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Abstract: Labeling activity data is a central part of the design and evaluation of human activity
recognition systems. The performance of the systems greatly depends on the quantity and “quality”
of annotations; therefore, it is inevitable to rely on users and to keep them motivated to provide
activity labels. While mobile and embedded devices are increasingly using deep learning models to
infer user context, we propose to exploit on-device deep learning inference using a long short-term
memory (LSTM)-based method to alleviate the labeling effort and ground truth data collection in
activity recognition systems using smartphone sensors. The novel idea behind this is that estimated
activities are used as feedback for motivating users to collect accurate activity labels. To enable us
to perform evaluations, we conduct the experiments with two conditional methods. We compare
the proposed method showing estimated activities using on-device deep learning inference with the
traditional method showing sentences without estimated activities through smartphone notifications.
By evaluating with the dataset gathered, the results show our proposed method has improvements in
both data quality (i.e., the performance of a classification model) and data quantity (i.e., the number
of data collected) that reflect our method could improve activity data collection, which can enhance
human activity recognition systems. We discuss the results, limitations, challenges, and implications
for on-device deep learning inference that support activity data collection. Also, we publish the
preliminary dataset collected to the research community for activity recognition.

Keywords: activity recognition; data collection; on-device deep learning inference; smartphone
sensors; user feedback

1. Introduction

In the field of ubiquitous computing, researches on human activity recognition technology
using mobile sensors such as smartphones have been conducted [1]. Smartphone-based activity
recognition systems aimed at physical activities recognition such as walking or running, are based
on mobile sensor data. The sensor data may be recorded directly on the subject such as by carrying
smartphones that have accelerometers and gyroscopes [2]. Understanding what users are doing in the
physical world allows the smartphone app to be smarter about how to interact with them. However,
a central challenge in smartphone-based activity recognition is data annotation studies in order to
assess the labels describing the current activity while this activity is still on-going or recent to ensure
that the dataset is labeled correctly. The quality and quantity of annotations can have a significant
impact on the performance of the activity recognition systems. Hence, it is unavoidable to rely on the
users and to keep them motivated to provide labels. To overcome the challenge of self-labeling [3],
we introduce the idea of utilizing on-device deep learning inference for optimizing activity data
collection. The rapid performance increase of low-power processors and the huge demand of internet
of things (IoT) applications brought new ways for deploying machine/deep learning models on edge
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devices. On-device machine learning by fusing the inertial sensors such as smartphones have been
explored [4–6]. These findings allow the activity recognition system to be feasibly identify frequent
behavioral patterns on edge devices; meanwhile, deep learning revolution in the field of machine
learning tends to result in higher accuracy and performs exceptionally well on machine perception
tasks on smaller devices with limited resources [7–9]. TensorFlow Lite [10] was designed to enable easy
to perform machine/deep learning inference on mobile, embedded, and IoT devices with low latency
and a small binary size, “at the edge” of the network, instead of sending data back and forth from
a server. Thus, we will exploit the power of on-device deep learning to provide estimated activities on
a smartphone in order to optimize activity data collection.

In this paper, we want to show that if we give estimated activities using on-device deep learning
inference through notifications as feedback to users while they are requested for labeling, we can
improve data annotation tasks for activity recognition systems. The novel idea works by the user
getting estimated activities through notifications on a smartphone as feedback that motivates for
efficient activity data collection. Estimated activities are automatically inferred by periodically reading
short bursts of smartphone sensor data and processing them using on-device deep learning with a long
short-term memory (LSTM) model [11] without the model retrained. To evaluate this contribution,
we trained the model for on-device deep learning with the open dataset [12], conducted the experiments
with proposed and traditional methods (see Table 1) to collect the evaluated dataset, validated the
dataset collected using several machine/deep learning algorithms, and showed that our proposed
method outperformed the traditional method. In summary, the contribution of the paper are listed as
the following:

• We introduce a system design of integrating on-device deep learning inference and activity
recognition. We describe on-device deep learning inference using an LSTM-based method which
can be used for efficient activity data collection, where estimated activities are used as feedback
through notifications on a smartphone.

• We present the proposed method where we provide estimated activities using on-device inference
through notifications and the traditional method where we provide simple sentences without
estimated activities through notifications. Our proposed method can be applied not only to LSTM
but also other models for on-device inference. To evaluate in a realistic setting, we train the
model used for on-device deep learning with the open dataset, implement a system and deploy
the system to a laboratory, conduct the experiments, review and use the dataset obtained for
evaluations.

