, Wei Huang 2, Ning Li 3, Jianzhong Zhou 2 and Dongying Zhang 2,*
1 Yangtze River Waterway Bureau, Nanjing 210011, China
2 School of Hydropower and Information Engineering, Huazhong University of Science and Technology,

Wuhan 430074, China
3 Yellow River Engineering Consulting Co., Ltd., Zhengzhou 450003, China
* Correspondence: zhangdongying@whu.edu.cn; Tel.: +86-186-1832-9246

Received: 4 May 2019; Accepted: 27 July 2019; Published: 5 August 2019
����������
�������

Abstract: Remote sensing big data (RSBD) is generally characterized by huge volumes, diversity,
and high dimensionality. Mining hidden information from RSBD for different applications imposes
significant computational challenges. Clustering is an important data mining technique widely used
in processing and analyzing remote sensing imagery. However, conventional clustering algorithms
are designed for relatively small datasets. When applied to problems with RSBD, they are, in general,
too slow or inefficient for practical use. In this paper, we proposed a parallel subsampling-based
clustering (PARSUC) method for improving the performance of RSBD clustering in terms of both
efficiency and accuracy. PARSUC leverages a novel subsampling-based data partitioning (SubDP)
method to realize three-step parallel clustering, effectively solving the notable performance bottleneck
of the existing parallel clustering algorithms; that is, they must cope with numerous repeated
calculations to get a reasonable result. Furthermore, we propose a centroid filtering algorithm (CFA)
to eliminate subsampling errors and to guarantee the accuracy of the clustering results. PARSUC was
implemented on a Hadoop platform by using the MapReduce parallel model. Experiments conducted
on massive remote sensing imageries with different sizes showed that PARSUC (1) provided much
better accuracy than conventional remote sensing clustering algorithms in handling larger image
data; (2) achieved notable scalability with increased computing nodes added; and (3) spent much less
time than the existing parallel clustering algorithm in handling RSBD.

Keywords: clustering; parallel computing; remote sensing big data; MapReduce

1. Introduction

Geospatial data are one of the most significant types of big data, and the rapid growth of such data
has imposed enormous challenges to current methodologies, applications, and infrastructures [1,2].
With the continuous improvement of earth observation satellite sensors and computer techniques,
satellite remote sensing data has exploded in recent years, and a new research field called remote
sensing big data (RSBD) has drawn great attention from academia and industry [3–6]. Mining hidden
knowledge from RSBD for different applications, such as natural hazard monitoring, global climate
change analysis, and urban planning, imposes significant computational challenges on scientists and
researchers [7,8].

Clustering is an important data mining technique widely used in analyzing remote sensing data.
Clustering can be defined as grouping a set of objects in such a way that objects in the same group
are more similar to each other than to those in other groups [9]. Clustering is an effective technique
for automatic remote sensing segmentation and classification since it does not require any training
datasets in labeling classes for each pixel. Among the existing clustering methodologies, K-means [10],
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as well as its improved versions, such as iterative self-organizing data analysis (ISODATA) [11]
and K-medoids [9], are most frequently used in remote sensing. However, conventional clustering
algorithms are designed for relatively small datasets; when applied on problems with RSBD, they are
generally too slow or inefficient for operation [12,13].

To deal with such issues, many efforts have been made to speed up clustering techniques
for big data applications. The methods to speed up and scale up big data clustering algorithms
are mainly in two categories: Single-machine clustering techniques and multi-machine clustering
techniques [14,15]. In single-machine clustering techniques, a sampling-based method is commonly
used to reduce the size of remote sensing data, which enables clustering algorithms to perform on
a small sample of the input data instead of on the whole dataset. For example, Wang et al. proposed
a density-based spatial clustering method (DBRS), using random sampling to reduce the running
time for large-scale remote sensing datasets [16]. David et al. proposed a clustering method with
sampling and subsampling strategies to cluster large datasets efficiently [17]. The classical bootstrap
sampling technique was also investigated to speed up K-means clustering for RSBD [18]. In remote
sensing applications, systematic sampling has been used to reduce the volume of the input images for
ISODATA clustering [19]. However, sampling-based methods may not produce consistently reasonable
results since not all members have an equal chance of being selected, which may lead to over or under
estimation of the population [12]. Dimension reduction is another common method in single-machine
clustering techniques to reduce the long execution time of RSBD clustering by projecting datasets from
a high-dimensional space to a lower-dimensional space [20–22]. There is, however, still a tradeoff

between the clustering speed and accuracy. Overall, the single-machine techniques have limited ability
for speeding up clustering to handle RSBD.

On the other hand, the multi-machine clustering techniques are more popular due to their
greater efficiency and scalability. Many big data clustering methods, based on parallel, distributed,
and cloud computing frameworks, have been reported in the literature. For instance, Zhang et al.
proposed MKmeans, a parallel K-means clustering algorithm with a message passing interface (MPI),
which enables the clustering algorithm effectively in the parallel environment [23]. Xu et al. presented
PDBSCAN, a parallel version of density-based spatial clustering of applications with noise (DBSCAN),
one of the most widely used density-based clustering algorithms. The performance evaluation showed
that PDBSCAN gained a linear speedup [24]. Recently, with the rise of cloud computing, MapReduce
has become the most popular framework for big data clustering [25]. Zhao et al. proposed a parallel
K-means clustering algorithm (PKmeans) based on MapReduce, which showed a good speedup [26].
Shahrivari et al. proposed a single-pass and linear time MapReduce-based K-means clustering
method [27]. Kim et al. proposed a parallel density-based clustering algorithm called DBCURE-MR by
using MapReduce [28].

