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Abstract: Forecasting user flows on transportation networks is a fundamental task for Intelligent
Transport Systems (ITSs). Indeed, most control and management strategies on transportation systems
are based on the knowledge of user flows. For implementing ITS strategies, the forecast of user flows
on some network links obtained as a function of user flows on other links (for instance, where data
are available in real time with sensors) may provide a significant contribution. In this paper, we
propose the use of Artificial Neural Networks (ANNs) for forecasting metro onboard passenger flows
as a function of passenger counts at station turnstiles. We assume that metro station turnstiles record
the number of passengers entering by means of an automatic counting system and that these data are
available every few minutes (temporal aggregation); the objective is to estimate onboard passengers
on each track section of the line (i.e., between two successive stations) as a function of turnstile data
collected in the previous periods. The choice of the period length may depend on service schedules.
Artificial Neural Networks are trained by using simulation data obtained with a dynamic loading
procedure of the rail line. The proposed approach is tested on a real-scale case: Line 1 of the Naples
metro system (Italy). Numerical results show that the proposed approach is able to forecast the flows
on metro sections with satisfactory precision.

Keywords: artificial neural networks; metro; transportation; user flow forecast

1. Introduction

Knowledge of user flows on transportation systems is crucial for implementing control and
management policies. In this context, monitoring systems assume a central role and are widely used
in many road and rail networks: they are one of the most important (and necessary) components of
Intelligent Transport Systems (ITSs).

Monitoring systems are based on sensors (or detectors) that measure some characteristics of
flows and transmit them to a control room, where the relevant data are used for implementing control
and management strategies. For instance, knowing traffic flows on a road network is useful for
implementing flow-responsive traffic-signal systems, while the user loads on public transport vehicles
can be used for real-time scheduling/rescheduling tasks.

Despite their usefulness, monitoring systems are not always provided on road and rail networks
or, sometimes, implemented systems do not have enough sensors to collect the data required for control
and management strategies. Indeed, the costs of these systems require significant investments from
public administration or public transport firms which are often inadmissible.

In this paper, we focus on metro lines, where access is controlled by turnstiles which can count
the passengers entering each station with or without identifying their direction (in most of the existing
stations, except terminals, passengers can board trains in different directions). These data can be easily
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collected every few minutes (e.g., fifteen-minute intervals) without installing new sensors. The objective
of this paper is to propose a method based on Artificial Neural Networks (ANNs) for estimating the
number of passengers on each segment of a metro line using data obtained from turnstiles. Indeed,
on-board data are rarely available in real time because they require infrared scanners, or alternatively
weight-based, image-based or photocell-based sensors that are seldom installed on coaches.

The paper is organised as follows: Section 2 provides the background; Section 3 describes the
problem to solve and the ANN approach; the method adopted for generating the data used in numerical
tests is reported in Section 4; Section 5 describes the case study and the results; Section 6 concludes and
identifies some research prospects.

2. Background

2.1. Artificial Neural Networks

The Artificial Neural Network (ANN) is a mathematical method that is widely used for reproducing
several physical phenomena and forecasting the results of some actions on (or variations of) the
parameters/variables of the system. ANNs are considered to be black-boxes since the functions and the
relationships between inputs and outputs are hidden, not known and, generally, not interpretable.

Both the strengths and weaknesses of ANNs are related to their black-box approach. ANNs can
reproduce a phenomenon or approximate a function without making the parameters explicit; moreover,
once trained, they are able to give the results rapidly. On the other hand, trained ANNs are not
extendible even to similar cases and work only if the boundary conditions do not change significantly.

ANNs have been widely studied elsewhere; they were initially introduced in [1–3] and then
developed in other pioneering contributions [4–8]. Many general books focus on ANNs; here we refer
to [9–14].

Literature reviews have been proposed in several papers. Scarselli and Tsoi [15] presented
a review of studies that used Feedforward Neural Networks to approximate some functions, examining
computational aspects, structures of the network (hidden layers and neurons), and training algorithms.
They also proposed two training algorithms. Baptista and Morgado-Dias [16] examined the numerous
software tools available, with the intention to help choose the most appropriate tool while considering
its features (operating system, minimum hardware, kind of licence, algorithms implemented, and so
on). Timotheou [17] reviewed random neural networks and their application to several problems.
Extreme learning machines were reviewed in [18], while reviews on deep learning in neural networks
can be found in [19,20]. Finally, here we refer to Yao [21] for an appraisal of evolutionary artificial
neural networks.

2.2. Road Traffic Flow Forecasting

Two main types of transportation flow forecasting problems can be identified: (i) short-term
forecasting and (ii) traffic data spatial extension. Some papers that applied ANNs to these problems
were reviewed in [22].