• We evaluate the quality of the proposed method using a standard activity recognition chain by
comparing the performance results of several machine learning algorithms as well as a deep
learning algorithm with the traditional method. We show that when estimated activities using
on-device inference are provided to users as feedback, we can improve the quality of data
collection (e.g., the accuracy of several machine learning algorithms has improvements with the
proposed method). We also compare the quantity of data collected between the proposed method
and the traditional method by showing that the amount of data collected has increased with the
proposed method.

• We discuss the results, limitations, challenges, and implications for on-device deep learning
inference that support activity data collection and spark future studies.

• We also publish the preliminary dataset openly as Supplementary Information in this paper,
which might be useful for activity recognition and the research community.

We will begin by setting this work in the context of existing research on activity recognition
and on-device deep learning in Section 2. We will then describe our method, experimental setup,
and experimental evaluation in depth in Sections 3–5. Finally, we will conclude with a discussion of
the results and the future work derived from the knowledge obtained in this paper in Sections 6 and 7.
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Table 1. Experimental design.

Method Conditional Detail

Proposed Receive notifications of estimated activities using on-device deep learning inference
Traditional Receive notifications with messages “What are you doing?” without estimated activities.

2. Related Works

Data annotation is a challenging process and a major limitation to the development of activity
recognition systems. The classification task and the training phase of models can be performed offline
or online [13–15]. Collecting accurate labels (annotation) comes with a hefty price tag, in terms of
human effort. Either to have the data labeled by third-party observers or self-labeling both are costly,
time-consuming, tedious, and they have the risk of missing some of the activity labels. For instance,
while employing observers to annotate labels, it is correct segments but costly [16]. By contrast, to get
labels using self-labeling and experience sampling, it is lower cost, but incorrect segments [3]. Another
method such as offline labeling it also takes a long time and privacy issues [17]. This is a general
problem for all supervised learning methods, which not only require the presence of a big dataset but
also require human supervision to annotate the dataset. There are a lot of works being carried out to
support and facilitate the process of data annotation [18–20].

To make capital out of the cloud, we occasionally offload data on small devices such as
smartphones and smartwatches to the cloud for storage and processing. For example, physical activity
information derived from the accelerometers of wearables is often transferred to and stored in the
cloud. The ability to offload complicated tasks from devices with limited computation capabilities to
virtual process capacity in the cloud is interesting; however, there are some limitations, for instance,
advances in hardware capabilities and privacy threats. Therefore, reducing the use of the cloud for
a mobile application, several researchers have proposed mechanisms to substitute the cloud with local
networks or compute without any network connection (so-called on-device data analysis) [21–23].
Since hardware and devices are becoming ever more capable while decreasing in size and weight
through miniaturization [24], performing analysis on-device and maintaining data in personal storage
are possible and appealing. Existing studies on ubiquitous and pervasive applications that could work
without any network connection or by using a hybrid approach that does not send all data into the
cloud has been increased. For instance, the authors of [4–6] implemented machine learning inference on
edge devices and demonstrated that on-device processing could sometimes improve energy efficiency
and response time relative to off-device processing. Also, the authors [7–9] showed the idea of
implementing more complex and taxing algorithms such as deep learning on these small devices.

The application of deep learning for human activity recognition has been effective in extracting
discriminative features from raw input sequences acquired from body-worn sensors. Researchers
have been adopting deep learning methods for activity recognition [11,25,26]. Recognizing human
activities user-independently on smartphones based on accelerometer data using LSTM networks are
well-suited [27]. Thus, we will focus on an LSTM-based deep learning model for activity recognition in
this study; however, there are lots of challenges on both steps in a scenario of complex data and lacking
sufficient domain knowledge. While the authors of [27] proposed an LSTM-based feature extraction
approach to recognize human activities using three-axial accelerometer data, and showed the method
could achieve high accuracy. Previously, [28] pointed to recognizing multiple overlapping activities
using an algorithm of a compositional CNN + LSTM. However, using an LSTM for on-device inference
is deficient. The authors of [29] introduced RSTensorFlow: an accelerated deep learning framework on
commodity android devices using the heterogeneous computing framework RenderScript. The authors
of [30] explored optimizations to run recurrent neural network (RNN) models locally on mobile
devices for activity recognition. While they point to the significant issues in the performance of
running different models architectures for Android devices while running deep learning models,
we will present differences both on applications and purpose. While many of their research questions
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were similar to ours in using an LSTM-based deep learning model for activity recognition in various
application domains, yet, no one has studied the use of on-device deep learning inference as feedback
for activity data collection by giving estimated activities are inferred through notifications, which we
will present in this paper.

