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Abstract: The fusion of visual and inertial measurements for motion tracking has become prevalent
in the robotic community, due to its complementary sensing characteristics, low cost, and small
space requirements. This fusion task is known as the vision-aided inertial navigation system
problem. We present a novel hybrid sliding window optimizer to achieve information fusion for
a tightly-coupled vision-aided inertial navigation system. It possesses the advantages of both the
conditioning-based method and the prior-based method. A novel distributed marginalization method
was also designed based on the multi-state constraints method with significant efficiency improvement
over the traditional method. The performance of the proposed algorithm was evaluated with the
publicly available EuRoC datasets and showed competitive results compared with existing algorithms.
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1. Introduction

Accurate localization in an unknown environment is essential for a robot to succeed in its missions.
In many cases, existing external localization systems, such as motion capture systems, the global
positioning system, or a pre-constructed map of the working area, are costly, insufficiently accurate,
or unavailable. In this study, we focused on estimating a vehicle’s motion by fusing the measurements
from a monocular camera and an inertial measurement unit (IMU). This task—the well-known
monocular vision-aided inertial navigation system (VINS) problem—has drawn great interest in the
robotic community (e.g., [1–7]) for many reasons.

First, the monocular camera and the micro-electro-mechanical system IMU are both small and
cheap and consume little power, and both are passive sensors, which means that they exert no influence
on the external environment and do not interfere with each other like Lidars and RGB-D cameras.
Second, the monocular camera cannot compute inter-frame motion alone, so some studies have
assumed a constant-velocity model [2,3] between two frames. However, this assumption results in an
inconsistent estimation. The micro-electro-mechanical system IMU usually works at a higher frequency
than the monocular camera, so the IMU measurements can be integrated for accurate recovery of
short-term inter-frame motion. However, the IMU measurements are corrupted by noise and slowly
time-varying biases, which makes long-time integration unreliable [4,8], so visual information is
required to aid the IMU in estimation of biases. Third, the monocular camera is a projective sensor
that provides bearing information regarding visual features, so motion and structure can only be
recovered up to an unknown scale [1,5]. In order to recover its metric scale by using IMU, a large
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enough acceleration and rotation rate are required along at least two axes of IMU [9]. The direction of
the gravity vector is also observable [4,8,9], which means that the absolute roll and pitch of the VINS do
not drift. Fourth, unlike some other sensors, such as wheel odometry and two-dimensional (2D) Lidar,
IMUs and cameras both allow for three-dimensional (3D) motion and structure estimation. Hence,
the system is versatile and applicable to various platforms, such as micro-aerial vehicles (MAVs),
smart-phones, and humanoid robots.

The frameworks for information fusion of the VINS problem found in the literature fall into two
categories: the loosely coupled framework [1,10,11] and the tightly-coupled framework [4,8,12–16].
The loosely coupled framework uses the results from a standalone visual system directly for fusion
with the IMU measurements. For the monocular visual system, the visual scale is also included into
the states of the filter. This kind of framework has some obvious drawbacks. First, there is a scale
drift for monocular visual systems [10,17]; the most current estimation of the visual scale is used as
the scale of the whole trajectory and structure, and the time-varying nature of the visual scale is not
considered and cannot be modeled analytically [10]. Second, the two systems operate independently,
and the visual system is not assisted by the IMU measurements, so in this case, the fusion results
are not optimal [10,11]. In contrast, the tightly-coupled framework integrates the visual and inertial
measurements into one likelihood function, so the fusion is optimal. In this paper, we used the
tightly-coupled framework.

The algorithms of information fusion of the VINS problem can also be grouped into two
major categories: recursive Bayesian filters [1,9–12,15,16] and bundle adjustment (BA)/graph-based
optimization/smoothing methods [4,8,18]. Bayesian filters are typically required to operate at the
frame rate. For real-time performance, Bayesian filters marginalize out past poses and summarize
the information gained over time with a joint probability distribution that serves as a prior. The
computational cost of propagating joint distributions scales poorly with the dimension of the state
vector. Hence, for the filters that model the 3D positions of map points in the map as the elements
of the state vector, the number of map points in the map is severely limited, so the fusion precision
is deduced, which is the main drawback of the filters [19]. The multistate constraint Kalman filter
(MSCKF) is a type of augmented extended Kalman filter [12,15,16], its state vector keeps a sliding
window of the past poses. The visual feature measurements are used to construct a probabilistic
constraint between the poses. Its 3D positions are not modeled as the elements of the state vector.
Hence, the computational complexity of MSCKF is linear with the number of features [12,15] and
cubic with the length of the sliding window [16]. For the MSCKF, the number of map points in the
map is not limited, and it can achieve better performance when combined with delayed linearization.
However, some information is lost if the tracking length of the visual feature is outside the range of
the sliding window [16]. The MSCKF and the extended Kalman filter are both susceptible to gradual
accumulation of linearization errors. This problem becomes more serious if the number of long-term
tracked visual features is small, such as during rapid rotation.

The graph-based optimization/BA methods possess many advantages, such as the iterative
re-linearization that makes linearization errors negligible, the batch processing that makes the estimation
results optimal and consistent, and the ability to add and remove measurements expediently. Compared
with standard numerical optimization, the core features of the graph-based optimization methods take
advantage of the sparsity of structure, including first- and second-order sparsity [20,21]. The sparsity
makes the graph-based optimization methods particularly efficient. Nevertheless, as information
accumulates, a full BA quickly becomes infeasible in computation for real-time or near real-time
operation. To keep the computing time bounded, an alternative method is the local BA (LBA) that
operates in the spirit of BA but maintains only some poses in the path (typically a sliding window of
the most current poses; e.g., [3,4,8,18,21]) and the observable map points. Obviously, direct removal of
the edges related with the nodes outside the sliding window of the LBA is unwarranted. The literature
includes two main types of methods to cope with those edges: the conditioning-based method [3,4]
and the prior-based method [8,18]. For the conditioning-based method, the nodes outside the sliding
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window are directly fixed, and the related edges are used as usual. After the measurements of IMU
are added, the first node (including the pose, velocity, and biases of IMU) of the sliding window
must also be fixed to eliminate the ambiguity of motion [4]. This kind of method is highly robust
but is not optimal theoretically, because only a part of the graph is active while LBA is performed.
For the prior-based method, a marginalization technique is performed on the edges related with the
outside nodes to construct a prior distribution (typically, a Gaussian distribution) for the nodes in the
sliding window. This kind of method is optimal theoretically but is also affected by linearization errors
numerically and cannot cope properly with features whose tracking length lies outside the range of the
sliding window.

