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Abstract: As restricted resources have seriously limited the computational performance of
massive Internet of things (IoT) devices, better processing capability is urgently required.
As an innovative technology, multi-access edge computing can provide cloudlet capabilities by
offloading computation-intensive services from devices to a nearby edge server. This paper proposes
an intelligent rapid adaptive offloading (IRAO) algorithm for a dynamic IoT system to increase overall
computational performance and simultaneously keep the fairness of multiple participants, which can
achieve agile centralized control and solve the joint optimization problems related to offloading policy
and resource allocation. For reducing algorithm execution time, we apply machine learning methods
and construct an adaptive learning-based framework consisting of offloading decision-making,
radio resource slicing and algorithm parameters updating. In particular, the offloading policy can
be rapidly derived from an estimation algorithm based on a deep neural network, which uses
an experience replay training method to improve model accuracy and adopts an asynchronous
sampling trick to enhance training convergence performance. Extensive simulations with different
parameters are conducted to maintain the trade-off between accuracy and efficiency of the IRAO
algorithm. Compared with other candidates, the results illustrate that the IRAO algorithm can achieve
superior performance in terms of scalability, effectiveness and efficiency.

Keywords: deep neural network; edge computing; Internet of things; offloading policy; resource
allocation

1. Introduction

Along with the development of information and communication technology, a large number of
wireless devices urgently require better processing capability for computation-intensive services [1].
Meanwhile, the computational performance of sensor nodes and Internet of things (IoT) terminals is
seriously limited by the restricted resources in computing, caching and energy. Consequently, service
migration has been proposed as an innovative technique of cloud-network convergence, which can
selectively offload services from the terminals to cloud servers with powerful capability [2]. It is
constrained by the limited radio resource in radio access network (RAN) to offload massive data from
wireless devices and support real-time services. With many technologies, such as beam forming and
carrier aggregation, the RAN is evolving in terms of radio resource and can provide larger bandwidth,
which makes the service migration a more promising solution [3]. However, on account of the long
distance between the terminals and the servers located at a core network in cloud computing, there are
some challenges relating to additional bandwidth consumption, longer propagation latency and extra
security threats. Therefore, mobile edge computing (MEC) has emerged as an enabling technology
which promotes edge-cloud collaboration by deploying servers in close proximity to the user terminals.
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In other words, quality of service (QoS) can be further improved by offloading the services to nearby
servers located at the edge of the RAN [2].

In MEC-based networks, it is complicated to design offloading policy for a dynamic IoT system.
Adaptive policies have to be made continually due to the rapid dynamicity of wireless channels, device
capacities and service requirements. In ultra-dense networks, heterogeneous accessed devices further
complicate the design of offloading policy from a systematic perspective. Also, it is more crucial to
allocate the radio resource for different participants at a wireless access point (AP) or base station (BS),
on account of that the computational capability and storage capacity are powerful and virtualized at
the side of an MEC cloud [3]. Thus, a joint optimization problem arises related to offloading policy
design and radio resource allocation, which is so complicated that it cannot be solved adaptively and
rapidly by conventional iterated-based optimization algorithms.

In this paper, we consider a time-varying IoT system consisting of multiple IoT devices and one
AP deployed in an MEC network. Constrained with respective limited capacities of IoT devices [4],
they have diverse computational requirements and different wireless channels accessed with the AP.
In order to increase the overall system performance and simultaneously keep the fairness of different
participants, a joint optimization problem is formulated to maximize the utility calculated by the
weighted sum computing rate of all users. We propose an intelligent rapid adaptive offloading (IRAO)
algorithm for a dynamic IoT system to realize agile centralized control from the view of wireless AP.
Unlike other conventional algorithms, the IRAO algorithm can continually solve the joint optimization
problem by rapidly deriving adaptive combinatorial strategies related to offloading policy design
and radio resource allocation. For reducing the execution time of the algorithm, several machine
learning methods are applied and a learning based framework is constructed by three parts—offloading
decision-making, radio resource slicing and algorithm parameters updating. Firstly, offloading policies
are derived from an estimation algorithm based on a deep neural network (DNN) model. Secondly,
radio resource is allocated by slicing technique with an iterated based optimization method. Thirdly,
we exploit an experience replay training method to improve the DNN model accuracy. To further
accelerate the training convergence rate and reduce the possible of over-fitting, asynchronous and
important sampling tricks are applied in the training method.

The main contributions of this paper are summarized as follows. First, a joint optimization problem
is formulated to maximize the system utility with comprehensive considerations of a heterogeneous
system including wireless channels, device capacities and service requirements. Second, to be more
realistic, we consider a time-varying system. A learning based algorithm named IRAO is designed for
a dynamic IoT system to rapidly derive adaptive combinatorial strategies. To make suitable offloading
decisions, an estimation algorithm is designed based DNN with low computation complexity. Third,
we find suitable parameters of the IRAO algorithm and modify the training process of DNN. Compared
with other benchmark algorithms, the IRAO algorithm can derive near-optimal strategies rapidly and
guarantee good performance in large-scale networks.

The rest of this paper is organized as follows. In Section 2, some related works are reviewed.
In Section 3, we introduce the dynamic system model and formulate the optimization problem.
In Section 4, the IRAO algorithm is presented and three DNN-based models are designed. In Section 5,
numerical results are illustrated and discussed. Finally, this paper is concluded in Section 6.

2. Related Works

In this section, we review numerous works of research which focus on offloading policy decision,
radio resource allocation and intelligent algorithm application.

2.1. Offloading Policy and Radio Resource

With the technology of software-defined radio and cognitive radio, the resources in RAN can
be managed and allocated flexibly [5,6]. Qian et al. [7] solved a joint base station association and
power control optimization problem to maximize the system utility and minimize the transmit
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power based on game theory. The corresponding strategies were adaptive and customized due to
the dynamicity and diversity of wireless channel states in the RAN. In reference [8], a non-convex
nonlinear programming problem was formulated and decomposed into two convex sub-problems
which are related to the transmit power allocation of base station and the backhauling bandwidth
allocation from cell networks to BS. To maximize the energy efficiency under power constraint and data
rate requirements, a near-optimal iterative algorithm and a sub-optimal low-complexity algorithm
were designed for a system based on the frequency division multiple access (FDMA) technique,
which is able to divide the frequency spectrum into several small-grained bands for different accessed
users. Nevertheless, references [7,8] did not consider the offloading policy to decide whether to
offload services or not. Chen et al. [9] researched a multi-user computation offloading problem in
a multi-channel wireless interference environment and proposed a distributed algorithm based on
game theory since it is NP-hard to compute a centralized optimal solution. This work only considered
that the power is determined to satisfy the requirements of wireless transmission and it can be extended
to a joint optimization problem combined with the power control. In reference [10], a problem was
formulated as a mixed integer nonlinear program (MINLP) that involves jointly optimizing the task
offloading decision, uplink transmission power of mobile users and computing resource allocation at
the MEC servers. It was studied to maximize the users’ task offloading gains measured by weighted
sum reductions in task completion time and energy consumption. The resource allocation problem
was addressed by convex optimization techniques based on a bi-section search method and the task
offloading problem was solved by a novel heuristic algorithm with suboptimal performance. However,
references [9,10] did not consider the radio resource allocation problem.