The first problem aims to forecast the traffic flows (or user flows) that use a road section (or a transit
line) in a future time interval, using the data measured in the previous time intervals in the same
road section. This problem has been widely studied elsewhere, and a complete review would deserve
a specific paper; here we refer to [23,24]. For solving this problem, several methods were proposed;
in this paper, we focus on most of the literature that has used ANNs.

Kirby et al. [25] discussed the use of ANNs for forecasting traffic flows on motorways up to
an hour ahead and compared this approach with other statistical models. Smith and Demetsky [26]
compared the performances of ANNs with traditional methods for solving the short-term traffic
flow prediction problem, such as data-based algorithms and time-series models; they found that the
back-propagation neural network model was able to predict future traffic flows on highways better
than the other models. In the same research field, ANNs were used for modelling freeway traffic
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in a macroscopic environment [27]; the authors found that the neural network model was able to
capture the traffic dynamics quite closely and was “computationally efficient for real-time implementation”.
ANNs were proposed as tools for predicting congestion and forecasting flows in [28]; the authors also
discussed whether ANNs were able to estimate parameters that cannot be directly measured with road
sensors. Park et al. [29] proposed a radial basis function neural network for short-term forecasting
on freeways; they tested the method with real observations and compared it with other approaches
such as Taylor series, single and double exponential smoothing methods, and back-propagation neural
networks. Zheng et al. [30] proposed a Bayesian combined neural network approach for short-term
forecasting on freeways, while a binary neural network was presented in [31]. Another application
on a highway can be found in [32], while applications in urban environments can be found in [33,34].
Park et al. [35] used feedforward multilayer neural networks for estimating link travel times on
freeways. Other applications of ANNs to short-term forecasting can be found in [36–40]. Ledoux [41]
proposed the use of ANNs within an urban traffic flow model, while Florio and Mussone [42] studied
traffic flow stability on freeways with neural network models.

Traffic data spatial extension problems have received less attention in the literature. Lin et al. [43]
used a macroscopic model for short-term forecasting, which is also able to predict flows on other links.
Zheng Zhu et al. [44] used ANNs for spatial extension of traffic flows at road intersections. Gallo and
De Luca [45] proposed the use of ANNs for estimating traffic flows on some links of an urban road
network according to the flows measured on other links.

Recently, deep learning methods have been proposed in the field of traffic prediction; a survey can
be found in [46]. The authors identified four main deep learning models: deep neural networks (DNN),
convolutional neural networks (CNN), recurrent neural networks (RNN), and deep reinforcement
learning (referring, in particular, to the Deep Q-Network [47]). In the ITS field, among others, DNN,
CNN and RNN are useful for time series prediction. However, the above methods have not yet been
used for the spatial extension of traffic or passenger data.

Short-term traffic forecasting with deep learning was studied in [48], where a long short-term
memory (LSTM) network was proposed; the method was tested on a case study in Beijing, showing
promising forecast accuracy compared with other approaches. The same approach has also been used
for traffic flow prediction with missing data in [49].

Temporal CNN was proposed in [50] for short-term forecasting of passenger demand,
outperforming other models in test cases. Support vector machines and data denoising schemes were
combined in [51] for traffic flow prediction; the proposed denoising algorithms improved the results
in this hybrid model, compared to other approaches without a denoising strategy. Short-term travel
speed prediction was studied in [52–55].

2.3. Metro Passenger Flow Forecasting

The specific problem tackled in this paper entails metro passenger flow prediction. The literature
review in this field presents some interesting contributions.

Deep learning methods were proposed in [56] and tested on a Bus Rapid Transit (BRT) system.
The proposed model forecasts the hourly flow, adopting a three-stage deep learning architecture.
This paper also analyses the literature, identifying four different approaches: (1) traditional classical
algorithms; (2) regressive models; (3) machine learning-based models, including ANNs; (4) hybrid
models. All studied cases, however, refer to short-term or long-term time periods, without considering
the spatial extension. Among them, cases reported in [57,58] are applied on railways and based on
ANNs, focusing on short-term and long-term forecasting respectively. Short-term forecasting on
urban metros was also studied along with other methods, such as Kalman filter [59] and ARIMA
(autoregressive integrated moving average) models [60].

Li et al. [61] proposed a multiscale radial basis function (MSRBF) for forecasting short-term
metro passenger flows on special occasions, such as sporting events, concerts, and so on. In this case,
passenger flow is very irregular and predictions are more difficult to obtain. Ling et al. [62] used
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smart-card data for predicting passenger flows in the subway of Shenzhen (China); they analysed
four predictive models: a historical average model, ANN, regression model and a gradient-boosted
regression tree model. Liu et al. [63] proposed a deep learning method for short-term forecasting of
metro inbound/outbound passenger flows, while Wang et al. [64] proposed a Novel Markov-Grey
model for solving the same problem.