In the remote sensing field, many researchers have been using parallel computing techniques
to accelerate clustering for RSBD. Maulik and Sarkar proposed a parallel point symmetry-based
K-means algorithm (ParSym) for image classification by using a distributed master-slave paradigm [29].
Based on ParSym, Du et al. proposed an improved parallel version called ParSymG, implemented by
MPI [30]. Ye and Shi introduced a parallelizing ISODATA algorithm for unsupervised remote sensing
imagery classification using a graphics processing unit (GPU, NVIDIA, Santa Clara, CA, USA) [31].
MapReduce-based clustering has also been investigated in remote sensing imagery. Li et al. proposed
a parallel ISODATA clustering algorithm based on MapReduce to reduce the time cost by clustering
algorithms when applied to a large number of images [32]. Parallel K-mans for clustering remote
sensing images was reported by Lv et al. [33], which directly adopted the parallel strategy presented
by [26]. Most of the existing parallel remote sensing clustering algorithms adopted a divide and
conquer strategy to achieve parallelism [2]. The main idea is to partition the input image into several
sub-images, assign them to different processors to compute independently, and then combine all the
results into a final result. However, the divide and conquer strategy has considerable limitations since
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it brings numerous repeated calculations with input/output (I/O) operations [34,35]. The time cost is
further challenged when executed on RSBD.

To overcome these limitations, in this paper, we propose a parallel subsampling-based clustering
(PARSUC) method for RSBD. PARSUC employs a novel subsampling-based data partitioning method
(SubDP) to realize three-step parallel clustering, and effectively avoids numerous iterative repeated
calculations and I/O operations. Furthermore, a centroid filtering algorithm (CFA) is proposed in
PARSUC to eliminate subsampling errors and guarantee the accuracy of the clustering result.

The main contributions of this paper are: (a) An efficient parallel clustering method for RSBD by
using a novel data partitioning method (SubDP), (b) a centroid filtering algorithm (CFA) to eliminate
the uncertainties and errors posed by subsampling, and (c) an implementation of PARSUC based
on MapReduce.

The remainder of this paper is organized as follows. Section 2 describes the main steps and details
of PARSUC. Section 3 introduces an implementation of PARSUC based on MapReduce. Section 4
evaluates the accuracy and time cost of PARSUC using RSBD. Section 5 discusses the experimental
results and Section 6 concludes the paper with our future works.

2. Method

2.1. Traditional Parallelization Strategy

Most remote sensing algorithms have inherent parallelism. A straightforward approach is to
divide the given remote sensing images into several partitions by a particular data partitioning
method; run a parallel task on each partition concurrently and merge the results from all partitions.
One operational partitioning method is the area-based method, which divides a scene of remote sensing
imagery into equal-area sub-rectangles according to the abscissa and ordinate values. The area-based
data partitioning methods are widely adopted by most of the existing parallel remote sensing clustering
algorithms. However, such methods have some shortcomings when applied to RSBD. Each data
partition obtained by the area-based partitioning method is a local area of the whole image, hence the
clustering result from a partition represents only the local classification information. Simply merging
the clustering results from different partitions leads to serious classification errors, since clustering
needs the global information from the entire image. To solve this issue, existing parallel clustering
algorithms generally use an iterative approach. They first execute clustering on each data partition in
parallel to obtain local results, then they aggregate these local results to calculate a global conforming
result by a specific function, such as voting or averaging. Next, the global conforming result is sent
back to each parallel task as the input parameters for a new iteration of clustering on each partition.
The process is repeated until the algorithm converges to an acceptable accuracy. However, this iterative
approach suffers from serious performance bottlenecks since it requires numerous repeated calculations
along with I/O operations on each data partition. The performance is further challenged when the
approach is applied to large scale datasets, since clustering algorithms generally need much greater
numbers of iterations to obtain convergence with increasing input size [36].

2.2. PARSUC

In this section, we propose a parallel subsampling-based clustering method (PARSUC) to deal
with the abovementioned challenges. The framework of PARSUC is shown in Figure 1. PARSUC
includes three steps: The subsampling step, the filtering step, and the mapping step.
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Figure 1. Framework of parallel subsampling-based clustering (PARSUC).

2.2.1. Subsampling Step

Instead of the area-based data partitioning method in the subsampling step, PARSUC adopted
the subsampling-based data partitioning method (SubDP) to obtain parallel data sub-partitions.
Subsampling is a classical statistical method by which a small and representative sample is taken
from a large sample or population to reduce the data size. For remote sensing imagery subsampling,
each single pixel was taken as the basic sampling unit. Given a scene of imagery with size N,
subsampling at a rate of ρ meant drawing Rounding (N × ρ) pixels from the image in a random or
systematic fashion.