In an IoT system based on MEC networks, the offloading policy highly depends on the channel
quality of wireless data transmission and many researchers [11–18] investigated the joint optimization
problems related to offloading policy and radio resource. In a multi-mobile-users MEC system,
the authors [11] formulated an MINLP problem to minimize energy consumption, subjected to specific
application latency constraints. A reformulation-linearization-technique-based Branch-and-Bound
method is proposed to obtain optimal results and a Gini coefficient-based greedy heuristic is designed
to degrade the complexity. Besides the FDMA technique, You et al. [12] considered a multi-user
system based on the time division multiple access (TDMA) technique, which enables several users to
share same frequency spectrum by dividing transmitting data into different time slots. With infinite
or finite cloud computation capacity, the optimal resource allocation was formulated as a convex
optimization problem for minimizing the weighted sum mobile energy consumption under the
constraint on computation latency. An offloading priority function was defined to yield priorities for
users, which depends on their channel qualities and local computing energy consumption. Based on
this, a threshold-based bisection search algorithm was proposed for generating offloading policy.
And a sub-optimal algorithm was proposed with a more effective function based on approximated
offloading priority to reduce the complexity arising from a two-dimensional search for Lagrange
multipliers. In reference [13], the energy-efficient resource-management policy was further studied
for an asynchronous system where the mobiles have heterogeneous input-data arrival time instants
and computation-deadline constraints. Related to data partitioning for offloading and time division
for transmissions, a joint optimization problem was formulated to minimize the total mobile-energy
consumption. The authors extended the threshold-based bisection search algorithm and used the block
coordinate descent (CD) optimization method based on an iterative searching structure. With an energy
harvesting (EH) technique that can provide sustainable operation for sensor devices, the energy-limited
devices can avoid the service disruptions caused by manual battery replacement or recharging [14–16].
Based on the EH model in a single-user system and the task deadline constraints, a framework was
proposed in reference [14] for energy-efficient computing with some strategies for local processor
cycles controlling, radio resource division and mode selection. By contrast, reference [15] considered
a multi-user system based on TDMA. For minimizing the total energy consumption subject to the
individual computation latency constraints, a resource allocation scheme was developed related to
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energy transmitting, frequency control and time allocation. To maximize the sum computation rate
of all wireless devices, reference [16], proposed a joint optimization problem related to individual
computing offloading decisions and transmission time allocation, which is solved by two decoupled
problems with a bisection search algorithm and a CD method. An alternating direction method of
multipliers was proposed to reduce the high computational complexity of the CD method in a large-size
network. In references [17,18], an energy-efficient dynamic offloading and resource scheduling policy
was provided and extended by relaxing the binary constraints to variables, which was combined
with clock frequency control and transmission power allocation which was extended. However,
those iterative-based methods all had high computational complexity to reach a satisfying local
optimum, which is still not appropriate for fine-grained control in dynamic large-scale networks.

2.2. Intelligent Algorithm Application

To cope with the problem in large-scale networks which are rapidly changing over time,
the adaptive fine-grained control of resource allocation and offloading decisions becomes more
challenging. Applied to artificial intelligence (AI) and machine learning (ML) algorithms,
the complicated problems can be solved while guaranteeing both efficiency and optimality.
As an important branch of ML, deep learning (DL) based algorithms specialize in approximating the
input-output non-linear mapping relationship to solve expensive computational problems [19,20].
Extended from DNN, convolutional neural network (CNN) is applied to compress the input values
and improve algorithm performance. Supervised learning algorithm can achieve data classification
and prediction by a training process with manually labeled samples. To solve the problems about
dynamic programming and Markov decision process (MDP), it is effective to use learning-based
algorithms without the external supervisor to minimize long-term cost, such as increment learning and
reinforcement learning (RL) [21,22]. With a learning-based structure, rational solutions can be obtained
after sufficient training episodes with successive input values. Further, Q-learning is a simple RL-based
algorithm with tabular-search nature, which is not suitable for handling dynamic problems with high
dimensional space. To improve the algorithm efficiency, deep Q-network (DQN) is one kind of deep
RL (DRL) based algorithms combined with DL technique. Reference [23] presented a comprehensive
survey on deep learning applied in mobile and wireless networking. In reference [24], learning-based
approaches were proposed for the radio resource interference management and wireless transmitting
power allocation. Xu et al. [25] designed a novel DRL-based framework for power-efficient resource
allocation while meeting the demands of wireless users in highly dynamic cloud RANs.

There are also several pieces of researches which apply these intelligent algorithms to offloading
decision-making in MEC networks. In reference [26], a double dueling DQN based algorithm
was proposed to enable dynamic orchestration of networking, caching and computing resources.
It improved the performance of applications but did not consider the energy efficiency issue. Based on
CNN and RL, reference [27] presented an offloading scheme for an individual IoT device with EH to
select edge server and offloading rate according to current battery level, previous radio transmission
rate and predicted harvested energy. Simulation results showed that the scheme can reduce the
energy consumption, computation latency and task drop rate. Similar to reference [27], which only
considered a single device, reference [28] added a task queue state model to dynamic statistics as well
as a channel qualities model and an energy queue state model. A double DQN based computation
offloading algorithm was proposed for a single user device as well. Considering a joint optimization
problem, a parallel DNN model was designed in reference [29] to make binary offloading decisions
and bandwidth allocation decisions. For minimizing the utility calculated by energy consumption
and task completion delay, the algorithm only considered the different computation amount of tasks
in several devices without the dynamic wireless channel state. However, all these learning based
algorithms have the convergence performance problem which is caused by over-fitting training nature
of simple training methods. This paper proposes a learning-based algorithm named IRAO which
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applies a DNN-based estimation algorithm with asynchronous experience training method. Table 1 is
presented for a quick sight of the main characteristics of different related works and our work.