2.4. Contribution of the Paper

ANNs have been widely used in numerous scientific fields since the 1950s/1960s and in traffic
engineering since the 1990s. Most applications in traffic engineering have focused on the temporal
extent of data (more frequently short-term or, sometimes, long-term predictions) and road environments;
fewer cases refer to transit systems. The spatial extent of data has been less widely studied and, to our
best knowledge, the use of ANNs for the specific problem tackled in this paper has not been proposed
elsewhere. Therefore, the originality of our contribution does not so much concern the method used,
which is indeed consolidated, as the problem dealt with and the procedure used to construct the
training datasets. Other more advanced methods, such as deep learning, will be the subject of further
research, as will be discussed in the conclusions. In this paper, the performance of ANNs was not
compared with other methods because there are no benchmarks. Indeed, almost all methods usually
used as benchmarks in short-term forecasting problems are not applicable in our case, since they are
time-series specific.

It is important to underline that the problem studied is relevant to the real-time management of
metro lines. Data at turnstiles can be easily collected with methods that do not require significant
additional investment, while data obtained through the above procedure (loads on line sections)
are essential for service operators and, unlike the former, are not easily detectable in real time
and continuously.

3. Problem Description and ANN Approach

We assume that turnstiles control all accesses to a metro line: each user, entering a station,
uses a ticket (or a pass) for crossing the turnstile. Moreover, the turnstiles are only able to count
users entering the station without linking the origin of each trip with the corresponding destination.
This situation is common to many metro lines, such as Line 1 of the Naples metro system (Italy) which
will be the subject of the real-scale test. Indeed, turnstiles are often installed only for facilitating ticket
control/validation and avoiding no-ticket trips, and, in urban contexts, the fare is the same regardless
of the origin-destination pair. Below, we consider two cases: (a) turnstiles at the station entrance that
measure only passengers entering, with no indication which direction they will follow; (b) turnstiles
upon access to platforms that also give information on trip direction (see Figure 1).

The data collected by turnstiles can be used, with low technological investment, for implementing
a monitoring system of the whole metro line, generating information about the passengers on each
railway section (between two stations). Such information can be of great use to metro operators
for implementing real-time strategies, like a frequency increase or reduction, determination of train
composition (number of passenger carriages), the scheduling of additional runs, and so on.

The problem to solve is the estimation of loads on the line starting from turnstile data. For this
purpose, we propose feedforward ANNs, which are suitable because (a) the relationships between
inputs and outputs do not need to be explicitly known, (b) the results are obtained rapidly, and (c) the
boundary conditions do not usually change so much as to invalidate forecasts.

The structure of the ANN provides an input layer with a node for each turnstile, an output layer
with a node for each convoy load, and one or more hidden layers. The best structure of the ANN
has to be designed for each specific problem. A crucial point concerns the dynamic nature of the
problem: the train moves along the line, loading and unloading passengers at stations in different time
intervals. Therefore, the number of onboard passengers between two stations at time t depends on
the passengers loaded and unloaded at previous stations at different times (<t). Hence, ANN inputs
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have to consider turnstile counts referring to several time intervals preceding those being forecast.
The number of inputs will depend on the travel time duration between terminals.

The other crucial point is the training phase of ANNs; here we propose to use a supervised
learning method, where the example datasets are generated through dynamic simulation models
(see Section 4). Note that it is not possible to use real-world data for the training phase. Indeed,
only the input data (on passengers entering the stations) are available while the output data (on-board
passengers) can be known only if all coaches have sensors that are able to measure them; in this case,
however, the proposed approach would not be useful.
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4. Generation of Training Datasets

To generate the training datasets, we used the simulation model proposed in [65]. This model
assumes that:

1. platforms can accommodate all passengers (incoming, waiting and outgoing);
2. at each station and for each direction there is only one platform available;
3. the dwell time is constant and independent of the number of passengers alighting and boarding;
4. there is no interaction on the platform between alighting, boarding and waiting passengers;
5. the capacity of each train is fixed;
6. passengers are distributed uniformly among the train coaches;
7. there is no interaction in the train between alighting, boarding and onboard passengers.

In our test, we assume that the passengers follow a FIFO (First In-First Out) rule for boarding the
convoy. The analytical details of the model can be found in [65].

Using this model, we generate the training datasets on the case study as follows: (a) numerous
origin-destination (OD) matrices referring to 15′ intervals are randomly generated starting from a base
OD matrix; (b) four OD matrices, referring to four consecutive time intervals, are assigned to the metro
line, yielding as results the passengers counted at turnstiles, for each interval, and the passengers
onboard in each railway section in the next time interval; (c) the output data of the problem are the
passengers on railway sections, while the input data are the passengers counted at turnstiles in four
time intervals, corresponding to the four previous 15′ periods (e.g., flows on railway sections between
10:15 and 10:30 are estimated according to the turnstile counts in the intervals: 9:15–9:30, 9:30–9:45,
9:45–10:00 and 10:00–10:15). Therefore, the structure of the training datasets is reported in Table 1,
where the following notations are used:

- ds is the number of datasets;
- t is the period under analysis;
- ci

j,t is the passenger count at turnstile j in period t for dataset i;
- fik,t is the load on railway section k in period t for dataset i.