Figure 2 illustrates the details of SubDP. In Figure 2, D indicates the input remote sensing image;
M1 to Mn are n data partitions obtained from D by using conventional area-based data partitioning
methods. SubDP performed B rounds of subsampling at the rate ofρ∈(0,1) on each partition and obtained
a set of intermediate subsamples: Xi = {Xi

1, . . . , Xi
B}, where i = 1 to n. The intermediate subsamples were

then combined to form B subsamples according to their subscripts: Sj = X1
j ∪X2

j . . .∪Xn
j , where j = 1 to

B. Based on these B subsamples, the subsequent operations of PARSUC were designed.
Note that SubDP adopted a parallel approach to obtain subsamples rather than performing B

rounds of subsampling directly on the original input image. This is owing to the following considerations:
(1) Taking full advantage of parallel computing power for accelerating the subsampling process and (2)
guaranteeing that the selected pixel points are evenly distributed in the whole space of the input image.
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Figure 2. Subsampling-based data partitioning (SubDP) method.

Although SubDP still used the parallel data partitions from the conventional area-based
partitioning method, the design ideas were totally different. Each data partition from the conventional
area-based partitioning method had only local information of the image, while the data partition from
SubDP preserved the global pixel value distribution information. Moreover, the subsampling rate and
the number of subsamples, which had a direct impact on the total computational load, were controllable.
These key characteristics of SubDP provided PARSUC with a flexible and non-iterative approach
to achieve parallelism. However, the correct choice of the subsampling rate ρ and the number of
subsamples B was also closely related to the accuracy of the algorithm, because a subsample generally
had better representation with more sample pixels and more subsamples may cause lower information
loss. We will discuss the impact of these two parameters in Section 4, based on the experiments.

2.2.2. Filtering Step

In the filtering step, PARSUC first executed a clustering algorithm on B subsamples in parallel.
This clustering algorithm is not restricted to a specific algorithm and can be a variation of centroid-based
clustering algorithms, such as K-means, ISODATA, K-means++, or K-medoids. One of the main
advantages of PARSUC is that it can be used as a general framework for several common clustering
algorithms, since no single clustering algorithm can classify all different sources of remote sensing
imageries successfully.

After clustering was applied to each subsample, there were B groups of output: P = {P1, . . . , PB}.

Each component Pj in P was a set of clusters: Pj =
{
C j

1, C j
2, . . . , C j

K{ j}

}
, where j = 1 to B and K(j)

denotes the number of clusters from the jth subsample. To find the final target clustering of the
original image from the intermediate clustering results P, PARSUC built a consensus function based
on cluster centroids. In clustering analysis, a centroid refers to the most representative point within
a cluster, usually taking the mean value of all the instances in the cluster. For a given set of clusters

P j =
{
C j

1, C j
2, . . . , C j

K{ j}

}
, the centroid of each cluster is defined as Equation (1):

v j
i = N(C j

i )
−1

N(C j
i )∑

m=1

xm (1)

where i = 1 to K(j) and N
(
C j

i

)
denotes the number of instances in cluster C j

i .
PARSUC gathered all the centroids drawing from P into an ensemble V = {V1, . . . , VB}.

Each component Vj in V was a set of centroids: V j =
{
v j

1, v j
2, . . . , v j

K{ j}

}
, where j = 1 to B. In case

of remote sensing clustering, each centroid is a d-dimentional vector, where d is the number of bands in
the input image. As mentioned above, subsamples preserved the pixel value distribution information
of the same original image; thus, the statistical properties of different subsamples were similar to each
other. Consequently, the centroids obtained from these subsamples were supposed to be spatially close
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to each other and were supposed to form several separated compact groups in the d-dimensional space.
Figure 1 takes a three-dimensional coordinate system as the example to show the way centroids are
grouped. However, because of the randomness of subsampling and the consequent information loss,
the centroids obtained from those subsamples with low representation of the population may have
been distant from the rest. These centroids should be filtered as outliers since they seriously affected
the accuracy of the final clustering result.

We present a centroid filtering algorithm (CFA) to filter these “bad” centroids from the ensemble
to reach a global consensus of the position of the centroids in the target clustering. The pseudocode of
CFA is shown in Figure 3.

Figure 3. Pseudocode of the centroid filtering algorithm (CFA).
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As shown in Figure 3, CFA mainly included the following three steps:

1. Filtering by the number of clusters.

In this step, the number of clusters was considered the first filtering condition for those algorithms
such as ISODATA, whose number of clusters usually dynamically changes in each iteration. CFA first
counted all different K(j) of Vj from V and recorded them in a list. Secondly, it calculated the most
frequent value (denoted by Km) in the list. Next, CFA removed all Vj values whose k were not equal to
Km from V. It should be noted that, for clustering algorithms with a determined number of clusters,
such as K-means, this step could have been skipped since all outputs had the same number of clusters.

For example, suppose that there were six elements in V = {V1, V2, V3, V4, V5, V6} and their
number of clusters were recorded in the list = <3, 5, 5, 6, 5, 5>. The most frequent value in the list is
Km = 5. In the first filtering step, two elements V1 and V4 were removed from V. The removal rate in
this case was 33.3 percent.