Table 1. The comparisons of related works and our work.

Work System Model Optimization
Objective Constraint Condition Generated Strategy Applied Method

[10] multi-user,
multi-server

task completion time,
energy consumption

transmission power
border, wireless channel,

finite computing resource

task offloading,
transmission power,
computing resource

bisection search,
heuristic

[12] multi-user,
single BS

weighted sum mobile
energy consumption

infinite or finite cloud
computation capacity,
computation latency,

channel qualities

offloading priority,
radio resource

allocation

threshold-based
bisection search

[13] multi-user,
single BS

total mobile-energy
consumption

heterogeneous arrival
instants and

computation-deadlines

data partitioning for
offloading,

transmissions time
division

block CD search

[16]
multi-user,
single AP,

integrated server

weighted sum
computing rate

harvesting energy,
dynamic radio resource,

static service demand

computing offloading
decisions, transmission

time allocation

bisection search,
CD, alternating

direction

[26]
multi-BS,

multi-server,
multi-cache

received SNR,
computation capability,

cache state

networking, caching and
computing resources

BS assigning, cache
deciding, offloading

deciding

double dueling
DQN

[27]
single IoT device,

multiple edge
devices

energy consumption,
computation latency,

task drop rate

current battery level,
previous radio

transmission rate,
predicted harvested

energy

Edge devices selecting,
offloading rate CNN, RL

[28]
single mobile
user, multi-BS,
single server

execution delay, task
drops, queuing delay,
failing penalty, server

payment

task queue state, channel
qualities, energy queue

state

task offloading, energy
allocation double DQN

[29] multi-user, single
edge server

energy consumption,
task completion delay static uplink bandwidth offloading decisions,

bandwidth allocation parallel DNN

our
work
with
IRAO

multi-user, single
AP, virtualized

server

weighted sum
computing rate

available energy, dynamic
radio resource, dynamic

service demand

computing offloading
decisions, radio
resource slicing

asynchronous
trained DNN

3. System Modeling and Problem Formulation

In this section, we introduce a dynamic IoT system model, a local computing mode and
an offloading computing mode. The optimization problems are formulated at last.

3.1. System Model

As shown in Figure 1, we consider an IoT system with multiple IoT devices, one wireless AP,
one software-defined controller attached to the AP and virtualized servers in MEC cloud. These devices
belonging to respective users are assumed to be heterogeneous and are represented by I = {1, 2, . . . , I}.
We ignored the communication latency between the server, the controller and the AP, because they are
all deployed closely and connected with optical fiber in an MEC network. With network functions
virtualization (NFV) technology which enables operators to virtualize and orchestrate resources of
computation, cache and network, we assume that there are sufficient virtualized resources at the side
of an MEC cloud. On each device i ∈ I, there are dynamic continuous computational tasks which
are delay-sensitive. The energy resource on each device is denoted by Ei and is constrained by the
current energy and harvest energy. As many techniques are widely studied for energy harvesting [30],
we assume that the devices can harvest continuous energy over time. In order to achieve the fine-gained
control, we divide the system time into sequential time frames of identical duration denoted by T .
During each current time frame, the device is assumed to use up the energy Ei which is harvested
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in the previous time frame. It is denoted by Ei = µiT , where µi denotes the energy harvesting
efficiency coefficient The wireless channel power gains are used to indicate the channel quality of data
communicating, which are considered to be the same in uplink and downlink and generally caused by
several factors, including path loss, shadowing and fading. Correspondingly, we use Gi to denote the
channel power gain between each device i and the AP. In order to realize the fine-grained adaptive
control of the dynamic system, we divide the continuous time into periodic time frames which are
equal and short. The dynamic channel power gain is discretized as some different quasi-static values
in each time frame. Accordingly, we assume that the channel power gains remain unchanged during
each short-term frame but vary across different frames.
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Figure 1. The system model with multiple devices and dynamic channels.

For avoiding mutual communication interference in a wireless channel, we consider the TDMA
technique which is usually applied to allocate radio resource under the same frequency band. Based on
the programmable air interface, each time frame T is assumed to be divided into three phases for
different purposes and further divided into several slices for different user devices. At the first phase
of each time frame, the AP needs to communicate with the devices to transmit signaling traffic for
synchronizing and controlling information, such as wireless channel power gains, computational service
demand levels, available device energy resources and corresponding intelligent control strategies.
We assume that this phase is completed in a short duration denoted by aT where a� 1. With the
software-defined networking (SDN) technology which enables the separation of control plane and
data plane, the signaling traffic and the data traffic can be transmitted on the two different planes
respectively without interfering with each other. Thus, this phase is assumed to be accomplished on
the control plane without occupying the radio resource of the data plane, which is called out-band
controlling. Following the first phase, we should allocate several time slots for data offloading in the
second phase. The allocated slice is denoted as τiT for each user device i, where τi is constrained by
τi ∈ [0, 1]. Particularly, we do not allocate slice for device i in this phase if τi = 0, that is, the device
is in a local computing mode which is detailed in the next subsection. Because the related states in
the system environment vary across time frames, the radio resource slicing scheme in the second
phase needs to be adaptive. For the reason that the computing speed of the MEC server is much
faster than the devices constrained with limited resources, the computing time spent on the server
can be negligible [12]. In the last phase, the AP requires some time for returning computing results
to respective devices. Because the transmit power of the AP is large enough and the downloading
data size in downlink is much less than the offloading data in uplink [12], the slice allocated for data
downloading is set as a small value denoted by λiT . With the above-mentioned assumptions, the frame
slicing parameters τi and λi are constrained as follows:
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N∑
i=1

τi + λi ≤ 1 (1)

In the system, we consider a classical binary offloading policy in which the computational service
is either offloaded or executed locally [2]. The computing offloading decision variable is denoted by
xi ∈ {0, 1}. The computational service of user i is executed locally at the device itself if xi = 0, that is,
the device i is in a local computing mode. Meanwhile, The computational service of user i is offloaded
to the server if xi = 1, that is, the device i is in an offloading computing mode.