Table 1. Structure of training datasets for period t.

Dataset→ 1 2 . . . ds

Input data

Turnstile 1–Period t − 1 c1
1,t−1 c2

1,t−1 . . . cds
1,t−1

Turnstile 2–Period t − 1 c1
2,t−1 c2

2,t−1 . . . cds
2,t−1

. . . . . . . . . . . . . . .
Turnstile ts–Period t − 1 c1

ts,t−1 c2
ts,t−1 . . . cds

ts,t−1
Turnstile 1–Period t − 2 c1

1,t−2 c2
1,t−2 . . . cds

1,t−2
Turnstile 2–Period t − 2 c1

2,t−2 c2
2,t−2 . . . cds

2,t−2
. . . . . . . . . . . . . . .

Turnstile ts–Period t − 2 c1
ts,t−2 c2

ts,t−2 . . . cds
ts,t−2

Turnstile 1–Period t − 3 c1
1,t−3 c2

1,t−2 . . . cds
1,t−2

Turnstile 2–Period t − 3 c1
2,t−2 c2

2,t−3 . . . cds
2,t−3

. . . . . . . . . . . . . . .
Turnstile ts–Period t − 3 c1

ts,t−3 c2
ts,t−3 . . . cds

ts,t−3
Turnstile 1–Period t − 4 c1

1,t−4 c2
1,t−4 . . . cds

1,t−4
Turnstile 2–Period t − 4 c1

2,t−4 c2
2,t−4 . . . cds

2,t−4
. . . . . . . . . . . . . . .

Turnstile ts–Period t − 4 c1
ts,t−4 c2

ts,t−4 . . . cds
ts,t−4

Output data

Railway section 1–Period t f 1
1,t f 2

1,t . . . fds
1,t

Railway section 2–Period t f 1
2,t f 2

2,t . . . fds
2,t

. . . . . . . . . . . . . . .
Railway section rs–Period t f 1

rs,t f 2
rs,t . . . fds

rs,t
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5. Case Study and Numerical Results

The proposed approach was tested on Line 1 of the Naples metro system. This line (see Figure 2) is
18 km long and has 18 stations; it connects high-density districts in Naples and is crucial infrastructure
for urban mobility.
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Considering these characteristics, we have 34 or 18 turnstiles, if we divide the passengers
according to direction or not, and 34 mono-directional railway sections. The main features of the line
are summarised in Table 2.

Table 2. Features of Line 1.

Stations 18
Working day runs 241
Convoy capacity (pax/convoy) 864
Line length (km) (outward/return direction) 18.8/18.6
Headway (min) 8–20

The training datasets were obtained by simulating 2500 OD matrices generated randomly.
On eliminating some of them because their results were not feasible (too many passengers compared
to the actual capacity), we generated 2279 training datasets. Of the latter datasets, 2229 were used
for the whole training process of the ANNs with the software MatLab: 1561 training datasets (70%),
334 validation datasets (15%) and 334 testing datasets (15%). The remaining 50 datasets were used
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to verify the goodness of the trained ANNs with examples that were not used before in the training
process. We tested six ANN structures for both cases: (a) turnstiles at the station entrance (18 turnstiles),
and (b) turnstiles at the access points to platforms (34 turnstiles). We thus trained and tested 12 ANNs,
as reported in Table 3.

Table 3. ANN structures.

Case ANN Input Nodes Output Nodes Hidden Layers Neurons

a a_1_6 72 34 1 6
a a_1_10 72 34 1 10
a a_1_20 72 34 1 20
a a_2_6 72 34 2 6/6
a a_2_10 72 34 2 10/10
a a_2_20 72 34 2 20/20
b b_1_6 136 34 1 6
b b_1_10 136 34 1 10
b b_1_20 136 34 1 20
b b_2_6 136 34 2 6/6
b b_2_10 136 34 2 10/10
b b_2_20 136 34 2 20/20

The training phase required computing times from 30 s (case a_1_6) to 8 min (case b_2_20),
with a Personal Computer Hewlett Packard i7-7700HQ, 280 GHz, RAM 16 GB. In Table 4 we report the
best and worst coefficients of determination (R2) for each case, referring to the 50 datasets not used
in the training phase, and the corresponding averages and variances. The datasets for which R2 is
lower than 0.9, 0.8, 0.7 and 0.6 are reported in Table 5. In these tables, the best values for each ANN
are underlined.