In practice, we found that the removal rate varied from parameters of SubDP. Table 1 shows
the distribution and variation of the removal rate with a different number of subsamples B and
subsampling rates ρ, and the results were averaged on 10 different remote sensing images. As shown
in Table 1, the removal rates were generally larger with a lower subsampling rate. When subsampling
rates were equal to 1 percent, nearly half of the elements were removed from V. This indicates that
there were great differences between the subsamples and the cluttering, results from which can vary
considerably. When the subsampling rate increased from 20 to 30%, the removal rates decreased
significantly, which meant that most elements in V had the same number of clusters. The results also
indicated that the removal rate had little relationship with the number of subsamples B.

Table 1. Removal rate (in %) of the first filtering step of CFA.

ρ = 1% ρ = 2% ρ = 5% ρ = 10% ρ = 20% ρ = 30%

B = 10 44.0 25.8 9.5 5.0 1.2 1.0
B = 20 46.1 21.5 11.2 4.2 0.5 0.6
B = 30 43.3 31.7 7.8 4.6 1.1 1.0
B = 40 44.6 26.9 10.3 4.9 0.7 0.9

2. Creating groups.

As mentioned above, similar centroids naturally formed several separate compact groups in
the d-dimensional space. However, we could not find any correspondence between centroids and
groups because centroids have no labels. To identify which centroids belonged to the same group,
we organized the unlabeled centroids by their similarity to create groups. We employed the classical
method consensus chain to achieve this goal [37]. In the consensus chain, the similarity between
two centroids was defined as the Euclidean distance between their values. As illustrated in Figure 3,
CFA traverses all elements from the filtered dataset V then adds the closest centroids to the same chain
by calculating their Euclidean distances. After all Km chains were established, the centroids in the same
chain constituted a group.

3. Filtering in each group.

In this step, CFA first built a minimum spanning tree (MST) from a weighted undirected graph
for each created group by using Prim’s algorithm [38]. The vertices of a MST were the centroids in the
same group, and the weight of the edges were the Euclidean distances between the centroids. Next,
CFA removed the long edges of the MST by a user-defined threshold to cut off the connections between
outliers and those compact groups. After cutting the long edges, the MST converted to a forest. Finally,
CFA selected the vertices of the largest connected tree from this forest, which was found by depth-first
searching, and discarded the rest as outliers.
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Figure 4 illustrates how a MST converts to a forest by an example of two-dimensional points.
Each point represents a centroid. Figure 4a shows an example of buiding a MST from centroids,
and Figure 4b shows the resulting forest after cutting long edges (p4p6 and p4p5) from such a MST.
There were three trees in the forest, the largest connected Tree1 (p1, p2, p3, and p4) was then selected.
Tree2 (p6 and p7) and Tree3 (p5) were discarded as outliers.

Figure 4. The minimum spanning tree (MST) (a) converting to a forest (b).

The number of trees in the forest and the number of vertices of each tree was directly determined
by the threshold for cutting long edges. If the threshold was set too high, the algorithm could not find
any long edges to cut. Outliers could not be distinguished since there was only one tree in the forest.
If the threshold was set too low, most edges of the MST were cut. Outlierscould also not be effectively
distinguished since there were lots of scattered trees in the forest and most of them had only one vertice.
It was difficult to present a stable threshold without prior knowledge about the distribution of outliers
in each group, however, we leveraged the statistical median at all edge lengths to achieve that goal.
In practice, we set the threshold as 2 × median, 3 × median, 4 × median, and 5 × median, respectively.

To evaluate the rationality of the threshold, we set an index Ithreshold to denote the ratio of the
number of vertices of the largest tree to the total number of vertices of the MST. For example, in Figure 4,
the Ithreshold was equal to 4/7. Essentially, the vertices of the largest tree represent the largest group of
points that were spatially closest to each other. Ideally, this ratio should be in the 50%~70% range since,
in most cases, filtering 30–50% points as outliers was enough for finding the most compact group.
Table 2 shows the variation of Ithreshold with different thresholds. The statistical results from multiple
tests on different remote sensing images indicated that it was reasonable to set the threshold from
3 × median to 4 × median. Although the median-based method for threshold determination can meet
the current requirements of applications, it has much room for improvement. We will investigate other
statistical-based methods to further improve the performance.

Table 2. Evaluation of the threshold selection for cutting long edges.

2 × median 3 × median 4 × median 5 × median

Ithreshold 0.17 0.53 0.62 0.96

2.2.3. Mapping Step

After the filtering step, we obtained Km groups {λ(1), . . . , λ(Km)}. Each group contained a number
of filtered centroids that reached a consensus with the final clustering result. In the mapping step,
PARSUC produced a final clustering result through these groups of filtered centroids by a mapping
operation. Figure 5 illustrates how mapping works. For example, v1

1 and v1
2 denote the centroids in

group λ(1), M1, . . . , Mn denote data partitions of the input image, and p1 and p2 denote pixels from M1.
In the mapping operation, PARSUC calculated the Euclidean distance between pixels and centroids,
then assigned the pixels to their closest centroid. In Figure 5, p1 and p2 were assigned to v1

1, and p3
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and p4 were assigned to v1
2. Next, PARSUC categorized each assigned pixel according to its centroid’s

group number. For example, p1, p2, p3, and p4 were categorized to Cluster1, and p7, p8, p9, and p10

were categorized to Cluster2. After the mapping process, PARSUC aggregated all of the clustered
pixels from different data partitions and merged them into the final clustering result of the original
input image.