3.2. Local Computing Mode

In the local computing mode, the computational service is executed locally at the device itself
with constrained computation capability. We denote the processor computation clock frequency in
user device i as fi in the unit of cycles per second. Let ∅ > 0 denote the number of cycles needed
to process one data bit. With the service completion time constrained by 0 ≤ ti ≤ T , the local
computational service workload could be denoted by Ll,i = fiti and the processed bits could be
expressed by bl,i = fiti/∅. In addition, the energy consumption of the device i is constrained by
El,i = eiLl,i f 2

i = ei f 3
i ti ≤ Ei, where ei denotes the computation energy efficiency coefficient depending

on the chip architecture [17]. In order to reach a faster computing rate with less energy consumption in
each device, it is obvious to infer that the service computing time should be larger and the frequency
should be smaller, which is based on the dynamic voltage and frequency scale method [7,8]. Thus,
we assume that the service computing time continues throughout the whole time frame T , that is,
t∗i = T . Because the computational capability is constrained by the max computation clock frequency
of the processor, which is denoted by fi,max, we assume that the energy Ei is so low that the executed
clock frequency fi would not reach the max clock frequency fi,max. Accordingly, the optimal clock
frequency is given by f ∗i = (Ei/eiT )

1/3 when the energy Ei is exhausted during the computing process.
With ei,∅ denoting the static physical parameters of the device, the maximum local computing rate in
the unit of bits per second is given by

r∗l,i(µi) =
(

f ∗i t∗i
)
/(∅T ) = (µi/ei)

1/3/∅ (2)

3.3. Offloading Computing Mode

In the offloading computing mode, the service is offloaded to the MEC server through dynamic
wireless channel. As the computing capability of server is powerful based on NFV, we assume the
computing time consumed in this mode is negligible. In the scenario of a low end-to-end latency
network, the offloading computing rate is mainly constrained by the information transfer rate. As the
Shannon Hartley equation is given by C = W log2(1 + S/N) where W denotes the channel bandwidth
and N denotes channel noise power, it can be inferred that the maximum information transfer rate of
the channel C is larger if the transmitting signal power S is bigger. Thus, we assume the signal power
of device i to be set to the maximum value calculated by Si = (Ei/τiT ) ∗Gi and the available energy Ei
is assumed to be used up during the frame slice τiT . Therein, the energy consumed on the IoT devices
for downloading data is negligible, because the transmit power of the AP is large enough and the
downloading data in downlink are much smaller. Then the maximum offloading computing rate is
assumed to be equal to its data offloading rate which is given by

r∗o,i(τi) = (Wτi/vu) log2(1 + µi Gi/τiN) (3)

where vu denotes the bandwidth utility ratio coefficient, which depends on the signaling load of
message segments in the data traffic.
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3.4. Problem Formulation

We discretize the dynamic channel power gains as individual sequential sets with quasi-static
values in each time frame, that is, G = {Gi|i ∈ I}. Meanwhile, we useΩΩΩ = {Ωi|i ∈ I} to represent the set
of computational service demand levels in each time frame which are quantized by dynamic service
requirements and weight Ωi denotes each level of computational service in device i. Besides,
E = {Ei|i ∈ I} denotes the set of available energy on device i. To improve the overall system
computational performance and simultaneously maintain the fairness for different participants,
we define an optimization problem to get the maximum utility calculated by weighted sum computing
rate as

U(G,ΩΩΩ, E, x,τττ) ,
I∑

i=1

Ωi
(
(1− xi)r∗l,i(µi) + xir∗o,i(τi)

)
(4)

In this case, x = {xi|i ∈ I} represents the set of offloading decisions and τττ = {τi|i ∈ I} represents the set
of radio resource slices. We formulate the first problem as U1(G,ΩΩΩ, E):

U1∗(G,ΩΩΩ, E) = max
x,τττ

U(G,ΩΩΩ, E, x,τττ) (5)

s.t. C1 :
I∑

i=1

τi + λi ≤ 1

C2 : τi ∈ [0, 1]

C3 : λi ∈ [0, 1]

C4 : xi ∈ {0, 1}.

However, this problem is difficult to solve because it is a mixed integer programming non-convex
problem. For reducing the complexity, we divide the problem into two sub-problems namely,
the offloading decision-making problem and the time frame slicing problem. First, the computing
offloading decisions problem requires to find an optimal or suboptimal decision x among all 2I

possible computing offloading decisions, that is, x ∈ {0, 1}I, which are derived by iteratively swapping
offloading decision xi of each user device. The search space increases exponentially with the number
of users I if we use the exhaustive or heuristic methods to find the optimal decision [16]. Applied
some machine learning algorithms which could reduce the execution time of the algorithm [27,29],
the decisions could be made in real-time under quickly varying conditions. We formulate the second
problem as U2∗(G,ΩΩΩ, E):

U2∗(G,ΩΩΩ, E) = max
x

U(G,ΩΩΩ, E, x) (6)

s.t. C4 : xi ∈ {0, 1}.

Second, when the binary offloading decisions x are given, we need to solve the time frame slicing
problem which is a convex problem of allocating the optimal frame sliceτττ∗. We apply a one-dimensional
bi-section search algorithm which was introduced in paper [12]. And we formulate the third problem
as U3∗(G,ΩΩΩ, E, x),

U3∗(G,ΩΩΩ, E, x) = max
τττ

U(G,ΩΩΩ, E, x,τττ) (7)

s.t. C1 :
∑I

i=1
τi + λi ≤ 1

C2 : τi ∈ [0, 1]

C3 : λi ∈ [0, 1].
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4. Intelligent Rapid Adaptive Offloading Algorithm

In this section, we design an IRAO algorithm for a system controller which has knowledge of
channel quality and user requirements.