3. Methods

In this section, we provide a descriptive view of the proposed on-device deep learning inference
for efficient activity data collection system. The architecture of this system is depicted in Figure 1.
The system is composed of several technical building blocks including the following: (1) to build
an LSTM-based deep learning model used for on-device inference; (2) to collect accelerometer sensor
data and activity labels efficiently; and (3) to provide estimated activities as feedback through
smartphone notifications for efficient data collection.

Activity data collection
(mobile sensors and activity labels)

Proposed on-device deep learning inference for efficient activity data collection architecture

Trained model 
(TensorFlow Lite format)

A user with 
a smartphone

Execute

Fahlog app with the trained model

A smartphone
On-device deep learning Inference

Workstation
Training deep learning model

Activtiy Dataset

A storage server 
A server that is used 
to store, access, secure
and manage data Accurate activity dataset

Notify

On-device deep learning inference

Feedback

Put the model on a smartphone

Upload data to the server

Trained modelTraining data 
using LSTM

(a)

(b)

(c)

(d)

(f)

(e)

Figure 1. The system architecture of the proposed on-device deep learning inference for efficient
activity data collection works as following (a) we first train activity labels with mobile sensors using
an long short-term memory (LSTM) for recognition model and deploy it for on-device inference, (b) we
collect mobile sensors and activity labels on a smartphone from a user, (c) the smartphone detects
an activity that the user is doing by using an on-device deep learning inference model adopted, (d) the
user receives information about the estimated activity as feedback (e.g., the notification is showing that
“are you walking?” means the device is on a user who is walking), (e) the user repeats the process of
activity data collection efficiently, and (f) we finally obtain accurate activity dataset.
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3.1. To Build an LSTM Model Used for On-Device Inference

In this section, we propose how to build an LSTM model used for on-device inference. We employ
the open dataset provided by the wireless sensor data mining (WISDM) Lab [12] to build an activity
recognition model for on-device deep learning inference. A schematic diagram of the proposed
LSTM-based deep learning model for activity recognition system is depicted in Figure 2.

Input data
segmentation

LSTM-based
deep learning model

Determine class membership probability using Softmax

Walking Standing Sitting

y

3-axis accelerometer

T

(a)

(b) (c)

(d)

Figure 2. A schematic diagram of the proposed LSTM-based deep learning model for activity
recognition system works as following (a) the inputs are raw signals obtained from acceleration
sensors, (b) segment into windows of length T, (c) fed into LSTM-based deep learning model, (d) and
finally, the model outputs class prediction for each time step.

Firstly, let us describe the core idea behind LSTMs. The RNN dynamics can be described using
deterministic transitions from previous to current hidden states. The deterministic state transition is
a function

RNN : hl−1
t , hl

t−1 → hl
t

For classical RNNs, this function is given by

hl
t = f (Tn,nhl−1

t + Tn,nhl
t−1), where f ∈ {sigm, tanh}

The LSTM has complicated dynamics that allow it to simply “memorize” information for
an extended number of timesteps. The “long term” memory is stored in a vector of memory cells
cl

t ∈ Rn. Although many LSTM architectures that differ in their connectivity structure and activation
functions, all LSTM architectures have explicit memory cells for storing information for long periods
of time. The LSTM can decide to overwrite the memory cell, retrieve it, or keep it for the next time
step. The LSTM architecture used in this peper is given by the following equations [31]:

LSTM : hl−1
t , hl
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f
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In these equations, sigm and tanh are applied elementwise.
We use the WISDM dataset mentioned to build an activity recognition model. The reason

why we first build the model by employing an existing dataset, and we then utilize it for our
proposed on-device inference method because we concern the issue that our system cannot draw
any inferences for users since it has not yet gathered sufficient information. This problem usually
occurs in computer-based information systems which involve a degree of automated data modeling.
It is a well-known and well-researched problem, so-called the cold start problem [32]. The human
activity recognition dataset built from the recordings of 29 subjects performing regular activities
while carrying a waist-mounted smartphone with embedded inertial sensors. This dataset contains
1,098,207 examples and six attributes, including, user, activity, timestamp, x-acceleration, y-acceleration,
z-acceleration without missing attribute, collected through controlled, laboratory conditions. There are
6 activity types of movement that we try to classify: walking (38.6%), jogging (31.2%), upstairs (11.2%),
downstairs (9.1%), sitting (5.5%), standing (4.4%). The dataset’s description is detailed in [12].