Figure 5. The mapping operation of PARSUC.

3. Implementation

In this section, we present an implementation for PARSUC based on the MapReduce model.
Note that there are multiple traditional parallel programming models that could be used to implement
PARSUC, such as MPI or compute unified device architecture (CUDA). We chose MapReduce due to its
high scalability, reliability, and fault tolerance. In fact, MapReduce is now the most commonly-used tool
in cloud computing for handling big data. As shown in Figure 6, the MapReduce-based implementation
of PARSUC is composed of three different MapReduce jobs: The subsampling job, the filtering job,
and the mapping job.

Figure 6. The MapReduce-based implementation of PARSUC.
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The subsampling job is the implementation of SubDP. The subsampling job is composed of
the SamplingMapper and GroupingReducer. The input image is first partitioned into n partitions
(called splits in MapReduce) using the area-based data partitioning method. Each SamplingMapper
takes a split as the input and performs B rounds of subsampling at a user-defined sampling rate.
The outputs of SamplingMappers are B <Key, Value> pairs, where Value stores all the sampling results
with their Key index, ranging from 1 to B. In the shuffle operation, MapReduce reorganizes the B
pairs based on their Keys, such that all the pairs belonging to the same Key are assigned to the same
GroupingReducer. The GroupingReducer then merges them to form B subsamples.

The filtering job is composed of the ClusteringMapper and FilteringReducer. Each ClusteringMapper
reads a subsample, applies a user-defined clustering algorithm, and extracts the centroids from the
resultant clusters. The output of each ClusteringMapper is a <Key, Value> pair, where the Value stores
the centroids and the Key is an identical value, e.g., image name, to transfer all the output <Key, Value>
pairs to the same FilteringReducer. The main function of the FilteringReducer is to gather all the
centroids from the ClusteringMappers, perform CFA over them, and output the filtered centroids.

The mapping job is composed of the MappingMapper and MosaicReducer. The MappingMapper
takes the filtered centroids from the filtering job as the input parameters and executes the mapping
operation on each split. Once the MappingMapper is complete, the MosaicReducer collects the
intermediate clustering results and then merges them by their coordinate values into the final
clustering result.

4. Results

Experiments were conducted to evaluate PARSUC in terms of both accuracy and time cost.
PARSUC was implemented by MapReduce and deployed on a Hadoop cluster, which was built on
a private cloud platform. The private cloud consists of 10 servers, and each server was equipped with
Intel Core i5 3.1GHz CPU and 16GB RAM, and a VMware workstation was used to provide virtual
machine instances. Hadoop YARN 2.2.0 was installed with default configurations, including one
master node and 20 slave nodes. Hadoop 2.6.0 was installed on each node and the operating system
was Ubuntu 14.04.

4.1. Accuracy Validation

In this study, we use a sum of squared error (SSE) to verify the accuracy of PARSUC. A SSE is
a common partitioned clustering criteria, aiming to measure the squared errors between each data
point and the cluster center to which the data point belongs to. A smaller SSE means a more accurate
clustering result. The SSE is defined as Equation (2):

SSE =
K∑

k=1

nk∑
j=1

||x j − vk||
2 (2)

where K is the number of clusters, nk is the number of points in the kth cluster, and ||x j − vk ||
2 represents

the squared Euclidean distance between xj and its corresponding centroid, vk.
As discussed in Section 2.2.1, the subsampling rate, ρ, and the number of subsamples, B, are two

key parameters in subsampling that closely relate to the accuracy of PARSUC. In our first round
of experiments, we investigated how these two parameters impacted the accuracy of the results.
Remote sensing imageries involved in the experiments included 20 scenes of Chinese GaoFen-1
(GF-1) high-resolution images with four bands (blue, green, red, and near infrared) at 8-meter spatial
resolution. The two parameters were alternated among all runs, the ρ taking values of 1%, 2%, 5%, 10%,
20%, and 30%, and the B taking values of 10%, 20%, 30%, and 40%. PARSUC was executed on a total of
20 scenes of GF-1 imageries and the mean values of SSEs of each scene were calculated. Figure 7 shows
the variation of SSEs for different combinations of ρand B. The horizontal axis represents the value of B,
ranging between 10 to 40% with a step size of 10%, and the vertical axis represents the value of SSE (×1010).
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Figure 7. Variation of sum of squared errors (SSEs) for different combinations of ρ and B.