In this paper, we propose a novel hybrid sliding window optimizer (HSWO) that has the
advantages of both the conditioning-based and prior-based methods. To make the linearization points
of the prior distribution reliable, the sliding window in our method is divided into two parts. We call
the front part the mature region and the back part the growing region. We marginalize a map point
out only if its last measurement lies within the mature region. To cope with map points whose
tracking length lies outside the range of the sliding window, we follow the conditioning-based method.
The nodes outside the sliding window are fixed directly and are called the fixed basis. For balancing
the linearization errors within the growing region and fixed basis, the size of the mature region should
be selected carefully.

The two kinds of marginalization techniques—the Schur complement technology [8,18] and the
null-space-based method [12,15,16]—are equivalent mathematically [22]. For the traditional method,
all reprojection factors of marginalized map points are linearized at the current estimation, and a
Hessian matrix is constructed by stacking linearized factors. Because there is a submatrix in the
Hessian matrix that needs to be inversed, and the dimension of the submatrix depends on the number
of marginalized map points (possibly more than hundreds). It is time-consuming and numerically
unstable if we directly calculate the inverse matrix of the submatrix, as in [8]. For our method, we first
used the null-space-based method to calculate the multi-state constraints factors of the marginalized
map points, i.e., the map point position parameters were marginalized first. Then, we stacked the
multistate constraint factors to construct the Hessian matrix. In our method, the dimension of the
submatrix that needs to be inversed is quite low.

To avoid the repeated integration of IMU measurements, the well-known IMU pre-integration
technology has been widely adopted in graph-based optimization methods. This technique was first
proposed by Lupton et al. [23,24] and further improved by [8,25,26]. The integration is performed in
the first body reference frame during a period, so no previous estimates or covariance are necessary
except for the current estimates of the IMU biases.

It is well known that the uncertainty of low-parallax features is poorly approximated by Gaussian
distribution in Euclidean (XYZ) space, which makes XYZ parameterization suitable only for relatively
close features. An inverse depth parameterization technology was proposed by Civera et al. to handle
this case [5,27]. However, the dimension of the inverse depth parameterization is six, which is twice
the size of the XYZ parameterization. For this reason, an anchored inverse depth parameterization
was proposed by Pietzsch [28]. In this study, we adopted the anchored inverse depth parameterization
and selected the first keyframe in the sliding window as the anchored frame.

Some VINS solutions, such as VI-ORB-SLAM [4], assume that the camera-to-IMU transformation
is known. This requirement is not always met, such as with a new device. Although the camera-to-IMU
transformation can be calibrated by offline methods [29,30], these methods are time-consuming and
complex and require a professional user to carefully move the device in front of a stationary calibration
target [29,30]. In this study, the camera-to-IMU transformation was estimated online.

Both the conditioning-based method and the prior-based method are susceptible to linearization
error. Directly fixing the outside nodes makes the conditioning-based method more sensitive to
linearization error, so a high-precision initialization method is essential for the VINS problem [7].
Two types of online initialization methods are found in the literature: loosely-coupled methods [31–33]
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and tightly-coupled methods [34,35]. As reported by Liu et al. [32], the tightly-coupled methods that
aim to recover all navigation quantities in one attempt perform poorly because they attempt to solve
a large number of variables in a poorly conditioned system. In this study, we adopted the method
proposed by Huang et al. [31].

Our contributions are threefold:

a. We designed a novel hybrid sliding window optimizer that has the advantages of both the
conditioning-based method and the prior-based method.

b. We designed a distributed marginalization technology based on multi-state constraint factors.
c. We estimated the camera-to-IMU transformation online.

The remainder of this paper is organized as follows. Section 2 briefly introduces the anchored
inverse depth parameterization and IMU pre-integration technology. In Section 3, we demonstrate
the framework of the hybrid sliding window optimizer in detail. In Section 4, we demonstrate the
distributed marginalization technology, and in Section 5, we show our experimental results and some
implementation details, and in Section 6, we make our conclusions.

2. Measurement Model Formulation

This section briefly introduces the anchored inverse depth parameterization and the IMU
pre-integration technology. The anchored inverse depth parameterization effectively improves the
accuracy of linearization relative to Euclidean XYZ parameterization [5,27]. To avoid the repeated
integration of IMU measurements during optimization iteration, IMU pre-integration technology
was proposed by Lupton et al. [23,24] and further improved in other studies [8,25,26]. In this study,
we followed the one proposed by Qin et al. [8].

2.1. Notation and Frames of Reference

In this paper, the world reference frame is denoted as W; the camera reference frame is denoted
as C; the IMU body reference frame is denoted as B. All vectors and matrixes are bold, and a vector
projected in a specific reference frame is appended with a right superscript, e.g., pB

∈ R3 means the
vector p is projected into the reference frame B. A transformation matrix TWB ∈ SE3 which transforms
the vector pB

∈ R3 from the reference frame B to the reference frame W. The transformation matrix
can be further divided into a rotation matrix RWB ∈ SO3 and a relative translation vector pW

WB ∈ R
3,

as follows: [
pW

1

]
= TWB

[
pB

1

]
=

[
RWB pW

WB
0 1

][
pB

1

]
(1)

In addition, the notation qWB signifies the unit quaternion corresponding to the rotation matrix
RWB. We refer readers to [31] for more details about the operation of unit quaternion. The function
TWB(·) is defined to transform a vector projected in the reference B to the reference frame W, i.e.,
pW = TWB(pB).