An LSTM takes many input vectors to process them and output other vectors. In our case,
the “many to one” architecture is used: we accept time series of feature vectors (one vector per time
step) to convert them to a probability vector at the output for classification, as shown in Figure 3.

LSTM cell
hidden = 64 ...

Xt = 1
input = 3

Xt = 2 Xt = n...

Output
activity classes = 6

2.5 sec window

Figure 3. Many-to-one long short-term memory (LSTM) network architecture used for activity
classification with six classes. n stands for the number of samples included in a 2.56 s window.

As we can see from Figure 2, the inputs are raw signals obtained from multimodal-sensors,
which is a discrete sequence of equally spaced samples (x1, x2, ..., xT), where each data point xt is
a vector of individual samples observed by the sensors at time t. These samples are segmented
into windows of a maximum time index T and fed into LSTM-based deep learning model. Each
generated sequence contains 200 training with 3 input parameters (3-axis accelerometer) per time
steps. The model is trained for a maximum of 50 epochs by two fully-connected and two LSTM layers
(stacked on each other) with 64 units each. We use rectified linear units (ReLUs) for the hidden layers to
increase the robustness of the model as well as remove any simple dependencies between the neurons
preventing over fitting, and use the dropout technique to avoid overfitting in our model (Equation (1)),
where a rectified linear unit has output 0 if the input is less than 0, and raw output otherwise.

ReLU(x) = max(0, x). (1)

Finally, the model outputs class prediction scores for each time step (yL
1 , yL

2 , ..., yL
T), where yL

t ∈ RC

is a vector of scores representing the prediction for a given input sample xt and C is the number of
activity classe, which are fed into the softmax layer to determine class membership probability.

Also, we use an optimization algorithm called Adam [33] to minimize the cost function by
backpropagating its gradient and updating model parameter. The core hyper-parameters explored in
this model are listed in Table 2.
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Table 2. Some core parameter definitions for the training.

Parameter Value

LSTM layer 2 fully-connected
epochs 50
hidden layer units 64
output classes 6
input features per timestep 3 (accx, accy, accz)
timesteps per series 200
learning rate 0.0025
batch size 1024

For validating the trained model against test data, we apportion the data into training and test
sets, with an 80–20 split. After each epoch of training, we evaluate the performance of the model on
the validation set. We select the epoch that showed the best validation-set performance and apply
the corresponding model to the test-set. As a result, we opt the final epoch that the accuracy and
weighted F1-score both are reached over 97% (0.975 and 0.972, respectively) and loss is hovered at
around 0.2. Note that the class distribution of the WISDM dataset has the sample imbalances among
activity classes which can affect machine learning [34]. We could not collect more data that could
balance our classes; however, we show the weighted F1-score for additional performance metric that is
preferable if there is a class imbalance problem, not just only accuracy [35]. Since the smartphone is
attached on the waist and each series to classify has just a 200 sample window, those predictions are
extremely accurate. If we have a look at the confusion matrix of the model’s predictions in Figure 4,
we can see that our model performs really well. Although we can see some notable exceptions that
there are difficulties in making the difference between walking, upstairs and downstairs, the model is
almost always able to identify the movement type on a smartphone correctly. The visual insight of the
results are presented in Figures 4 and 5.

Figure 4. Training session’s progress over iterations.
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Figure 5. The results for a classifier of the LSTM model.

3.2. To Collect Accelerometer Sensor Data and Activity Labels Efficiently

We requested participants to carry a waist-mounted Android smartphone (Wiko Tommy3 Plus
(Android 8.1)) with embedded inertial sensors, install the mobile app on smartphones to select and
record their daily life activities from the list of predefined labels. Information about the demography of
participants and the duration of the experiment are reported in Section 4. The mobile app is extended
from our work [36] called “FahLog”, as shown in Figure 6, when a user selects the activity in Figure 6a,
the labels for each activity class will be put into the right column as shown in Figure 6d. Then the
user has to record it by pushing the button to start and stop recording while they are carrying out
the activity by following the steps as shown in Figure 6b–d. Each time the user taps an activity label
box, it will transition to before start (I)→ doing activity (�)→ finish (X) so a user can record the
start and end of the activity. Since another activity may be performed while performing one activity,
multiple activity labels can be started and ended in parallel. The activity labels can then be uploaded
to the server when it is connected to the network. Otherwise, data will be stored on the smartphone
until there is internet access. Moreover, we capture sensors and activity labels through smartphones
to recognize activities using smartphone sensors continuously. Hence, we set the sampling rate of
the app for the ‘standard’ settings of Android programming API, which is the slowest setting, where
they are sampled 200 milliseconds when they are not busy, then we take one minute time windows for
calculating time windows, it is enough of a sampling rate for such data collection. Note that the FahLog
annotation tool will be unexpired and can be applied for other activity data collection experiments
such as crowdsourcing [37] or nursing cares [38]. Also, it provides on Google Play openly [39] . It can
alter multiple activity types from our server configuration connected to the app that has already been
set up [40] as well as it can modify the user interface of the tool for each specific purpose (e.g., in this
paper, adding notifications for showing estimated activities as feedback). More features have been
published in [36].
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a) Activity label