Examining the results reported in Tables 4 and 5, we may identify as best ANN structures the one
with one hidden layer and 20 neurons for case (a), and two hidden layers and 10 neurons for case (b).
The corresponding dispersion diagrams in the cases of best and worst R2 are reported in Figures 3
and 4.

Table 4. Coefficients of determination (R2).

ANN Best Worst Average Variance

a_1_6 0.9946 0.5487 0.7984 0.0124
a_1_10 0.9941 0.4990 0.8108 0.0160
a_1_20 0.9931 0.5613 0.8332 0.0157
a_2_6 0.9916 0.5353 0.7949 0.0121
a_2_10 0.9930 0.4638 0.8136 0.0175
a_2_20 0.9933 0.5342 0.8244 0.0162

b_1_6 0.9875 0.5460 0.8016 0.0129
b_1_10 0.9905 0.3505 0.8115 0.0202
b_1_20 0.9882 0.4226 0.8291 0.0160
b_2_6 0.9785 0.5119 0.7775 0.0132

b_2_10 0.9889 0.4935 0.8221 0.0132
b_2_20 0.9852 0.4492 0.8075 0.0245

Best values are underlined.
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Table 5. Analysis of R2 values.

ANN R2 < 0.9 R2 < 0.8 R2 < 0.7 R2 < 0.6

Number of datasets

a_1_6 41 25 9 4
a_1_10 36 22 7 4
a_1_20 33 18 7 3
a_2_6 43 25 10 3

a_2_10 35 21 8 4
a_2_20 34 19 9 5

b_1_6 37 24 10 2
b_1_10 34 23 8 5
b_1_20 32 19 8 3
b_2_6 43 25 10 6
b_2_10 35 20 7 2
b_2_20 30 21 9 7

Percentage of datasets

a_1_6 82% 50% 18% 8%
a_1_10 72% 44% 14% 8%
a_1_20 66% 36% 14% 6%
a_2_6 86% 50% 20% 6%

a_2_10 70% 42% 16% 8%
a_2_20 68% 38% 18% 10%

b_1_6 74% 48% 20% 4%
b_1_10 68% 46% 16% 10%
b_1_20 64% 38% 16% 6%
b_2_6 86% 50% 20% 12%
b_2_10 70% 40% 14% 4%
b_2_20 60% 42% 18% 14%

Best values are underlined.
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6. Conclusions and Research Prospects

In this paper, we studied the problem of forecasting passenger flows on railway sections of a metro
line starting from counts at turnstiles and proposed to use artificial neural networks (ANNs) for its
solution. The training datasets were generated using a simulation model. We considered two cases:
turnstiles at station entrances and turnstiles at platform accesses. For both, we designed and trained
several ANNs.

The results showed a good capacity of ANNs to forecast the loads on railway sections. Our analysis
allowed us to identify the best ANN structure for each case.

Future research could profitably lead in several directions. First of all, other ANN structures
could be tested. Then the problem could be extended to more complex metro systems, including
systems with more than one line. Finally, other methods could be investigated, as well deep-learning
approaches that could be applied to this problem.

Author Contributions: Conceptualization, M.G. and L.D.; Methodology, M.G., G.D.L. and L.D.; Validation,
M.B. and G.D.L.; Investigation, M.B. and G.D.L.; Resources, L.D. and M.B.; Data Curation, M.B. and G.D.L.;
Writing—Original Draft Preparation, M.G. and L.D.; Writing—Review and Editing, M.G., G.D.L., L.D. and M.B.;
Supervision, M.G.

Funding: This research received no external funding.

Acknowledgments: The authors are grateful to the anonymous reviewers for their valuable comments
and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. McCulloch, W.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys.
1943, 5, 115–133. [CrossRef]

2. Hebb, D.O. The Organization of Behaviour. A Neuropsychological Theory; Wiley: Hoboken, NJ, USA, 1949.
3. Rosenblatt, F. Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms; Spartan Books:

Washington, DC, USA, 1962.

http://dx.doi.org/10.1007/BF02478259


Sensors 2019, 19, 3424 12 of 14

4. Minsky, M.; Papert, S. An Introduction to Computational Geometry; MIT Press: Cambridge, MA, USA, 1969.
5. Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43, 59–69.

[CrossRef]
6. Grossberg, S. Neural Networks and Natural Intelligence; MIT Press: Cambridge, MA, USA, 1988.
7. Minsky, M.L. Theory of Neural—Analog Reinforcement System and Its Application to the Brain—Model

Problem. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 1954.
8. Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities.