The pose of the IMU at time tk with respect to the world reference frame W is denoted as TWBk ;
the camera-to-IMU transformation is denoted as TBC. For a full-rank square matrix A, the notation A−1

signifies the inverse matrix of A, i.e., A−1A = AA−1 = I. The notation I signifies identity matrix. The
notation AT signifies the transposed matrix of A. For a vector p = [px, py, pz]

T
∈ R3, the notation [p]

×

signifies the skew-symmetric matrix of p, as follows:

[p]
×
=


0 −pz py

pz 0 −px

−py px 0

 (2)
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2.2. Inverse Depth Parameterization

Assume that the map point lm is co-visible in the keyframe KFa and KF j. We selected KFa as
the anchored keyframe for lm. The pose of the anchored keyframe is denoted as TWBa . The pose
of the observing keyframe KF j is denoted as TWB j . Let ψlm = [ψ1,ψ2,ψ3]

T
∈ R3 be the inverse

depth parameterization of the co-visible map point in the anchored camera reference frame Ca.

The function Π(ψlm) = [
ψ1
ψ3

, ψ2
ψ3

, 1
ψ3
]
T
= [XCa , YCa , ZCa ]

T transforms an inverse depth parameterization
to its Euclidean XYZ counterpart and vice versa. We adopted a conventional pinhole-camera model,
and the 2D projection of the co-visible map point on the image plane of the anchored keyframe are

zlm
a (ψlm) =

 fu XCa

ZCa + u0

fv YCa

ZCa + v0

 = [
fuψ1 + u0

fvψ2 + v0

]
(3)

where [ fu fv]
T is the focal length, and [u0 v0]

T is the principal point.
The XYZ coordinates of the co-visible map point lm in the observing camera reference frame C j are

[XC j , YC j , ZC j ]
T
= T−1

BCT−1
WB j

TWBaTBC
(
Π(ψlm)

)
(4)

the 2D projection of the co-visible map point lm on the image plane of the observing keyframe are

zlm
j (ψlm , TWBa , TWB j , TBC) =

 fu XCj

ZCj
+ u0

fv YCj

ZCj
+ v0

 (5)

this model does not consider the distortion of the camera lens. All 2D coordinates of the key points are
undistorted immediately after extraction.

Let z̃lm
a and z̃lm

j be the 2D positions of the key points in the anchored keyframe and the observing

keyframe, respectively, and their extraction errors ηlm
a and ηlm

j are typically zero-mean Gaussian.
The visual reprojection residual functions are as follows:

rlm
a = z̃lm

a − zlm
a + ηlm

a , rlm
j = z̃lm

j − zlm
j + ηlm

j (6)

where the covariance matrix of ηlm
a and ηlm

j are denoted as Plm
a and Plm

j (the covariance notation P is
capital for making a distinction with the translation notation p which is lowercase).

2.3. IMU Pre-Integration Technology

The IMU measures the acceleration aB and the angular velocity ωB of a vehicle, typically at
hundreds of Hz. Both measurements are corrupted by additive measurement noises and time-varying
biases; therefore, the raw measurements of IMU at time t are modeled as follows:

ãBt = aBt + bBt
a + nBt

a , ω̃Bt = ωBt + bBt
g + nBt

g (7)

where the notation bBt
(·)

signifies the time-varying biases of IMU. The notation nBt
(·)

signifies the additive

noises of IMU and are typically Gaussian, i.e., nBt
a ∼ N(0,σ2

a ), nBt
g ∼ N(0,σ2

g). The time-varying biases
are modeled as a random walk,

.
b

Bt

a = nBt
ba

,
.
b

Bt

g = nBt
bg

(8)

where the noises that drive the biases are Gaussian, i.e., nBt
ba
∼ N(0,σ2

ba
), nBt

bg
∼ N(0,σ2

bg
).
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Given two consecutive keyframes at times tk and tk+1, all IMU measurements are pre-integrated
into a single measurement that serves as a constraint between the IMU poses at times tk and tk+1.
According to Newton’s second law, the related integration equations are as follows:

pW
WBk+1

= pW
WBk

+ vW
WBk

∆tk +
1
2 gW∆t2

k + RWBk

s
t∈[tk,tk+1]

[RBkBt (̃a
Bt
− bBt

a − nBt
a )]dt2

= pW
WBk

+ vW
WBk

∆tk +
1
2 gW∆t2

k + RWBkαBkBk+1

vW
WBk+1

= vW
WBk

+ gW∆tk + RWBk

∫
t∈[tk,tk+1]

[RBkBt (̃a
Bt
− bBt

a − nBt
a )]dt

= vW
WBk

+ gW∆tk + RWBkβBkBk+1

qWBk+1
= qWBk

⊗

∫
t∈[tk,tk+1]

1
2 [ω̃

Bt − bBt
g − nBt

g ] ⊗ qWBt
dt

= qWBk
⊗ γBkBk+1

(9)

where ∆tk = tk+1 − tk; ⊗ represents quaternion multiplication, and we refer readers to [31] for more
details; vW

WBk
and vW

WBk+1
represent the velocity of IMU at time tk and tk+1, respectively; αBkBk+1 , βBkBk+1 ,

and γBkBk+1 are the so-called pre-integrations of the IMU measurements during [tk, tk+1]. Note that
the IMU pre-integration is performed in the first IMU reference frame Bk without the need for initial
pose or velocity estimates. Because of the presence of random noises, the pre-integration also involves
random variables. We need to calculate its covariance for information fusion. We directly cite the
linearized continuous-time dynamic model of the deviation of the pre-integration and refer readers to
the literature [8] for more details, as follows:

δ
.
αBkBt

δ
.
βBkBt

δ
.
θBkBt

δ
.
b

Bt

a

δ
.
b

Bt

g


=



0 I 0 0 0

0 0 −RBkBt [̃a
Bt
− b̂

Bt
a ]
×
−RBkBt 0

0 0 −[ω̃Bt − b̂
Bt
g ]
×

0 −I
0 0 0 0 0
0 0 0 0 0





δαBkBt

δβBkBt

δθBkBt

δbBt
a

δbBt
g


+


0 0 0 0

−RBkBt 0 0 0
0 −I 0 0
0 0 I 0
0 0 0 I




nBt

a
nBt

g

nBt
ba

nBt
bg


= Atδ

˘
xt + Btnt, t ∈ [tk, tk+1]

(10)

where δqBkBt
= [1 1

2δθ
T
BkBt

]T
represents the orientation error.

According to the linear system theorem [36], this system can be discretized as follows:

δ
˘
xt+∆T ≈ (I + ∆TAt)δ

˘
xt + ∆TBtnt

�Φt+∆T,tδ
˘
xt + Gtnt

(11)

where ∆T is the sampling time of IMU; nt =
1

∆T

∫ t+∆T
t nτdτ is the equivalent noise during [t, t + ∆T];

its mean is zero, and its covariance is calculated as follows:

cov(nt) =
1

∆T2

∫ t+∆T

t
E(nτnT

τ )dτ =
1

∆T
cov(nt) =

Q
∆T

= Q (12)

where Q = diag(σ2
a ,σ2

g,σ2
ba

,σ2
bg
). Because nt is a Gaussian white noise sequence, the covariance of the

deviation of the pre-integration can be calculated recursively, as follows:

Pt+∆T = Φt+∆T,tPtΦT
t+∆T,t + GtQGT

t (13)

where the initial covariance Pk is set to be zeros.
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The residual function about the IMU pre-integration in [tk, tk+1] is

rk+1,k
IMU =



pW
WBk+1

− pW
WBk
− vW

WBk
∆tk −

1
2 gW∆t2

k −RWBkαBkBk+1(b
Bk
a , bBk

g )

vW
WBk+1

− vW
WBk
− gW∆tk −RWBkβBkBk+1(b

Bk
a , bBk

g )

q−1
WBk+1

⊗ qWBk
⊗ γBkBk+1(b

Bk
g )

bBk+1
a − bBk

a

bBk+1
g − bBk

g


+ npre (14)

where cov(npre) = Pk+1.
Note that αBkBk+1(b

Bk
a , bBk

g ), βBkBk+1(b
Bk
a , bBk

g ), and γBkBk+1(b
Bk
g ) are functions about the IMU biases.

To perform iterative optimization, we require their Jacobian matrices about the IMU biases. Therefore,
the transfer matrixΦk+1,k is computed recursively as follows.

Φt+2∆T,t = Φt+2∆T,t+∆TΦt+∆T,t (15)

the related sub-matrices ofΦk+1,k are the Jacobian matrices.

3. Hybrid Sliding Window Optimizer

The best modern systems work via interleaved tracking and mapping via optimization [21].
One of the most representative works is PTAM [37], which was the first work to split mapping and
tracking in parallel threads. Based on the main ideas of PTAM, the famous ORB-SLAM was proposed
by Mur-Artal [3], and its inertial version was described by Mur-Artal et al. [4]. For this study, we built
our implementation upon the local mapping thread of ORB-SLAM. We claim that the hybrid sliding
window optimizer is generic and suitable for any keyframe-based system with a pipeline similar to
that of PTAM or ORB-SLAM.

3.1. Framework

The hybrid sliding window optimizer is performed once a new keyframe is received. We kept the
last N successive keyframes in the sliding window and all map points visible by those N keyframes.
Co-visible keyframes outside the sliding window are fixed during optimization.

Figure 1 illustrates the framework of the hybrid sliding window optimizer. The sliding window is
divided into two parts: the mature region and the growing region. The nodes (state variables) within
the mature region have been updated many times and doubtless possess greater estimation precision
than those in the growing region. The map point is to be marginalized out only if all of its edges (at least
3) are related only with the nodes in the mature region (at least 2) and the fixed basis, which decreases
the linearization error. As a result, the prior becomes more accurate. After each update, the first
IMU pose, velocity, and bias nodes and all 3D position nodes of the map points that meet the above
criteria are marginalized out. A prior factor is then constructed that is related to the IMU pose nodes
(excluding the first one) within the mature region and the second IMU velocity and bias nodes. Finally,
all factors used for marginalization are removed from the sliding window. This process is repeated
once a new keyframe is received. For map points with a tracking length greater than the size of the
sliding window, we continue to estimate the 3D positions until all edges (residuals) move into the
mature region and the fixed basis. Some existing methods, such as MSCKF [12,15] and SWF [8,18],
cannot deal well with this kind of map point.
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3.2. Formulation

In this section, the cost function used for the graph-based optimization is constructed. All related
residual functions and state variables are defined in a compact form. Let the full state variables of IMU

as xk = [qT
WBk

, pW
WBk

T, vW
WBk

T, bBk
a

T, bBk
g

T]
T

. Let the state variables of camera-to-IMU transformation as

xBC = [qT
BC, pB

BC
T]

T
. For a visible map point lm, let SF, SM, and SG be the sets of observation keyframes

corresponding to the fixed basis, the mature region, and the growing region, respectively. The first
observation keyframe in the sliding window is selected as the anchored keyframe KFa. We denote the
full state variables of IMU about KFa as xa. According to Equation (6), the cost function about the map
point lm is