b) Recorded

c) Recording

d) Idle

Figure 6. FahLog: a mobile app for collecting sensor data and activity labels.

3.3. To Provide Estimated Activities as Feedback through Smartphone Notifications

We interpret the results that retrieve from model inference. We use a list of probabilities that the
model returned. We then meaningfully map them to relevant categories (activity classes) and present
it on mobile notification to the user. Figure 7 presents an example of the results that are displayed on
a notification. Note that to prevent excessive interruptibility and to optimize resources, we stop activity
reporting if the device has been still for a while, and use low power sensors to resume reporting when
it detects changes in the user’s activity (e.g., changing from walking to running) with mean inference
time of 2846.0 ms. Also, when we put the deep learning model on the device and use a battery monitor
application for Android smartphones to monitor the battery level, it increases energy consumption on
its smartphone by 5% on average compared with the traditional manner without the on-device model.
Therefore, showing that it works fast and does not waste a lot of energy.

[
      {-0.82054216834367446, -0.54677679876, 0.82054216867466},
      {-0.82546434565663476, -0.45656567645, 0.46867465656567},

    ....................,
    ....................,

]

Trained model

Notify

Figure 7. Steps to show a estimated activity as feedback to a user.
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4. Experimental Evaluation

In this section, we evaluate the proposed method using a standard activity recognition chain [2] by
comparing its performance with the traditional method, as shown in Table 1. We describe the designed
and conducted the experiments, described the dataset collected, pre-process the data collected, build
the recognition model, and evaluate it.

4.1. Experimental Setup

The participants were required to carry a waist-mounted Android smartphone, install the FahLog
app on the phones, to select and record their activities from the list of predefined labels (depicted in
Figure 6), get notifications, and submit data to our server. Each participant performs the experiments
for 6 days. Table 1 shows the detail of the proposed method and traditional. We propose that if we give
estimated activities using on-device deep learning inference as feedback to users through smartphone
notifications, they can improve activity data collection. Therefore, to compare our proposed method
with the traditional method, we created notifications on smartphones that displayed two different
versions. Each version only differed in the user interface where the proposed method showed estimated
activities using on-device deep learning inference when the device detects changes in the user’s activity.
On the other hand, the traditional method showed messages “What are you doing?”, without estimated
activities once every 15 min. We also request the users click the push notifications sent to assure that
the users have seen the notifications. Each participant received both conditions, each of which showed
three days. We randomly displayed the conditions for each participant to ensure that they were not
affected by the day of experiments for each term. The participants were instructed with detailed
instructions on how to do all process step by step using the same protocol provided. During data
collection, the dataset was collected in the “wild” because the subjects provided data from their
daily lives.

4.2. Data Description

The dataset was collected between June 2019, from six subjects within an age bracket of 25–30
years, performing one of six regular activities (as shown in the left column of Table 3) while
carrying a waist-mounted Android smartphone that recorded the movement data (accelerometers in
smartphones). Note that we requested them to carry a smartphone in the same position as the WISDM
dataset used to train the on-device recognition model. As a result, we gathered 713 activity labels from
all participants.

Table 3. The number of activity labels collected.

Activity Class # labels

Walking 247
Jogging 1
Sitting 249
Standing 153
Downstairs 36
Upstairs 27

Total 713

4.3. Activity Recognition Using Smartphone Sensors

Since we propose a standard activity recognition chain and a supervised learning approach for
evaluations, we first preprocess the dataset collected and then evaluate it.



Sensors 2019, 19, 3434 11 of 20

4.3.1. Data Preprocessing

We put together the dataset by including three-axis accelerometer sensor data and the activity
labels on the smartphones without clock and time synchronization because the sensor and the labeling
system are both in the same device.