Proc. Natl. Acad. Sci. USA 1982, 79, 2554–2558. [CrossRef]
9. Judd, J.S. Neural Network Modeling and Connectionism. Neural Network Design and the Complexity of Learning;

MIT Press: Cambridge, MA, USA, 1990.
10. Haykin, S. Neural Networks: A Comprehensive Foundation; McMaster University: Hamilton, ON, Canada, 1994.
11. Miller, W.T.; Werbos, P.J.; Sutton, R.S. Neural Networks for Control; MIT Press: Cambridge, MA, USA, 1995.
12. Rojas, R. Neural Networks. A Systematic Introduction; Springer: Berlin/Heidelberg, Germany, 1996.
13. Haykin, S.S. Kalman Filtering and Neural Networks; Wiley Online Library: Hoboken, NJ, USA, 2001.
14. Aggarwal, C.C. Neural Networks and Deep Learning; Springer: Berlin/Heidelberg, Germany, 2018.
15. Scarselli, F.; Tsoi, A.C. Universal approximation using feedforward neural networks: A survey of some

existing methods, and some new results. Neural Netw. 1998, 11, 15–37. [CrossRef]
16. Baptista, D.; Morgado-Dias, F. A survey of artificial neural network training tools. Neural Comput. Appl.

2013, 23, 609–615. [CrossRef]
17. Timotheou, S. The random neural network: A survey. Comput. J. 2010, 53, 251–267. [CrossRef]
18. Huang, G.; Huang, G.-B.; Song, S.; You, K. Trends in extreme learning machines: A review. Neural Netw.

2015, 61, 32–48. [CrossRef] [PubMed]
19. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef]

[PubMed]
20. Liu, W.; Wang, Z.; Liu, X.; Zeng, N.; Liu, Y.; Alsaadi, F.E. A survey of deep neural network architectures and

their applications. Neurocomputing 2017, 234, 11–26. [CrossRef]
21. Yao, X. A review of evolutionary artificial neural networks. Int. J. Intell. Syst. 1993, 8, 539–567. [CrossRef]
22. De Luca, G.; Gallo, M. Artificial Neural Networks for forecasting user flows in transportation networks:

Literature review, limits, potentialities and open challenges. In Proceedings of the 5th IEEE International
Conference on Models and Technologies for Intelligent Transportation Systems, Naples, Italy, 26–28 June
2017; pp. 919–923.

23. Vlahogianni, E.I.; Karlaftis, M.G.; Golias, J.C. Short-term traffic forecasting: Where we are and where we’re
going. Transp. Res. Part. C 2014, 43, 3–19. [CrossRef]

24. Oh, S.; Byon, Y.J.; Jang, K.; Yeo, H. Short-term travel-time prediction on highway: A review of the data-driven
approach. Transp. Rev. 2015, 35, 4–32. [CrossRef]

25. Kirby, H.R.; Watson, S.M.; Dougherty, S. Should we use neural networks or statistical models for short-term
motorway traffic forecasting? Int. J. Forecast. 1997, 13, 43–50. [CrossRef]

26. Smith, B.L.; Demetsky, M.J. Short-term traffic flow prediction: Neural network approach. Transp. Res. Rec.
1994, 1453, 98–104.

27. Zhang, H.; Ritchie, S.G.; Lo, Z.-P. Macroscopic modeling of freeway traffic using an artificial neural network.
Transp. Res. Rec. 1997, 1588, 110–119. [CrossRef]

28. Dougherty, M.S.; Kirby, H.C. The use of neural networks to recognize and predict traffic congestion.
Traffic Eng. Control 1998, 346, 311–314.

29. Park, B.; Carroll, J.M.; Urbank, T.I. Short-term freeway traffic forecasting using radial basis function neural
network. Transp. Res. Rec. 1998, 1651, 39–46. [CrossRef]

30. Zheng, W.; Lee, D.-H.; Shi, Q. Short-term freeway traffic prediction: Bayesian combined neural network
approach. J. Transp. Eng. 2006, 132, 114–121. [CrossRef]

31. Hodge, V.; Austin, J.; Krishnan, R.; Polak, J.; Jackson, T. Short-Term Traffic Prediction Using a Binary Neural
Network; UTSG: Toronto, ON, Canada, 2011.

32. Kumar, K.; Parida, M.; Katiyar, V.K. Short term traffic flow prediction for a non urban highway using Artificial
Neural Network. Procedia Soc. Behav. Sci. 2013, 104, 755–764. [CrossRef]

33. Zheng, F.; Van Zuylen, H. Urban link travel time estimation based on sparse probe vehicle data. Transp. Res.
Part. C 2013, 31, 145–157. [CrossRef]

http://dx.doi.org/10.1007/BF00337288
http://dx.doi.org/10.1073/pnas.79.8.2554
http://dx.doi.org/10.1016/S0893-6080(97)00097-X
http://dx.doi.org/10.1007/s00521-013-1408-9
http://dx.doi.org/10.1093/comjnl/bxp032
http://dx.doi.org/10.1016/j.neunet.2014.10.001
http://www.ncbi.nlm.nih.gov/pubmed/25462632
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25462637
http://dx.doi.org/10.1016/j.neucom.2016.12.038
http://dx.doi.org/10.1002/int.4550080406
http://dx.doi.org/10.1016/j.trc.2014.01.005
http://dx.doi.org/10.1080/01441647.2014.992496
http://dx.doi.org/10.1016/S0169-2070(96)00699-1
http://dx.doi.org/10.3141/1588-14
http://dx.doi.org/10.3141/1651-06
http://dx.doi.org/10.1061/(ASCE)0733-947X(2006)132:2(114)
http://dx.doi.org/10.1016/j.sbspro.2013.11.170
http://dx.doi.org/10.1016/j.trc.2012.04.007