C
lm = ‖rlm

a (ψlm)‖
2
Plm

a
+

∑
i∈SF

‖rlm
i (xa, xBC,ψlm)‖

2

Plm
i
+∑

j∈{SM/KFa}
‖rlm

j (xa, x j, xBC,ψlm)‖
2

Plm
j

+
∑

k∈{SG/KFa}
‖rlm

k (xa, xk, xBC,ψlm)‖
2

Plm
k

(16)

where the visual reprojection residual function rlm
(·)

is only related with a part of elements of the full

state variables of IMU x(·), i.e., qWB(·)
and pW

WB(·)
. For convenience of notation, we directly used the

notation x(·), the other part of x(·), i.e., vW
WB(·)

, b
B(·)
a , and b

B(·)
g , has no influence on the rlm

(·)
. The notation

‖r‖2P signifies the Mahalanobis distance of r given the covariance matrix P. The notation Cwritten in
“Euclid Math one” signifies the cost function.
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According to Equation (14), the cost function about the IMU pre-integration during [tk, tk+1] is

C
k+1
IMU = ‖rk+1,k

IMU (xk, xk+1)‖
2

Pk+1
(17)

where Pk+1 is the covariance matrix of the deviation of the IMU pre-integration, as in Equation (13).
To simplify the notations, the time of the first keyframe in the sliding window is denoted as t0.

Let rprior(x0, x1, · · · , xM−2) be the linearized and normalized prior residual function; its cost function
can be written as

Cprior = ‖rprior(x0, x1, · · · , xM−2)‖
2
I (18)

where M is the size of the mature region.
We stacked the individual state variables into the full state variables of the sliding window,

as follows:
χ = [xT

0 , xT
1 , · · · , xT

N−1
, xT

BC,ψl0 T, · · · ,ψlm T, · · · ,ψlK−1 T]
T

(19)

where N denotes the size of the sliding window. K denotes the number of map points visible in the
sliding window.

According to Equations (15)–(17), the cost function for optimization is

C(χ) = Cprior +
K−1∑
m=0

C
lm +

N−1∑
k=0

C
k+1
IMU (20)

The optimal estimation χ∗ can be obtained by minimizing the cost function Equation (19):

χ∗ = argmin
χ
C(χ) (21)

The Equation (19) is the cost function of the nonlinear least-squares problem. This problem
can be solved with a numerical optimization method [38], such as the Dogleg method, 2D subspace
minimization, the Gauss–Newton method, or the Levenberg–Marquardt method. In this study,
we adopted the Levenberg–Marquardt method and implemented our optimizer based on Ceres [39].

The likelihood function considers all measurements. To keep the computation time bounded,
marginalization technology is used to construct a linearized and normalized prior factor that gains
information over time. A fixed basis is used to cope with map points whose tracing length exceeds
the size of the sliding window. Both the marginalization technology and the fixed basis introduce
linearization error, so the estimation result is suboptimal. If the linearization error is negligible,
the estimation result will tend to be optimal.

All nodes within the fixed basis remain constant during optimization iteration. Hence, the structure
of the Hessian matrix of the hybrid sliding window optimizer is same as that calculated by traditional
sliding window optimizers (e.g., [8,18]), and its sparsity was proven by Sibley et al. [18]. Because of the
prior factor and the camera-to-IMU transformation, the second-order sparsity may vanish. As a result,
the computation complexity of the hybrid sliding window optimizer is max(O(N3), O(N2K)) [20,21].

4. Distributed Marginalization

Marginalization technology is widely used in both Bayesian filters and graph-based optimization
methods to make system scalable. For the traditional method (e.g., [8,18]), the last prior residual
function, all reprojection residual functions of marginalized map points, and the first pre-integration
residual function in the sliding window are directly linearized and normalized at current estimates.
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Then, all of those linearized and normalized residuals are stacked into one residual (we refer readers to
the open-source code of [8] for more details), as follows:

r(
˘
χ) = r̂(

ˆ̆
χ) + Hδ

˘
χ

=

[
r̂r

r̂m

]
+

[
B E
ET C

] δ
˘
χr

δ
˘
χm

 = [
rr

rm

] (22)

where
˘
χ is the state variables related with the residuals used in the marginalization.

ˆ̆
χ represents the

current estimation of
˘
χ. The notation r̂(

ˆ̆
χ) denotes the function value of r(

˘
χ) at current estimation

ˆ̆
χ.

δ
˘
χ is the perturbation increments of

˘
χ with respect to

ˆ̆
χ, as follows:

δ
˘
χ = [δxT

1 , · · · , δxT
M−1, δxT

BC︸                    ︷︷                    ︸
δ

˘
χr

, δxT
0 , δψl0 T, δψl1 T, · · · , δψlKM T︸                                ︷︷                                ︸

δ
˘
χm

]
T

= [δ
˘
χ

T

r δ
˘
χ

T

m

]T
(23)

where M is the size of the mature region. KM is the number of marginalized map points. δ
˘
χm denotes

perturbation increments of the state variables that need to be marginalized. δ
˘
χr corresponds to the

state variables that remain. x(·) is the full state variables of IMU as the above section. The perturbation
increments of the elements of x(·) are additive, e.g., pW

WB(·)
= p̂W

WB(·)
+ δpW

WB(·)
, except for the unit

quaternion qWB(·)
. The perturbation of unit quaternion is defined as follows:

qWB(·)
= q̂WB(·)

⊗ δqWB(·)
= q̂WB(·)

⊗ [1,
1
2
δθT

WB(·)
]
T

(24)

where δθT
WB(·)

is an angle-axis vector. So, the perturbation increments of x(·) can be denoted as follows:

δx(·) = [δθT
WB(·)

, (δpW
WB(·)

)
T

, (δvW
WB(·)