We used sliding windows of one minute with no overlapping. For each axis, average, standard
deviation, maximum value and minimum value were extracted as features. An example of feature
extraction is shown in Table 4. Before data proceeding, we excluded missing values. As a result,
we obtained multivariate data of 9,129 samples with 12 variables for feature vectors.

Table 4. An example of feature extraction.

Feature Value

meanx num −0.82054216867469876 ...
maxx num −0.622 ...
minx num −1.207 ...
sdx num 0.085123482931909022 ...
meany num 1.3659708029197057 ...
maxy num 5.468 ...
miny num −4.118 ...
sdy num 1.1740472194146572 ...
meanz num 9.819719626168224 ...
maxz num 9.909 ...
minz num 9.742 ...
sdz num 0.894526836753883 ...

Figure 8 shows the activity labels distribution of the data samples in our dataset. It is worth noting
that the distribution was highly skewed, where some classes appeared more frequently than others.
Since the imbalanced dataset can negatively influence the generalization and reliability of supervised
learning algorithms, we employed the SMOTE algorithm: synthetic minority over-sampling technique
as presented in [41] (an oversampling technique that creates new synthetic data samples in the minority
classes, varying the features values of the existing data points based on their k nearest neighbors in
the feature space) in order to balance our dataset. By upsampling the size of training and testing
datasets separately.

0
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proposed traditional
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be

ls

Activity class
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Figure 8. The number of activity labels for each method.
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4.3.2. Evaluation Method

In this section, we present the effectiveness of the proposed method when we give estimated
activities using on-device deep learning through smartphone notifications. The experiment was
designed to test the performance of our classifier for a user-dependent scenario. In this case, the
classifiers were trained and tested for each individual with her/his own data, and average accuracy
and was computed. We show that the performance of several machine algorithms and LSTM have
improvements with our method. We also show that the proposed method has improvements in
the amount of data collected. To evaluate the proposed method using a technique of supervised
learning algorithm for multiclass classification. We trained each participant separately using one deep
learning classifier and several standard machine learning classifiers, including LSTM in the same way
of the on-device model trained, logistic regression (LR) [42], linear discriminant analysis (LDA) [43],
k-nearest neighbors (KNN) [44], decision tree (CART) [45], naive Bayes (NB) [46], support-vector
machine (SVM) [47], and random forest (RF) [48].

To test the model’s ability we used stratified k-fold cross-validation. The folds are made by
preserving the percentage of samples for each class to ensure each fold is a good representative
of the whole. To account for label imbalance, the model performance was presented using the
weighted average of precision, recall, F1-score of each class for the multiclass task. (i.e., averaging the
support-weighted mean per label) So the average was weighted by the support, which was the number
of samples with a given label. The “weighted” precision or recall score is defined in Equation (2).
The same weighting is applied to F1-score.

1
∑l∈L |ŷl | ∑l∈L

|ŷl |φ(yl , ŷl) (2)

• L is the set of labels
• ŷ is the true label
• y is the predicted label
• ŷl is all the true labels that have the label l
• |ŷl | is the number of true labels that have the label l
• φ(yl , ŷl) computes the precision or recall for the true and predicted labels that have the label l.

To compute precision, let φ(A, B) = |A∩B|
|A| . To compute recall, let φ(A, B) = |A∩B|

|B| .

Note that weighted metrics is the performance of infrequent classes are given less weight since
|ŷl | will be small for infrequent classes. Therefore, weighted metrics may hide the performance of
infrequent classes, which may be undesirable.

5. Results

Following the evaluation approach discussed above, we report our results of the validation
together with a discussion of such results. We show the proposed method had improvements in data
quality (the classification performance) compared to the traditional method. The average classification
performance of all models results are shown in Figure 9. The F1-score performance results for each
model are shown in Figure 10. The precision performance results for each model are shown in
Figure 11. The recall performance results for each model are shown in Figure 12. The average
classification performance results of all models for each user are shown in Table 5.

We also show that the proposed method has improvements in data quantity (the number of data
collected) compared to the traditional method. Figure 8 shows the number of collected activity labels
for both methods.
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5.1. Quality of Collected Activity Data

Figure 9 shows F1-score, precision, and recall performance results of all machine learning models
were improved with our proposed method compared to the traditional method. The F1-score was
improved from 0.6240 to 0.7620 (+0.138) The precision was improved from 0.6440 to 0.7802 (+0.136)
The recall of improved from 0.6366 to 0.7677 (+0.131).
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Figure 9. The average classification performance of all models for each method.