4.1. Algorithm Framework

As shown in Figure 2, the IRAO algorithm is constructed by an iterated learning-based framework
which can be separated into three stages: the offloading decision-making stage, the radio resource
slicing stage and the algorithm parameters updating stage. The whole process, including the three
stages, is named as step t, because they are executed recurrently in each time frame T indexed as
t and we assume that t ∈ T = {1, 2 . . . , T}. Step t is supposed to be completed after all the three
stages are completed once and the learning-based algorithm will execute these three stages recurrently.
Based on a DNN model, an offloading policy function π : G,ΩΩΩ, E→ x∗ is applied to estimate the
optimal offloading decisions denoted by x∗ = {xi|xi ∈ {0, 1}, i ∈ I}. The performance of the policy π
will be improved gradually with training step t increasing and it will reach a near-optimal level after
sufficient training episodes EP.
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4.2. Offloading Decision-Making

In the offloading decision-making stage, we design a priority estimation algorithm [12] applied
a DNN based model with several layers and abundant neurons, which is described in detail in Section 5.2.
At the beginning of each time frame t, the DNN employs parameters θθθt as the weights that connect
the neurons and θθθ1 denotes the randomly initialized parameters which follow a zero-mean normal
distribution. During each time frame t, the wireless channel gains are denoted by Gt =

{
Gt,i

∣∣∣i ∈ I, t ∈ T
}

and the computational demand levels are denoted byΩΩΩt =
{
Ωt,i

∣∣∣i ∈ I, t ∈ T
}

and the available energy

resources are denoted by Et =
{
Et,i

∣∣∣i ∈ I, t ∈ T
}
. Then, the DNN takes Gt,ΩΩΩt and Et as input variables

and outputs a vector containing a set of estimated priorities as

εεεt = fθθθt(Gt,ΩΩΩt, Et) (8)
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where εεεt =
{
εt,i

∣∣∣i ∈ I, 0 ≤ εt,i ≤ 1
}
. In addition, some appropriate activation functions are used to modify

the results derived from every layer in the DNN based model.
With the estimated priorities εεεt, we generate K alternative binary offloading decisions

Kxt =
{
xk,t

∣∣∣k = 1, 2, . . . ,K
}

by the function

Kxt = fTH(K , εεεt) (9)

whereK could be any integer within
[
1, 2I

]
. In order to find a better solution to the decision xt, a larger

K should be set to enlarge the exploration space. However, it will take more time to execute the
algorithm. Thus, the trade-off between optimality and complexity should be balanced and we apply
a dynamic threshold-iterated quantization method which could generate at most K alternative binary
offloading decisions. In detail, these decisions xk,t are generated as follows.

Firstly, we set a default threshold TH0 which is used for comparison with the elements εt,i in
εεεt. Secondly, we calculate the distances between the elements εt,i and the presetting threshold TH0,
then the elements εt,i are sorted by these distances from smallest to largest. Thirdly, the dynamic
threshold THk,t is iteratively set as the sorted elements εt,i, respectively. We createdK binary offloading
decisions xk,t =

{
k,t,i

∣∣∣i ∈ I
}

correspondingly with the following function

xk,t,i =
{
1, i f εt,i > THk,t; 0, i f εt,i ≤ THk,t

}
(10)

where k = 1, . . . ,K . Finally, theseK alternative decisions xk,t are input to the next time frame slicing
part and thenK values U3∗

(
Gt,ΩΩΩt, Et, xk,t

)
are calculated correspondingly. Accordingly, the optimal

offloading decision xk,t
∗ with the maximized Q3∗ is selected by the function,

xk,t
∗ = arg max

k,t
U3∗

(
Gt,ΩΩΩt, Et, xk,t

)
(11)

where xk,t
*
∈ {xk,t|k = 1, . . . ,K }.

4.3. Radio Resource Slicing

In the frame slicing stage, we slice each time frame t for different user devices i with the set
τττt =

{
τt,i

∣∣∣i ∈ I, 0 ≤ τt,i ≤ 1
}
, subject to

∑I
i=1 τt,i + λt,i ≤ 1. In order to find the optimal slicing decision

set τττt
∗, we formulate it as a convex problem U3∗

(
Gt,ΩΩΩt, Et, xk,t

)
, which is described in Section 3.

We use a one-dimensional bi-section search algorithm over a dual variable which is presented in
references [10,12,16]. As theseK binary offloading decisions xk,t are derived in the offloading decision-
making stage, the slicing decisions are generated by the function,

τττk,t = f
(
Gt,ΩΩΩt, Et, xk,t

)
= arg max

τττ
U
(
Gt,ΩΩΩt, Et, xk,t,τττ

)
(12)

Subsequently, we calculate and compare the K utilities U
(
Gt,ΩΩΩt, Et, xk,t, τττk,t

)
. With the best

utilities U∗
(
Gt,ΩΩΩt, Et, xk,t, τττk,t

)
, we can obtain the optimal decisions

{
xk,t
∗,τττk,t

∗
}

correspondingly.

4.4. Algorithm Parameters Updating

In the algorithm parameters updating stage, an experience replay technique is applied. We get
the optimal decision xk,t

∗ at each step t and store the most recent experience denoted by tuple
(Gt,ΩΩΩt, Et, xk,t

∗) in a replay memory setMMMt correspondingly. At the beginning of the algorithm, the set
MMMt is initially empty with a limited size

∣∣∣MMMt
∣∣∣. Considering the importance sampling trick, the oldest

tuple will be popped if the cache of setMMMt overflows. We denote the index of time frame by m and the
memory set is given by

MMMt =
{
(Gm,ΩΩΩm, Em, xm)

∣∣∣mε[σ, . . . , t− 1, t]
}

(13)
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where
{
σ = 0, i f t ≤

∣∣∣MMMt
∣∣∣; σ = t−

∣∣∣MMMt
∣∣∣, i f t >

∣∣∣MMMt
∣∣∣}.

In order to enhance the training efficiency of the algorithm, the DNN based model is not trained
in every step t. Thus, we set a training episode between several steps with an appropriate training
interval δ, which means that the training process is executed once an episode. In every training episode,
an experience replay sampling method is applied for reducing the complexity of using entire tuples in
setMMMt. In detail, we randomly extract a mini-batch of experience tuples from the memory setMMMt and
store them in the empty training buffer set BBBt with a size of |BBBt|. The time frame index of sampled
tuple is denoted by b and the set of these indexes is denoted by β. The sampled buffer set is given by

BBBt =
{
(Gb,ΩΩΩb, Eb, xb)

∣∣∣bεβ} (14)

Subsequently, the extracted tuples are used as labeled samples and the DNN based model is
trained by minimizing the cross-entropy loss with an optimizer algorithm denoted as fopt(θθθt), such as
Adam and RMSprop. We use an estimated value ft,b caclulated by fθθθt(Gb,ΩΩΩb, Eb) and define a loss
function L(θθθt) of mean value sigmoid cross-entropy as

L(θθθt) =
−1
|BBBt|

∑
bεβ

(
xb ln ft,b + (1− xb) ln

(
1− ft,b

))
(15)

Then, the parameters of the DNN based model are updated from θθθt to θθθt+1 with a befitting parameter
named learning rate lr. Accordingly, the policy πθθθt is updated to a new policy πθθθt+1 after the training
process. For convenience of expression, the model is named as the DNN model in the following,
which is trained by a single sampled buffer once per episode.