Figure 7 illustrates that no matter how B changes, SSE values are generally much larger with
a lower subsampling rate, ρ. Specifically, when ρ = 1% and 2%, the SSE are in the 1.42 × 1010 ~
1.75 × 1010 range. When ρ takes higher values from 5% to 30%, the SSE drops to the 0.58 × 1010 ~
1.15 × 1010 range. This observation indicates that the accuracy of PARSUC is more sensitive to the
variation of the subsampling rate than to the number of subsamples. A higher subsampling rate can
improve the clustering accuracy. However, this improvement is limited. As shown in Figure 7, SSE did
not show any distinct tendency to decrease when ρ rose from 10% to 30%, instead it just fluctuated
within a certain range. The findings held even when ρ reached 100%. That was mainly because, as the
subsampling rate increased to a certain value, multiple subsamples had already contained enough
detailed information for clustering, hence the accuracy of PARSUC no longer increased.

We started B from 10 rather than one, because when B = 1, there would be only one subsample
drawn from the original data. The accuracy of PARSUC will entirely depend on the quality of one
sampling process. The results from each test may differ greatly even on the same dataset. In order
to obtain stable and comparable results, more than 10 subsamples were used in PARSUC. However,
the selection of B and its impacts on the stability of the results will be investigated in our future work.

In the next step, we evaluated the clustering accuracy by comparing PARSUC with two conventional
remote sensing clustering algorithms, K-means and ISODATA. As mentioned above, in the filtering step
of PARSUC, the clustering algorithm is user-defined. For comparison purposes, we implemented two
versions of PARSUC: K-means and iterative self-organizing data analysis (ISODATA), which were used
in implementing the ClusteringMapper. We call them PARSUC(KM) and PARSUC(ISO). The initial
number of clusters was set to 10 and the maximum number of iterations was set to 20. The subsampling
rate, ρ, of PARSUC was set to 10%, and the number of subsamples, B, was set to 10%. The conventional
K-means and ISODATA and PARSUC(KM) and PARSUC(ISO) were performed on GF-1 imageries
with different sizes, then SSEs were calculated.

Table 3 shows the comparison results of the clustering accuracy between PARSUC(KM) and
K-means, and Table 4 shows the comparison results of the clustering accuracy between PARSUC(ISO)
and ISODATA. Table 1 illustrates that comparing with the conventional K-means, PARSUC(KM) has
no significant advantages in accuracy when processing small sizes of imageries. However, as the
image size increases, PARSUC(KM) becomes more accurate than K-means. When the image size
reached 4000 × 4000, the SSE of PARSUC(KM) was only approximately 24% that of K-means. Similarly,
as shown in Table 4, PARSUC(ISO) performed much better than conventional ISODATA in accuracy
when processing larger sizes of imageries.



Sensors 2019, 19, 3438 12 of 19

Table 3. Comparison of the clustering accuracy of the sum of squared error (SSE) between (parallel
subsampling-based clustering) PARSUC(KM) and conventional K-means.

500 × 500 1000 × 1000 2000 × 2000 3000 × 3000 4000 × 4000

PARSUC(KM) 2.11 × 108 7.6 × 108 1.35 × 109 5.61 × 109 0.23 × 1010

K-means 2.19 × 108 7.72 × 108 1.96 × 109 6.33 × 109 0.96 × 1010

Table 4. Comparison of the clustering accuracy (SSE) between PARSUC(ISO) and conventional ISODATA.

500 × 500 1000 × 1000 2000 × 2000 3000 × 3000 4000 × 4000

PARSUC(ISO) 2.51 × 108 8.80 × 108 2.06 × 109 6.92 × 109 0.93 × 1010

ISODATA 2.36 × 108 8.84 × 108 2.14 × 109 7.76 × 109 1.66 × 1010

4.2. Accuracy Validation by Two Cases

Except for the validation of SSE, we further testified the accuracy of PARSUC by two application
cases compared to K-means and ISODATA. In these cases, half of the ground truth samples were used
to label each cluster with a specific land cover type. The remaining samples were performed to validate
the accuracy of different clustering algorithms. Note that the results of the clustering algorithms didn’t
have class labels. To validate the clustering results with 50% of ground truth samples and to calculate
classification accuracy, we first manually labeled each cluster with a type of land cover, according
to the spatial distribution correspondence between clustering results and the other 50% of ground
truth samples.

Case1: Croplands Classification.

One scene of a Chinese GaoFen-2 remote sensing image (one panchromatic band at 1 meter
resolution and four multispectral bands at 4 meter resolution) captured on 27 March, 2018 was used
to classify the crop type in Guandu Town, Zhongmou County, Zhengzhou City, Henan Province,
China. First, we fused the panchromatic band and four multispectral bands, and the size was
16,637 × 20,930 pixels per fused band. Additionally, we masked the fused imagery with the vector
files of Guandu Town boundary, road, and building and reserved only croplands, including Chinese
cabbage, cabbage, spinach, garlic, cauliflower, bare soil, celery, lettuce, celtuce, and wheat. A total of
10 types of crop differed in spectral specifications and textural features. PARSUC(KM) and K-means
were executed on the masked imagery. The initial number of clusters was set to 10, and the maximum
number of iterations was set to 20. The subsampling rate of PARSUC(KM) was set to 10%, and the
number of subsamples was set to 10%. Figure 8a shows the original GaoFen-2 imagery used in this
study with true color. Figure 8b is the classification result of K-means, and 8c refers to the classification
result of PARSUC(KM).
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Figure 8. Original GaoFen-2 imagery (a), classification results of PARSUC(KM) (b) and K-means (c).