Figure 10 shows F1-score performance results of all machine learning models were improved with
our proposed method compared to the traditional method. The F1-score of CART was improved from
0.657 to 0.770 (+0.113) The F1-score of KNN was improved from 0.667 to 0.801 (+0.134). The F1-score
of LDA was improved from 0.604 to 0.766 (+0.162). The F1-score of LR was improved from 0.623
to 0.778 (+0.155). The F1-score of LSTM was improved from 0.657 to 0.783 (+0.126). The F1-score
of NB was improved from 0.472 to 0.606 (+0.134). The F1-score of RF was improved from 0.694 to
0.815 (+0.121). The F1-score of SVM was improved from 0.623 to 0.775 (+0.152).
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Figure 10. The F1-score performance results of several machine learning models.

Figure 11 shows precision performance results of all machine learning models were improved
with our proposed method compared to the traditional method. The precision of CART was improved
from 0.679 to 0.805 (+0.126). The precision of KNN was improved from 0.665 to 0.793 (+0.128). The
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precision of LDA was improved from 0.611 to 0.762 (+0.151). The precision of LR was improved from
0.616 to 0.759 (+0.143). The precision of LSTM was improved from 0.675 to 0.803 (+0.128). The precision
of NB was improved from 0.593 to 0.757 (+0.164). The precision of RF was improved from 0.698 to
0.813 (+0.114). The precision of SVM was improved from 0.619 to 0.738 (+0.119).
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Figure 11. The precision performance results of several machine learning models.

Figure 12 shows recall performance results of all machine learning models were improved with
our proposed method compared to the traditional method. The recall of CART was improved from
0.648 to 0.746 (+0.098). The recall of KNN was improved from 0.681 to 0.814 (+0.133). The recall of LDA
was improved from 0.626 to 0.780 (+0.154). The recall of LR was improved from 0.657 to 0.806 (+0.149).
The recall of LSTM was improved from 0.657 to 0.779 (+0.121). The recall of NB was improved from
0.459 to 0.556 (+0.097). The recall of RF was improved from 0.696 to 0.821 (+0.137). The recall of SVM
was improved from 0.677 to 0.833 (+0.156).
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Figure 12. The recall performance results of several machine learning models.

Table 5 shows all users improve average F1-score, average precision, and average recall
performances of all machine learning models with our proposed method compared to the
traditional method.
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Table 5. The average classification performance of all models for each user.

User Method F1-Score Recall Precision

98 proposed 0.7778 0.7756 0.7973
98 traditional 0.7127 0.7139 0.7391
98 Improvement +0.0651 +0.0616 +0.0582

99 proposed 0.7009 0.7119 0.7156
99 traditional 0.4442 0.4830 0.4605
99 Improvement +0.2567 +0.2289 +0.2551

101 proposed 0.8700 0.8774 0.8727
101 traditional 0.6449 0.6619 0.6701
101 Improvement +0.225 +0.215 +0.203

103 proposed 0.7693 0.7663 0.7950
103 traditional 0.6490 0.6685 0.6584
103 Improvement +0.120 +0.098 +0.137

104 proposed 0.7881 0.7954 0.8120
104 traditional 0.6333 0.6223 0.6705
104 Improvement +0.155 +0.173 +0.142

105 proposed 0.6658 0.6794 0.6888
105 traditional 0.6600 0.6702 0.6654
105 Improvement +0.006 +0.01 +0.023

5.2. Quantity of Collected Activity Data

Figure 8 shows the number of collected activity labels was increased with our proposed method.
The number of activity labels increased from 311 to 402 (+91) compared to the traditional method.

Table 6 shows the number of labels of each activity class by comparing the proposed and
traditional. While some activity classes have more labels with the proposed method, only one class
has fewer labels with the proposed method.

The number of walking labels was increased from 112 to 135 (+23). The number of upstairs labels
was increased from 13 to 14 (+1). The number of standing labels was increased from 68 to 85 (+17).
The number of sitting labels was increased from 101 to 148 (+47). The number of downstairs labels
was increased from 16 to 20 (+4). The number of jogging labels was decreased from 1 to 0 (−1).

Table 6. The number of activity labels of each activity class for each method.