Moreover, in order to enhance the algorithm performance in terms of training speed and estimating
accuracy, we modify the DNN model with some tricks. At first, we design the synchronously trained
DNN model named the SynDNN model, which is trained by the same synchronously sampled buffer
setBBBt several times with a relatively smaller learning rate lr in each training episode. This trick could
accelerate the learning speed but still not reduce the possibility of getting into the local optimum
caused by over-fitting, which is evaluated in Section 5. Then, referring to the distributed sampling
trick, which is applied in an RL-based asynchronous advantage actor-critic (A3C) algorithm, we design
an asynchronously trained DNN model named the AsyDNN model. As shown in Figure 3, it adopts
several different replay memoriesMMMt,α and is trained by asynchronously sampled buffer sets given by

BBBt,α =
{
(Gb,ΩΩΩb, Eb, xb)

∣∣∣bεβα} (16)

where α represents the index of buffer number. Especially, the sizes
∣∣∣MMMt,α

∣∣∣ of different memories are set
distinctively, referring to the trick of prioritized experience replay in an RL-based algorithm. Obviously,
this AsyDNN model could improve the training performance by reducing the sampling bias and the
performance is compared with that of the DNN model and the SynDNN model in Section 5.

4.5. Algorithm Iteration

With regard to the parameter K , the algorithm could speed up with a smaller K as explained
previously in Section 4.2. As the DNN based model becomes more accurate after some training
episodes, the numberK could be reduced gradually. Number K is initialized as I and it is reduced
along with kt which denotes the ordered index of the optimal decision xk,t

∗ in all calculated decisions
xk,t. In order to eliminate fluctuation of the numberK and maintain the performance of the DNN based
model, an empirical value parameter ρ is set as the update interval steps ofK , that isK is updated as

K = min
(
1 + max

{
ki
∣∣∣i = t− 1, . . . , t− ρ

}
, I

)
(17)

The algorithm is executed iteratively according to these processes. In this way, the performance
results of the algorithm gradually become stable and converge into good values after sufficient training
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episodes. Thus, we denote EPmax as the number of training episodes and correspondingly the maximum
number of steps is set as T = δ ∗ EPmax, that is, 1 ≤ t ≤ T. For a better explanation, the pseudo code of
the IRAO algorithm is shown in Algorithm 1.
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Algorithm1: Intelligent Rapid Adaptive Offloading Algorithm

1:
Initialize the DNN models with random parameters θθθ1, memory size

∣∣∣MMMt
∣∣∣, ∣∣∣MMMt,α

∣∣∣, buffer size
∣∣∣BBBt,α

∣∣∣,
training interval δ and learning rate lr;

2: t = 1;
3: For step t ≤ δ ∗ EPmax:
4: Input Gt,ΩΩΩt and;
5: Generate estimated priorities εεεt by εεεt = fθθθt(Gt,ΩΩΩt, Et);
6: ResetK , TH;
7: DeriveK sets decisionsKxt byKxt = fTH(K , εεεt);

8: ObtainK utilities U3∗
(
Gt,ΩΩΩt, Et, xk,t

)
= max

τττ
U
(
Gt,ΩΩΩt, Et, xk,t,τττ

)
;

9: Select optimal decision xk,t
∗ = arg max

k
U3∗

(
Gt,ΩΩΩt, Et, xk,t

)
;

10: Output the optimal decision xk,t
∗;

11: Store the tuple
(
Gt,ΩΩΩt, Et, xk,t

∗
)

into experience memoryMMMt;
12: If t % δ == 0:
13: While Asy == True:
14: Extract mini-batch tuples

{
(Gb,ΩΩΩb, Eb, xb)

∣∣∣bεβα} fromMMMt,α;
15: Store these tuples in several different buffer setsBBBt,α;
16: Minimize the loss L(θθθt) by Adam optimizer iteratively;
17: Parameters θθθt are updated to θθθt+1;
18: Policy πθθθt is updated to a new policy πθθθt+1;
19: t = t +1;
20: Store the DNN model with the optimized parameters θθθt.

5. Simulation and Evaluation

In this section, numerical simulations are presented to evaluate the performance of the proposed
IRAO algorithm in a dynamic IoT system. Firstly, the simulations environment is introduced and
the related parameters are presented. Secondly, we tune algorithm variables and hyper parameters
of the DNN based model and we investigate the influence of them. Thirdly, different convergence
processes of three DNN based models are illustrated. Fourthly, some simulations are conducted with
different numbers of devices, which show that the proposed algorithm has good scalability. Fifthly,
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the strategies generated from the IRAO are near-optimal compared with those generated from one
baseline algorithm, which outperform those of the other candidates. Finally, we evaluate the algorithm
efficiency of different algorithms.

5.1. System Parameters Setup

As shown in Table 2, we set some suitable values to the relevant parameters of the system
after some investigations in practice. In our simulations of the multi-user IoT system, the default
number of users is set as I = 10, that is, i ∈ {1, . . . , 10}. We assume that the devices possess same
hardware features and the computing energy efficiency coefficient is given by ei = 10−27 and the
data bit process speed is given by ∅ = 100(cycle/bit). Considering the dynamic characteristics of
service requirements, the computational service demand levels are randomly set as 0.5 or 1, that is,
ΩΩΩt =

{
Ωt,i

∣∣∣Ωt,i ∈ {0.5, 1}, i ∈ I] . In view of signaling load and interference noise, we assume the
bandwidth utility ratio vu = 1.2 and the channel noise power N = 10−9W. Without loss of generality,
the time frame is set as T = 1s.

Table 2. The related symbols in our simulations.