)
T

, δb
B(·)
a

T, δb
B(·)
g

T]
T

(25)

the perturbation increments of ψl(·) are additive, i.e., ψl(·) = ψ̂l(·) + δψl(·) .
For calculating the prior residual function for next optimization, the Shur complement technology

was used on Equation (21) to marginalize the map points out, yields

rr − EC−1rm = r̂r − EC−1r̂m + (B− EC−1ET)δ
˘
χr (26)

the Equation (25) is only related with
˘
χr, and serves as the prior residual function for next optimization

after normalization. The map points that have be marginalized out will never be used again. According
to Equation (21), it can be found that the dimension of the submatrix C is 3 ∗ KM + 15, and mainly
depends on the number of marginalized map points. However, in some cases, the KM will be quite
large, e.g., rich texture and fast rotation, which makes the matrix inversion C−1 time-consuming and
numerically unstable.

In this paper, we designed a distributed marginalization method to reduce the dimension of
the submatrix C, in order to make the matrix inversion C−1 efficient and stable. The core idea of our
method is that we first calculate the MSC factors of the marginalized map points. The 3D inverse
depth positions of the map points are marginalized out by using the null-space-based method [12,22].
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Therefore, those MSC factors are only related with the poses of IMU within the mature region and the
camera-to-IMU transformation.

We marginalized a map point out only if all its measurements (at least 3) lie outside the growing
region and at least two measurements lie within the mature region. In mathematic terms, there are
SG = ∅, card(SM) + card(SF) ≥ 3, and card(SM) ≥ 2, where card(·) denotes the number of elements
of the set. For a marginalized map point, there are no visual measurements within the growing region.
According to Equation (15), the cost function of the marginalized map point lm is as follows:

C
lm = ‖rlm

a (ψlm)‖
2
Plm

a
+

∑
i∈SF

‖rlm
i (xa, xBC,ψlm)‖

2

Plm
i

+
∑

j∈{SM/KFa}
‖rlm

j (xa, x j, xBC,ψlm)‖
2

Plm
j

= ‖[rlm
a (ψlm)

T
· · · rlm

i (xa, xBC,ψlm)
T
· · · rlm

j (xa, x j, xBC,ψlm)
T
· · · ]

T
‖

2

Plm

= ‖rlm(χ̃,ψlm)‖
2
Plm

(27)

where rlm is the reprojection residual function of the map point lm. χ̃ = [δxT
0 , · · · , δxT

M−1, δxT
BC]

T

is the state variables including the full state variables of IMU within the mature region and the
camera-to-IMU transformation. Plm = diag(Plm

a , · · · , Plm
i , · · ·Plm

j , · · · ) is a block-diagonal covariance

matrix. The residual function of lm can be linearized and normalized at the current estimation ˆ̃χ and
ψ̂lm , as follows:

(Plm)
−

1
2 rlm(χ̃,ψlm) = (Plm)

−
1
2 r̂lm( ˆ̃χ, ψ̂lm) + (Plm)

−
1
2 Jχ̃δχ̃+ (Plm)

−
1
2 Jψδψ

lm (28)

where r̂lm( ˆ̃χ, ψ̂lm) signifies the function value of rlm(χ̃,ψlm) at current estimation ˆ̃χ and ψ̂lm .
We rewrite Equation (28) in a compact form, as follows:

rlm(χ̃,ψlm) = r̂
lm
( ˆ̃χ, ψ̂lm) + Jχ̃δχ̃+ Jψδψ

lm (29)

the 3D inverse depth position deviation δψlm can be marginalized out by using the left null space of
the Jacobian matrix Jψ. The left null space can be calculated by QR decomposition, and we denote it as
NLe f t. Substituting NLe f t into the Equation (28), we have

r
lm

MSC(χ̃) = r̂
lm

MSC(
ˆ̃χ, ψ̂lm) + J

MSC
χ̃ δχ̃ (30)

where r̂
lm

MSC(
ˆ̃χ, ψ̂lm) = NLe f tr̂

lm
( ˆ̃χ, ψ̂lm), J

MSC
χ̃ = NLe f tJχ̃, and NLe f tJψ = 0. Equation (29) is the

well-known MSC factor [12,15]. It can be found that the Equation (29) is independent of the 3D inverse
depth position δψlm .

By combining the last prior residual function Equation (17), the linearized and normalized
pre-integration residual function in Equation (14) of the first pre-integration in the sliding window,
and all of the MSC factors, we can construct the equation Equation (21). Compared with the traditional
method (e.g., [8,18]), the dimension of submatrix C of our method decreases to 6 + 3 + 6 (corresponding
to the first IMU pose, velocity, and biases in our implementation). We can compute the inversed matrix
of C in an effective and stable manner.

5. Results and Discussion

We evaluated the proposed hybrid sliding window optimizer on the publicly available EuRoC
datasets using a commercial laptop computer (Lenovo ThinkPad T470p, Intel i7-7700HQ, 2.8GHz).
The EuRoC visual-inertial datasets were collected onboard by an MAV flying in two Vicon covered
rooms and a large industrial machine hall. The datasets contain synchronized stereo image sequences,
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IMU measurements, and accurate ground truth [40]. All sequences were classified as easy, medium,
and difficult levels according to texture, illumination, fast/slow motion, and motion blur [40]. In our
data processing, we used only the left image sequence (i.e., monocular). The original publicly available
ORB-SLAM has three main threads: the tracking thread, the local mapping thread, and the loop closing
thread. We implemented the HSWO based on the local mapping thread, and the loop closing thread
was removed. The iterative linear solver of the nonlinear VINS problem requires a good initial value to
achieve a rapid rate of convergence. Hence, a good initialization for the VINS problem is necessary. In
this paper, we followed the method proposed by Huang et al. [31]. A visual-inertial bundle adjustment
is performed immediately after visual-inertial initialization.