Sensors 2019, 19, 3424 13 of 14

34. Csikos, A.; Viharos, Z.J.; Kisk, B.; Tettamanti, T.; Varga, I. Traffic speed prediction method for urban networks
an ANN approach. In Proceedings of the Models and Technologies for Intelligent Transportation Systems,
Budapest, Hungary, 3–5 June 2015.

35. Park, D.; Rilett, L.R. Forecasting Freeway Link Travel Times with a Multilayer Feedforward Neural Network.
Comput. Aided Civ. Infrastruct. Eng. 1999, 14, 357–367. [CrossRef]

36. Yasdi, R. Prediction of road traffic using a neural network approach. Neural Comput. Appl. 1999, 8, 135–142.
[CrossRef]

37. Li, R.; Lu, H. Combined neural network approach for short-term urban freeway traffic flow prediction.
Lect. Notes Comput. Sci. 2009, 5553, 1017–1025.

38. Gao, Y.; Sun, S. Multi-link traffic flow forecasting using neural networks. In Proceedings of the 2010 Sixth
International Conference on Natural Computation, Yantai, China, 10–12 August 2010; pp. 398–401.

39. Gao, J.; Leng, Z.; Qin, Y.; Ma, Z.; Liu, X. Short-term traffic flow forecasting model based on wavelet neural
network. In Proceedings of the 25th Chinese Control and Decision Conference, Guiyang, China, 25–27 May
2013; pp. 5081–5084.

40. Goves, C. Short term traffic prediction on the UK motorway network using neural networks. In Proceedings
of the European Transport Conference, Frankfurt, Germany, 28–30 September 2015.

41. Ledoux, C. An urban traffic flow model integrating neural networks. Transp. Res. Part. C 1997, 5, 287–300.
[CrossRef]

42. Florio, L.; Mussone, L. Neural network models for classification and forecasting of freeway traffic flow
stability. In Transportation Systems: Theory and Application of Advanced Technology; Liu, B., Blosseville, J.M.,
Eds.; Elsevier: Amsterdam, The Netherlands, 1995; pp. 773–784.

43. Lin, S.; Xi, Y.; Yang, Y. Short-term traffic flow forecasting using macroscopic urban traffic network model.
In Proceedings of the 11th International IEEE Conference on Intelligent Transportation Systems (ITSC),
Beijing, China, 12–15 October 2008.

44. Zheng Zhu, J.; Xin Cao, J.; Zhu, Y. Traffic forecasting based on radial basis function neural network with the
consideration of traffic flows at the adjacent intersections. Transp. Res. Part. C 2014, 47, 139–154.

45. Gallo, M.; De Luca, G. Spatial extension of road traffic sensor data with Artificial Neural Networks. Sensors
2018, 18, 14. [CrossRef] [PubMed]

46. Wang, Y.; Zhang, D.; Liu, Y.; Dai, B.; Lee, L.H. Enhancing transportation systems via deep learning: A survey.
Transp. Res. Part. C 2019, 99, 144–163. [CrossRef]

47. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.A.;
Fidjeland, A.; Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015,
518, 529–533. [CrossRef]

48. Zhao, Z.; Chen, W.; Wu, X.; Chen, P.C.Y.; Liu, J. LSTM network: A deep learning approach for short-term
traffic forecast. IET Intell. Transp. Syst. 2017, 11, 68–75. [CrossRef]

49. Tian, Y.; Zhang, K.; Li, J.; Lin, X.; Yang, B. LSTM-based traffic flow prediction with missing data.
Neurocomputing 2018, 318, 297–305. [CrossRef]

50. Zhang, K.; Liu, Z.; Zheng, L. Short-Term Prediction of Passenger Demand in Multi-Zone Level: Temporal
Convolutional Neural Network with Multi-Task Learning. IEEE Trans. Intell. Transp. Syst. 2019. [CrossRef]

51. Tang, J.; Chen, X.; Hu, Z.; Zong, F.; Han, C.; Li, J. Traffic flow prediction based on combination of support
vector machine and data denoising schemes. Physica A 2019. [CrossRef]