Symbol Definition Setup

i The number of user devices i ∈ I = {1, . . . , 10}
ei computing energy efficiency 10−27

∅ data bit process speed 100 (cycle/bit)
Ωt,i computational service demand weight Ωt,i ∈ {0.5, 1}
vu bandwidth utility ratio 1.2
N channel noise power 10−9 W
T time frame 1s
fc communicating carrier frequency 2450 MHz
W channel bandwidth 20 MHz
di distance between user i and AP di ∈ [10, 30] (meters)
c speed of electromagnetic wave 3 ∗ 108m/s

L(path)i free space path loss (4πdi fc/c)2

GT transmitting antenna gain 5dB
GR receiving antenna gain 5dB
Gi average channel gain GTGR/L(path)i(dB)
Gt,i each channel gain Giαi,t

t the number of time frame 1 ≤ t ≤ T = 10, 000

We assume the wireless communication channel applies the Industrial Scientific Medical (ISM)
frequency band based on 802.11 protocol. Accordingly, the communicating carrier frequency is set as
fc = 2450 MHz and the channel bandwidth is set as W = 52 MHz. Considering that all accessed IoT
devices are in the small coverage area of a wireless network, we assume the distances between user
devices and the AP to be di ∈ [10, 30] (m). Without loss of generality, these distances follow a uniform
distribution and are set from a small value to a big value as the number i increases. Besides, λc denotes
the carrier wavelength and c denotes the speed of electromagnetic wave. With the free space path loss
model given by

L(path)i = (4πdi/λc)
2 = (4πdi fc/c)2 (18)

the path losses can be expressed in decibels as L(path)i(dB) and calculated by −28.5 + 20lg fc(MHz) +
20lgdi(m). We assume the transmitting antenna power gain as GT = 5 dB and the receiving antenna
power gain as GR = 5 dB. The average channel power gain is given by

Gi(dB) = GT + GR − L(path)i(dB) (19)

Due to the factor di, Gi decrease as the number i increases. During each time frame t, each channel
power gain is assumed to remain the same as a quasi-static value, which could be expressed as
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Gi,t = Giαi,t with an independent channel fading factor αi,t. In different time frames, the channel
power gains are assumed to be time-varying with the factor αi,t which is a dynamic variable following
a specific distribution. For a better explanation, we plot the frequency distribution histogram of channel
power gains G1 and G9 for user 1 and user 9, respectively, which follow the Rayleigh distribution as
shown in Figure 4.
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5.2. Algorithm Parameters Tuning

For improving the performance of the IRAO algorithm, we conduct simulations to explore
the fitting values for related parameters. In our simulations, all the experiments are conducted on
a computer with Intel Quad Core i5-4590 CPU @ 3.3 GHz and 4 GB RAM and the algorithm is
implemented by Python 3.6. Tensor Flow 1.0 is used to construct the DNN models.

To implement the priority estimation algorithm, the DNN based model is firstly designed by
default with a five-layer connected architecture, that is the input layer, the three hidden layers and the
output layer, as shown in Figure 5. The input layer consists of 30 neurons which are used to input
the information about wireless channel gains, computational demand levels and available energy
resources. In the first of the three hidden layers, a kernel function is firstly applied to transfer the
input variables with a non-linear feature, which uses a Gaussian function as the activation function.
In the other two hidden layers, a ReLU function is used as the activation function to modify the middle
values, which is denoted by fRelu(x) = max(0, x) and the number of neurons are 90 and 80, respectively.
We set 10 neurons in the output layer and a sigmoid function is used to bound the final results denoted
by f (x)sigmoid = 1/(1 + e−x).

For each training episode, the SynDNN model is trained four times with a smaller learning rate
which is a quarter of that in the DNN model and the AsyDNN model is trained by four different buffer
sets BBBt,α accordingly. The Adam estimation method is used as the optimizer fopt(θθθt) by default for
updating the parameters θθθt of the DNN based models. Furthermore, the frame slicing problem is
solved by several standard optimization methods integrated in SciPy library.

In our simulations, we set the overall steps as T = 10, 000 and we separate them into two
parts, that is, the steps for the training process are set as T1 = 7000 and the steps for testing
process are set as T2 = 3000. In order to evaluate the optimality of the best derived offloading
decision xk,t

∗, we normalized the corresponding utilities U∗
(
Gt,ΩΩΩt, Et, xk,t

∗
)

as the normalized utilities

Unor
(
Gt,ΩΩΩt, Et, xk,t

∗
)
, that is,

Unor
(
Gt,ΩΩΩt, Et, xk,t

∗
)
= U∗

(
Gt,ΩΩΩt, Et, xk,t

∗
)
/U∗(Gt,ΩΩΩt, Et) (20)
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Therein, the baseline utilities U∗(Gt,ΩΩΩt, Et) are calculated by a coordinate descent adaptive
offloading (CDAO) algorithm extended from the CD iterative search algorithm [13,16] and bisection
search algorithm [10,12] which are mentioned in Section 2. The CDAO algorithm exploits a similar
radio resource slicing methods to IRAO and applies the CD method to search offloading decisions,
which has been investigated and shown to be able to obtain near optimal solutions in related works.
We also consider an exhaustive adaptive offloading (EAO) algorithm which has a similar radio resource
slicing method to IRAO but applies an exhaustive method to select an optimal offloading decision.
In other words, the candidate binary offloading decisions in EAO are enumerated for all possible
solutions to the number of 2I. It is easy to infer that the execution time of the EAO algorithm consumes
too much time, because the optimal binary offloading decisions are selected by iterated operations
among all 2I possible candidate solutions which cause the curse of dimensionality.

In order to obtain a fitting hyper parameters of the DNN based models for the IRAO algorithm,
extensive simulations are conducted under different hyper parameters, such as memory size

∣∣∣MMMt
∣∣∣,

batch size |BBBt |, learning rate lr, training interval δ and update interval ρ. For example, under different
learning rates, we plot the dynamic learning curves which are formed by the moving average normalized
utilities Unor

(
Gt,ΩΩΩt, Et, xk,t

∗
)

by a window of 30 as shown in Figure 6. In other words, each point in the
figure denotes the average value of 30 utilities, which is the same for the following figures in this paper.
It shows that the moving average utilities Unor

(
Gt,ΩΩΩt, Et, xk,t

∗
)

gradually converge to the value 1 as
the training step t increase and the performance of the algorithm becomes relatively stable after 2000
iterative steps. When the larger learning rate parameter is applied, it will get a faster convergence speed
but suffer from a larger possibility of getting into a local optimal solution. With the empirical value
derived after extensive simulations, we set the learning rate parameter as lr = 0.01. Similarly, we find
other fitting parameters as follows,