Activity Class Proposed Traditional Improvement

Walking 135 112 +23
Upstairs 14 13 +1
Standing 85 68 +17
Sitting 148 101 +47
Downstairs 20 16 +4
Jogging 0 1 −1

Total 402 311 +91

6. Discussion and Future Directions

By evaluating the dataset and comparing with the traditional method, the results reflect that
our proposed method has improvements in data quality (the performance of a classification model)
for all machine learning models evaluated and data quantity (the number of labels collected) that
indicate improvements in activity data collection. What we have found most interesting is that all
users improve quality of activity data collection with the proposed method, as shown in Table 5. While
RF achieves the highest F1-score at 81.5%, LDA has the most improvements by 16.2%. RF achieves
highest the precision at 81.3%, NB has the most improvements by 16.4%. SVM achieves highest the
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recall at 83.3% and also has the most improvements by 15.6%. While this study enabled us to improve
activity data collection effectively, there are some limitations that we would like to point out and
reference in the future.

First, while we notified information about estimated activity when the user is currently doing the
activity, it might be necessary to design both our mobile app and our recognition model to identify
when a user starts or stops a particular activity, such as walking, biking, or driving (e.g., detect when
users start and end an activity). For activity recognition systems, it is crucial to collect correct segments
data. In other words, we need a labeled sequence of activities (i.e., the start and finish times of the
events). Hence, if the app can be used to detect changes in the user’s activity, we can also deliver
this information as feedback to the user for better activity data collection. Researchers may consider
this idea for other purposes, for example, an app subscribes to a transition in activities of interest and
notifies the user only when needed (e.g., the app notifies driving when a user starts driving and mute
all conversations until the user stops driving).

Second, we used the WISDM dataset to train our deep learning model. Hence, the smartphone’s
position is limited for activity data collection in our experiment as we have to put the smartphone in the
same position. If the smartphone’s position and/or orientation is discrepant from theirs, the on-device
inference will not be correct. Consequently, considering to collect training dataset by ourselves will be
vital. Also, we can collect more data to make the samples balance among activity classes. Furthermore,
while we applied a three-axis accelerometer for training the recognition model and inferring on
a smartphone device, other smartphone sensors would be useful for more accurate recognition. For
example, adding gyroscope can help indicate orientation. We will leave this for future work.

Third, we run the trained model on a device without retraining. When designing activity
recognition (machine learning) systems, it is crucial to understand how our data is going to change
over time. A well-architected system should take this into account, and a plan should be put in place
for keeping our models updated. There are several ways to retain the model, for example, manual
retraining by training and deploying your models with fresh data using the same process you used to
build your models in the first place or continuous learning by using an automated system to evaluate
and retrain your models continuously (e.g., hosting a model on the cloud [49]). However, retraining
the model to maintain machine learning systems would be challenging for research questions in future
work, for example, how do we ensure our predictions continue to be accurate? Similarly, how do we
keep our models up-to-date with new training data?

Fourth, as our proposed method can be applied for several algorithms, but the main on-device
inference model that drove our work—that LSTM-based deep learning model. If a training model
were evaluating using other deep learning methods, such as CNN, CNN + LSTM, then there would
be value in expanding—why LSTM? What are the challenges that are different from other methods?
Which method is best?

Finally, we plan to evaluate the method with long-term data collection and more diverse samples,
find data insights as well as find out the correlations between accuracy, the number of activity labels and
classes to show whether and how strongly pairs of variables are related. For example, do notifications
affect the number of activity labels or do notifications affect the number of activity classes? Answering
these questions, it would also be helpful to understand user motivations and support activity data
collection further. Likewise, we have seen that although the number of activity labels is increased
with our method, not all activity classes (see in Table 6). Therefore, analyzing the data collected more
deeply will be useful to understand correlation and causation.

7. Conclusions

We have proposed a method to use on-device deep learning inference to detect activities that
users are doing as feedback for optimizing activity data collection in smartphone-based activity
recognition. The proposed method was validated with mobile sensors and 713 activity labels that we
collected from 6 participants. By evaluating with the dataset, the preliminary results indicate that
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our proposed method has improvements in F1-score, precision, and recall for all machine learning
classifiers compared to the traditional method. Moreover, the amount of data collected has increased
with the proposed method. There are several challenging areas that we see as ripe for next steps,
for instance, exploiting on-device deep learning inference for detecting changes in the user’s activity,
collecting own training data for on-device inference model, adding more sensor types for training
activity recognition models, retraining an on-device model, showing and comparing with other deep
learning methods as well as collecting more data and analyzing it deeply. We hope that this work can
spark future studies of on-smartphone deep learning as well as other edge devices that will be useful
for data collection in activity recognition systems.
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LSTM Long short-term memory
RNN Recurrent neural network
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LR Logistic regression
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KNN k-nearest neighbors
CART Decision tree
NB Naive Bayes
SVM Support-vector machine
RF Random forest
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