52. Zheng, L.; Zhu, C.; Zhu, N.; He, T.; Dong, N.; Huang, H. Feature selection-based approach for urban
short-term travel speed prediction. IET Intell. Transp. Syst. 2018, 12, 474–484. [CrossRef]

53. Wang, J.; Chen, R.; He, Z. Traffic speed prediction for urban transportation network: A path based deep
learning approach. Transp. Res. Part. C 2019, 100, 372–385. [CrossRef]

54. Yu, D.; Liu, C.; Wu, Y.; Liao, S.; Anwar, T.; Li, W.; Zhou, C. Forecasting short-term traffic speed based on
multiple attributes of adjacent roads. Knowl. Based Syst. 2019, 163, 472–484. [CrossRef]

55. Zhang, K.; Zheng, L.; Liu, Z.; Jia, N. A deep learning based multitask model for network-wide traffic speed
predication. Neurocomputing 2019. [CrossRef]

56. Liu, L.; Chen, R.-C. A novel passenger flow prediction model using deep learning methods. Transp. Res.
Part. C 2017, 84, 74–91. [CrossRef]

57. Tsai, T.H.; Lee, C.K.; Wei, C.H. Neural network based temporal feature models for short-term railway
passenger demand forecasting. Expert Syst. Appl. 2009, 36, 3728–3736. [CrossRef]

http://dx.doi.org/10.1111/0885-9507.00154
http://dx.doi.org/10.1007/s005210050015
http://dx.doi.org/10.1016/S0968-090X(97)00015-6
http://dx.doi.org/10.3390/s18082640
http://www.ncbi.nlm.nih.gov/pubmed/30103539
http://dx.doi.org/10.1016/j.trc.2018.12.004
http://dx.doi.org/10.1038/nature14236
http://dx.doi.org/10.1049/iet-its.2016.0208
http://dx.doi.org/10.1016/j.neucom.2018.08.067
http://dx.doi.org/10.1109/TITS.2019.2909571
http://dx.doi.org/10.1016/j.physa.2019.03.007
http://dx.doi.org/10.1049/iet-its.2017.0059
http://dx.doi.org/10.1016/j.trc.2019.02.002
http://dx.doi.org/10.1016/j.knosys.2018.09.003
http://dx.doi.org/10.1016/j.neucom.2018.10.097
http://dx.doi.org/10.1016/j.trc.2017.08.001
http://dx.doi.org/10.1016/j.eswa.2008.02.071


Sensors 2019, 19, 3424 14 of 14

58. Li, J.T.; Yang, J.F. Prediction of Dalian station passenger based on RBF neural network. J. Dalian Jiaotong Univ.
2007, 28, 32–34.

59. Jiao, P.; Li, R.; Sun, T.; Hou, Z.; Ibrahim, A. Three revised kalman filtering models for short-term rail transit
passenger flow prediction. Math. Probl. Eng. 2016, 2016, 1–10. [CrossRef]

60. Cai, C.; Yao, E.; Wang, M.; Zhang, Y. Prediction of urban railway station’s entrance and exit passenger flow
based on multiply ARIMA model. J. Beijing Jiaotong Univ. 2014, 38, 135–140.

61. Li, Y.; Wang, X.; Sun, S.; Ma, X.; Lu, G. Forecasting short-term subway passenger flow under special events
scenarios using multiscale radial basis function networks. Transp. Res. Part. C 2017, 77, 306–328. [CrossRef]

62. Ling, X.; Huang, Z.; Wang, C.; Zhang, F.; Wang, P. Predicting subway passenger flows under different traffic
conditions. PLoS ONE 2018, 13, 1–23. [CrossRef]

63. Liu, Y.; Liu, Z.; Jia, R. DeepPF: A deep learning based architecture for metro passenger flow prediction.
Transp. Res. Part. C 2019, 101, 18–34. [CrossRef]

64. Wang, Y.; Ma, J.; Zhang, J. Metro Passenger Flow Forecast with a Novel Markov-Grey Model. Period. Polytech.
Transp. Eng. 2019. [CrossRef]

65. D’Acierno, L.; Botte, M.; Montella, B. Assumptions and simulation of passenger behaviour on rail platforms.
Int. J. Transp. Dev. Integr. 2018, 2, 123–135. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1155/2016/9717582
http://dx.doi.org/10.1016/j.trc.2017.02.005
http://dx.doi.org/10.1371/journal.pone.0202707
http://dx.doi.org/10.1016/j.trc.2019.01.027
http://dx.doi.org/10.3311/PPtr.11131
http://dx.doi.org/10.2495/TDI-V2-N2-123-135
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Background 
	Artificial Neural Networks 
	Road Traffic Flow Forecasting 
	Metro Passenger Flow Forecasting 
	Contribution of the Paper 

	Problem Description and ANN Approach 
	Generation of Training Datasets 
	Case Study and Numerical Results 
	Conclusions and Research Prospects 
	References