∣∣∣MMMt
∣∣∣= 1024 , |BBBt| = 256,

∣∣∣MMMt,1
∣∣∣= 1024 ,

∣∣∣MMMt,2
∣∣∣= 896 ,

∣∣∣MMMt,3
∣∣∣= 768 ,∣∣∣MMMt,4

∣∣∣= 640 ,
∣∣∣BBBt,α

∣∣∣ = 256, δ = 10 and ρ = 32. We apply them as the default values in the rest of
the simulations.
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5.3. DNN Models Selection

For getting a better training convergence performance of IRAO, some simulations are conducted to
compare the training process of different DNN models. Figure 7a,b show that our proposed IRAO can
generate near-optimal offloading decisions, as the normalized utilities Unor

(
Gt,ΩΩΩt, Et, xk,t

∗
)

converge
to the value 1. Compared with the DNN model and the SynDNN model, the normalized utilities of the
AsyDNN model have a faster convergence rate and obtain better stabilized values especially when the
number of users is large as shown in Figure 7b. Therefore, it is apparent that the IRAO algorithm with
the AsyDNN model would have a better scalability. This is further analyzed in Section 5.4.
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Figure 7. Training processes and training losses of the IRAO algorithm with different DNN models:
(a) the training processes under 10 users; (b) the training processes under 20 users; (c) the training
losses under 10 users; (d) the training losses under 20 users.

Meanwhile, during the training episodes, the training losses L(θθθt) of different DNN training
models are shown in Figure 7c,d. It shows that the training losses of the SynDNN model and the
AsyDNN model are larger than those of the DNN model at the beginning of the training processes.
With steps increasing, the losses of both the SynDNN model and the AsyDNN model converge to
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a small value close to that of the DNN model. In particular, the losses of the AsyDNN model decrease
faster than those of the SynDNN model.

5.4. Algorithm Scalability Analyses

For testing the algorithm performance of scalability, we conduct simulations under different
numbers of access devices and plot the moving average curves as shown in Figure 8. At first,
an offline training process with 7000 steps is accomplished and a trained AsyDNN model with fitting
parameters is generated. Afterwards, a quick booting process with the model is applied for the online
testing process in the next 3000 steps, which is similar to the process of online increment learning.
In detail, the hotbooting technique initializes the parameters according to the model trained in similar
environments rather than initializing them randomly, which can accelerate the learning speed and
improve the model accuracy [27]. After calculating the normalized utility Unor

(
Gt,ΩΩΩt, xk,t

∗
)

under 10,
20 and 30 devices, separately, the results illustrate that all AsyDNN models have a good convergence
performance in terms of stability and optimality. The mean value of normalized utilities is still above
0.97 even if there are 30 devices, which proves that the scalability of the IRAO algorithm is excellent.
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5.5. Algorithm Effectiveness Comparison

For quantizing the effectiveness of our proposed IRAO algorithm in the testing process, we calculate
the average value of utilities by weighted sum computing rates in the unit of bits per second. Meanwhile,
we compare it with the other four baseline algorithms including the CDAO algorithm—which is
described in Section 5.2—the entire offloading (EO) algorithm, the random offloading (RO) algorithm
and the non-offloading (NO) algorithm. The EO and RO algorithms exploit a similar radio resource
slicing method to IRAO as well but each device entirely offloads computational services to the edge
server in EO and each device randomly offloads computational services to the edge server in RO. As for
the NO algorithm, all computational services are executed locally on each user device itself. As shown
in Figure 9, the average utility increases as the number of IoT devices increase. When there are 30
devices, the average utility is above 16 Mbps. Moreover, the performance of the proposed IRAO is close
to that of CDAO which is near optimal and they all clearly outperform other three baseline algorithms.
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As restricted resources have seriously limited the computational performance of massive IoT 
devices and industrial sensors, better processing capability is urgently required. In this paper, we 
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5.6. Algorithm Efficiency Evaluation

Some other simulations are conducted to test the execution time for evaluating algorithm
efficiency. As the EAO algorithm consumes too much time, the CDAO algorithm is proposed for
obtaining near-optimal utilities without high algorithm complexity. However, the CDAO algorithm
still consumes too much time for real-time controlling due to the nature of iterated operations. As the
DNN based algorithm can reduce the number of alternative offloading decisions by a fitting predictive
model, the efficiency of the offloading decision-making algorithm can be further improved without
compromising much performance of optimality. For better evaluation, we calculate the average
execution time per step consumed by these comparable algorithms including the CDAO algorithm,
the proposed IRAO algorithms with different models, EO algorithm, RO algorithm and NO algorithm.
Figure 10, with a logarithmic ordinate, presents the consumed time in seconds and it shows that all
IRAO algorithms take remarkable shorter time than the CDAO algorithm which is ten times longer
in general. Further, the execution time of the CDAO algorithm clearly increases with the number of
accessed devices, which still poses a dimensionality problem to large scale networks. As our proposed
IRAO algorithms can make the decisions within 0.1 s for 30 devices, it is possible to achieve real-time
control in rapidly changing environments.
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6. Conclusions

As restricted resources have seriously limited the computational performance of massive IoT
devices and industrial sensors, better processing capability is urgently required. In this paper,
we consider a time-varying IoT system consisting of multiple devices with different computational
requirements and wireless channels. In order to improve the performance of computational services in
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all participants, an IRAO algorithm is proposed for an IoT system based on an MEC network. Through
a learning-based framework, it can continually derive adaptive strategies combining offloading decision
making with radio resource slicing. In particular, the binary offloading policies are generated by
a priority estimation algorithm, which is designed based on a DNN model trained with replaying
experiences. To improve the optimality of the IRAO, extensive numerical simulations are conducted
to explore the relationship between algorithm performance and variable parameters. For example,
the DNN model has a good convergence performance when the learning rate is set to 0.01. For further
improving the optimality and convergence rate of DNN model, its training process is refined and new
models are name as the SynDNN model and the AsyDNN model. Some simulations are conducted to
analyze the algorithm scalability when the numbers of the devices are 10, 20 and 30. Other simulations
demonstrate that the IRAO algorithm has excellent effectiveness and efficiency when it is compared
with other candidate algorithms. On our simulation platform, the proposed IRAO algorithm with the
AsyDNN model can derive near-optimal and real-time strategies in less than 0.1 second even if the
system has 30 devices. In the foreseeable future, the proposed algorithm will be amended to further
improve the performance under different constraints in diverse scenarios. It will also be extended with
different radio resource slicing methods and additional computational resource allocation methods.
More experiments will be conducted to verify the algorithm performance under real platforms and
innovative network architectures [31].
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