We used EVO [41], a third-party evaluation software, to analyze the trajectory calculated by the
HSWO. EVO aligned the trajectory with the ground truth via Umeyama’s method and then provided
the RMSE of the absolute metric position deviation. Because the threads of ORB-SLAM run in parallel
with other tasks of the operating system, some randomness will be introduced into the results [3]. Our
implementation also inherited this property; therefore, we provide the median value of the RMSEs of
five runs just as reference [3] did.

There are different choices for the size of the sliding window N and the size of the mature area
M, which affects the results significantly. In this paper, we evaluated and optimize the performance
of the HSWO by changing the size of N and M. In addition, the “MapPointFusion()” function in the
ORB-SLAM is in charge of fusing the same map point (if available) in the scene, which may introduce
some local loop closures and large loop closures. Those potential loop closures may interfere with the
evaluation results and cause unfair comparison. Therefore, we adopt three methods to remove them:
(a) Do not fuse the two map points if the map point with large ID has been marginalized; (b) Allow a
map point to add new observation only if the new observation is within the growing region; (c) Limit
the size of the Fixed basis F.

In the EuRoC datasets, the dataset labeled with MH_03_medium is the longest and contains fast
motion that motivates the IMU. So, we analyzed the influence of changing N, M, and F in the HSWO
by using this representative dataset. The parameter tuning results are listed in Table 1.

Table 1. The RMSEs of keyframe trajectory error with changing N, M, F.

Parameter Setting Median of RMSEs (m)

N15-M05-F15 0.092
N15-M10-F00 0.125
N15-M10-F15 0.071
N20-M05-F20 0.068
N20-M10-F20 0.055
N20-M15-F20 0.063

“Nx-My-Fz” means N = x, M = y, and F = z.

According to Table 1, we have

a. The accuracy of the system will be improved if increase N, which is because more information
is contained;

b. By comparing N15-M10-F15 with N15-M10-F00, we can find that the accuracy will degrade
dramatically if the fixed basis is removed, which is because the information in the fixed basis
is omitted;

c. By comparing N15-M10-F15 with N15-M05-F15, or N20-M10-F20 with N20-M05-F20, we can
find that the accuracy will degrade if the value of M is too small, in which case the fixed basis
has more weight than the prior factor, and directly fixing the pose of the keyframe in the fixed
basis makes it more sensitive to the linearization error;

d. By comparing N20-M10-F20 and N20-M15-F20, we can find that the accuracy of the system will
also degrade if the value of M is too large.
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Theoretically, the prior factor has one-order accuracy, the keyframe nodes related with the prior factor
still have the chance to be updated. However, the linearization error of the prior factor will increase
if M is too large, because the keyframe nodes with larger ID are estimated less times than the ones
with smaller ID. For making the linearization error less and giving the keyframe nodes with large ID
more freedom (i.e., making the keyframe nodes with large ID not related with the prior factor), we set
N = 20, M = 10 in the following data processing.

An array of publicly available VINS pipelines (MSCKF, OKVIS, ROVIO, VINS-Mono, etc.) have
been evaluated on various hardware configurations [42]. They performed sim3 trajectory alignment to
the ground truth and computed the root-mean-square error (RMSE) of the absolute position over the
aligned trajectory. All results are listed as a table, and we used the results evaluated on a common mobile
workstation (Lenovo ThinkPad W540) for comparison. The accuracy of VI-ORB-SLAM proposed in [4]
was also evaluated with the EuRoC dataset, and all metric position RMSEs are shown in the same
table. Because our implementation includes no full visual-inertial bundle adjustment, we selected the
results labeled as “NO full BA” for comparison. We also directly used the results reported for the
VI-DSO proposed by Von Stumberg [43]. All of the results are listed in Table 2, “HSWO (Limited)”
means that we removed potential local loop closures by using the three methods mentioned above,
and the maximum of the size of the fixed basis F is set as 20. “HSWO” means that we keep the original
“MapPointFusion()”, the map point will be treated as a new map point after fusion with other map
point, which will cause reuse of visual measurements. Note that many details of these VINS pipelines,
e.g., the data association of the front end, setting of optimizers, and trajectory saved, are different.
For those reasons, the purpose of the comparison is not to show which VINS pipeline is better, but to
demonstrate that our implementation can also achieve high-accuracy results by using the results
provided by others VINS pipelines as a third-party reference standard.

The full trajectory contains the poses of every frame, not only the keyframe. The original
ORB-SLAM recovered this trajectory from the relative pose and the reference keyframe of every frame,
and we follow the same method in this paper. In most cases, the accuracy of the full trajectory may
be lower than the one of the keyframe trajectory. But, in some cases, the accuracy of full trajectory
may be better, and there are two reasons for this: (a) the full trajectory is recovered from the keyframe
trajectory, therefore the accuracy of two trajectory should be comparable; (b) the number of pose in
the full trajectory is much larger than the one in the keyframe trajectory. So, the weight of every pose
deviation will be decreased during calculating the RMSE of trajectory. Then, the weight of some big
deviation will also be decreased. In this case, the RMSE of the full trajectory will be less than the RMSE
of the keyframe trajectory.
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Table 2. RMSEs of absolute metric position errors (m) on the EuRoC datasets.