A total of 179 in situ measured cropland samples on 20 March, 2018 were performed to validate
the classification results by means of Kappa coefficient and overall accuracy with a confused matrix.
The overall accuracy and Kappa coefficient of PARSUC(KM) results (62.8976%, 0.5229) were higher
than those of K-means results (47.2569%, 0.4126).

To more specifically compare ground truth samples, classification results of PARSUC(KM),
and K-means we selected two regions of classification results in Figure 8b,c and enlarged them,
as shown in Figures 9 and 10.

Figure 9. Ground truth samples, classification results of PARSUC(KM) and K-means at region 1.

Figure 10. Ground truth samples, classification results of PARSUC(KM) and K-means at region 2.

In region 1, Figure 9 showed PARSUC(KM) identified crop fields more completely than K-means in
the majority of crop types. Take the recognition of Chinese cabbage fields as an example. PARSUC(KM)
identified 25 of all 27, while K-means captured only 19 of 27 Chinese cabbage fields. The commission
and omission probability of PARSUC(KM) result was less than that of the K-means result. PARSUC
incorrectly interpreted of three lettuce fields and one cauliflower field at a small size. Region 2
showed similar patterns as region 1. Figure 10 demonstrates that PARSUC(KM) matched 15 Chinese
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cabbage fields of 15 and 8 cabbage fields of 9 ground truth samples completely, while K-means mistook
cauliflower as Chinese cabbage fields.

Case2: Water Body Extraction

Another comparison experiment was performed on the time series of normalized difference
vegetation index (NDVI) raster datasets, which were derived from monthly moderate resolution
imaging spectroradiometer (MODIS) sensor imagery with 250-meter resolution in 2015. The vegetation
indices were retrieved from the MODIS surface reflectance of a red waveband (band 1) and near-infrared
band (band 2). Clustering on the time series of the NDVI is an effective approach for retrieving water
bodies since their NDVI values are quite stable within the whole year. The traditional ISODATA and
PARSUC(ISO), both with the initial number of clusters (10), were performed on the 12-layer NDVI time
series raster datasets, and then the resultant classes of water bodies were extracted manually. Figure 11
shows the comparison results between ISODATA and PARSUC(ISO). Figure 11a is the ground truth of
water bodies from the global land cover, 11b is the ISODATA result, and 11c is the PARSUC(ISO) result.
As depicted in Figure 11b,c, the main water bodies in Anhui province of China can be detected by
clustering algorithms. However, plenty of scattered areas were mistakenly recognized as water bodies
by the traditional ISODATA algorithm (red circles). In comparison, PARSUC(ISO) had much better
performance in recognizing the water bodies.

Figure 11. Ground truth, water body extraction results of ISODATA and PARSUC(ISO).
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4.3. Time Cost

Time cost and scalability of PARSUC were also examined. A total of 150 scenes of remote sensing
imageries were used for evaluating the time cost of PARSUC, including 50 scenes of GF-1 images at
three different sizes: 5000× 5000, 10,000× 10,000, and 20,000× 20,000. In our configuration, one mapper
job was assigned to each slave node for establishing correspondence between each mapper and node.
PARSUC was executed five times on a total of 150 scenes of imageries and the average running times
were recorded. For each imagery size, Hadoop slave nodes were increased from 5 to 20 with a step of 5.

Figure 12 shows the computation time (in minutes) of PARSUC for processing three different
sizes of remote sensing images, as the number of Hadoop slave nodes increased from 5 to 20.
Overall, the processing time of PARSUC decreased dramatically when more slave nodes were utilized.
Specifically, when processing images with size 5000 × 5000, the average processing time was sharply
reduced from 32.49 min to 9.17 min as the nodes increased from 5 to 20. When processing larger images
with size 20,000 × 20,000, the time consumption was reduced from 516.39 min to 146.18 min, an almost
fourfold reduction.

Figure 12. Processing time of PARSUC with different nodes and image sizes.

Figure 13 shows the speedup that PARSUC achieved with an increased number of nodes. PARSUC
obtained linear speedup with respect to an increase in the number of slave nodes. We also observe that
the larger size of imageries attained higher speedup than smaller ones. Note that this scalability can
be achieved by simply configuring and adding new slave nodes to the Hadoop cluster, without any
changes to the PARSUC code.

To demonstrate the advantage of PARSUC over the existing parallel remote sensing clustering
algorithms in time cost, further experiments were conducted by comparing PARSUC with a typical
MapReduce-based parallel clustering algorithm proposed by Li et al. [32]. We implemented their
algorithm in the same development environment as PARSUC, hereinafter named as MapReduce-based
parallel clustering (MPC). MPC was also executed five times on a total of 150 scenes of GF-1 imageries
with different sizes, and the average running times were recorded.
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Figure 13. Speedup of PARSUC with different number of nodes.

Table 5 demonstrates the comparison results of the time cost (in minutes) between PARSUC and
MPC in handling the same scale of test remote sensing imageries. We can see that the time cost of
both PARSUC and MPC improve as the number of slave nodes increases. However, under the same
computation environments, the processing time of PARSUC is far less than MPC in scope with the
same size of imageries. We analyze the reason later in the discussion.

Table 5. Comparison of the processing time (in minutes) between PARSUC and MapReduce-based
parallel clustering (MPC).

Image Size
Nodes = 5 Nodes = 10 Nodes = 15 Nodes = 20

PARSUC MPC PARSUC MPC PARSUC MPC PARSUC MPC

5000 × 5000 32.49 87.47 16.97 50.44 12.23 37.45 9.17 27.34
10,000 × 10,000 134.06 305.61 69.94 169.88 48.75 122.49 37.12 92.25
20,000 × 20,000 516.39 1088.78 265.08 577.16 184.08 407.16 146.18 323.37

5. Discussion

In investigating the influences of the subsampling rate and the number of subsamples on results
of PARSUC, we find that, although the accuracy of PARSUC can be improved by increasing the
subsampling rate, this improvement eliminates when the subsampling rate reaches a certain threshold.
This is because subsamples with a low subsampling rate cannot carry enough information of the
original image for clustering and may cause significant errors. Increasing the subsampling rate to
a suitable level will cause significant improvements in accuracy. However, PARSUC adopts multiple
subsamples to compensate for the shortage of the individual subsamples. As the subsampling rate
increases to a certain value, multiple subsamples have already contained enough detailed information
for clustering; therefore, the accuracy of PARSUC no longer increases. Informed by this observation,
we can determine a relatively low subsampling rate, e.g., 10 to 20%, in getting parallel subsamples to
reduce the total amount of computation for processing RSBD. Another important observation is that
the number of subsamples has little impact on the clustering accuracy. Therefore, in an operational
application, we can choose a relatively small number of subsamples to further reduce the total
computational burden. The recommended number of subsamples in this study is 10.
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In comparison with the most widely used remote sensing clustering algorithms, K-means and
ISODATA, PARSUC shows a significant advantage in accuracy when dealing with a larger size
of imageries. These promising results can be explained; for big datasets, conventional clustering
algorithms do not converge to an acceptable accuracy within finite iterations. Moreover, the accuracy
of conventional clustering algorithms suffers from the drawbacks of local minima and inefficient
clustering initializations, and these drawbacks are magnified in processing RSBD. However, PARSUC
overcomes these shortcomings by aggregating multiple clusterings to obtain more stable and accurate
results. Although defective clustering may still exist in subsamples, they can be detected effectively
and eliminated by our proposed CFA.

PARSUC demonstrates notable speedup in our experiments, especially when processing RSBD.
Benefiting from the scalability and flexibility features of MapReduce, the computation capacity of
PARSUC can flexibly scale up to meet the rapid growth in processing requirements. Furthermore,
this scalability can be achieved by simply configuring and adding new computing nodes to the cluster
without any changes to the code.

Compared to the existing MapReduce-based parallel clustering algorithm, MPC, PARSUC spent
much less time in processing the same test remote sensing imageries in the same computation
environment. This is mainly because MPC uses iterative MapReduce jobs to obtain the optimum
clustering results. During each iteration of MPC, the entire scenes of imageries must be read and
written to disks, costing a large number of I/O operations. However, PARSUC achieves that goal by
using only three different MapReduce jobs, among which only the first and third jobs have to load
the entire imagery dataset. Therefore, PARSUC performs much more effectively than MPC in dealing
with RSBD.

6. Conclusions

In this paper, we proposed a parallel clustering method, PARSUC, for improving the performance of
RSBD clustering in terms of both efficiency and accuracy. PARSUC leveraged a novel subsampling-based
data partitioning method, SubDP, to realize three-step parallel clustering, effectively solving the notable
performance bottleneck of existing parallel clustering algorithms; that is, they must cope with
numerous repeated calculations to obtain a reasonable result. Furthermore, PARSUC adopted the
centroid filtering algorithm, CFA, to eliminate the subsampling errors and to guarantee the accuracy of
the clustering results. PARSUC was implemented on a Hadoop platform by using the MapReduce
parallel model. Experiments performed on RSBD with different sizes showed very promising results.
First, in dealing with a larger scale of remote sensing imageries, PARSUC performed much more
accurately than conventional remote sensing clustering algorithms, K-means, and ISODATA. Second,
PARSUC achieved notable scalability with the addition of more computing nodes. Third, compared
to the existing MapReduce-based parallel clustering method, PARSUC demonstrated less time cost
in handling RSBD. Another important feature of PARSUC was that the total amount of computation
required could be flexibly controlled by adjusting the subsampling parameters. The experimental
results indicated that PARSUC obtained acceptable results at very low subsampling rates and numbers
of subsamples. With these features, PARSUC is operational to analyze RSBD for accurate and stable
clustering results.

Although SubDP shows promise for efficient clustering of RSBD, other data partitioning methods
based on statistical sampling techniques will be investigated to further improve the performance of
PARSUC. Meanwhile, the outlier detection method used in CFA still has room for improvement in
future works, and the need to improve that method is an open problem in geo-information research.
In this version of PARSUC, only centroid-based clustering algorithms are supported, and we will
continue to improve PARSUC to support more types of clustering algorithms, such as DBSCAN.
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