Cited from [42]
VI-ORB-SLAM [5] VI-DSO [43]

HSWO HSWO (Limited)

MSCKF OKVIS ROVIO VINSMONO KF
Trajectory

Full
Trajectory

KF
Trajectory

Full
Trajectory

MH01 0.42 0.16 0.21 0.27 0.075 0.062 0.054 0.048 0.078 0.075
MH02 0.45 0.22 0.25 0.12 0.084 0.044 0.032 0.036 0.072 0.057
MH03 0.23 0.24 0.25 0.13 0.087 0.117 0.050 0.063 0.055 0.058
MH04 0.37 0.34 0.49 0.23 0.217 0.132 0.096 0.099 0.169 0.216
MH05 0.48 0.47 0.52 0.35 0.082 0.121 0.057 0.063 0.139 0.119
V101 0.34 0.09 0.10 0.07 0.027 0.059 0.039 0.035 0.034 0.037
V102 0.20 0.20 0.10 0.10 0.028 0.067 0.032 0.036 0.042 0.050
V103 0.67 0.24 0.14 0.13 - 0.096 0.054 0.057 0.055 0.045
V201 0.10 0.13 0.12 0.08 0.032 0.040 0.033 0.027 0.036 0.042
V202 0.16 0.16 0.14 0.08 0.041 0.062 0.040 0.027 0.043 0.029
V203 1.13 0.29 0.14 0.21 0.074 0.174 0.083 0.072 - -

The keyframe trajectory with highest accuracy is highlighted in bold and black; The best performance among the VINS pipelines, except for VI-ORB-SLAM and HSWO, is also highlighted
in bold.
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VI-ORB-SLAM used a conditioning-based method for fusing the visual and inertial measurements,
and the first IMU pose, velocity, and biases node are also directly fixed. Theoretically, this method is
more sensitive to linearization error. However, the accuracy of the keyframe trajectory produced by
VI-ORB-SLAM is quite high. The reason might be: The EuRoC datasets contain many local and large
loops, the “MapPointFusion ()” function in the local mapping thread may implicitly close many local
loops and some large loops, which phenomenon is also found by [44]. In VINS-mono, visual features
are tracked by the KLT sparse optical flow algorithm. Both VI-DSO and ROVIO use direct method for
data association. Also, they cannot achieve map point fusion like ORB-SLAM. Therefore, it cannot
be proven that the conditioning-based method is sufficient for VINS problem, even if the accuracy of
VI-ORB-SLAM is higher than some other VINS pipelines. In order to eliminate the influence of map
point fusion, the results of the HSWO in which map point fusion has been limited are also listed in
Table 2. It can be found that its accuracy slightly degrades compared with the HSWO with map point
fusion. Also, compared with other VINS pipelines with no map point fusion, our implementation still
achieves better performance on more than half of the EuRoC datasets. Note that the VI-ORB-SLAM
cannot process the V1_03_ difficult dataset because the movement has exceeded the limit for the
monocular system [4]. In our implementation, IMU measurements are used to reckon the frame pose
during tracking lost epoch, and a reprojection method is then used to perform feature matching, which
makes it possible to process the V1_03_ difficult dataset. However, our implementation cannot process
the V2_03_ difficult dataset if the map point fusion function is limited using the methods mentioned
above, even if an approximate frame pose has been provided by integrating the IMU measurements,
our implementation still cannot find suitable map points for matching.

Based on all of the above analysis, we claim that:

(a) The accuracy of the proposed HSWO will degrade if the size of mature region M is too small, in
which case, the performance of HSWO tends to the conditioning-based method.

(b) The accuracy of HSWO will degrade if the fixed basis is removed, in this case, the HSWO
degenerates into the prior-based method, and the map point whose tracking length is larger than
the sliding window cannot be used effectively.

(c) We need to select a suitable value for M to balance the linearization error within the fixed basis
and the prior factor. For our implementation, we set N = 20, and M = 10.

(d) Compared with the results provided by other VINS pipelines, the accuracy of our results
is competitive.

Due to limited space, Figures 2 and 3 show only the results on MH_03_medium and V1_03_difficult,
respectively, where the map point fusion function has been limited. The full trajectories are aligned
with the ground truth and shown in Figures 2a and 3a, respectively; the translation deviations with
respect to the ground truth are shown in Figures 2b and 3b, respectively, and most of the deviations are
less than 10 cm; the rotation deviations of camera-to-IMU transformation are shown in the Figures 2c
and 3c, respectively, and the translation deviations of camera-to-IMU transformation are shown in the
Figures 2d and 3d, respectively. It can be found that the estimation of camera-to-IMU transformation
fluctuates at the start period, and then tends to be stable as time goes on. But there are still some
constant biases in the estimation. This is because the resolution of the digital camera is limited, and
most map points are far from the camera, in which case, small rotation biases and small translation
biases in the camera-to-IMU transformation estimation will not cause sufficient parallax, and therefore
cannot be observed effectively by the optimizer.
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For attitude error, we followed the evaluation method proposed by Delmerico et al. [42] and used
the transformation matrix calculated by EVO to align the estimated attitude with its ground truth,
and then computed the yaw error. The boxplots in Figures 4 and 5 summarize the statistics of the
yaw error on each sequence of the EuRoC datasets. The results provided by the HSWO (limited) are
labeled with (*). The yaw error on V1_01_easy dataset is significantly larger than on the other datasets.
Here we noticed that the motion on V1_01_easy dataset is weak during initialization, which means our
implementation cannot be well initialized, even if a visual-inertial bundle adjustment is performed
right after the initialization.
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In the multithread framework, the optimizer has no need to operate at the frame rate. Table 3 lists
the statistical results for the time consumption of the HSWO used in our implementation and the LBA
(vision-only, a conditioning-based method) used in the mono ORB-SLAM [3].

Table 3. Time consumption of the HSWO and LBA method.

METHOD MEDIAN (ms) MEAN (ms) MAX (ms) STD (ms)

HSWO 189 219 507 82
LBA 163 216 1202 189

The standard deviation of the time consumed by the HSWO is less than that for the LBA,
which means that the HSWO’s time consumption is more stable. This better stability is a result
of the fixed size of the HSWO’s sliding window, whereas the number of the keyframes used in the
LBA varies according to the co-visibility between keyframes, which makes the time consumed by the
LBA fluctuate. If a large number of keyframes are used in the LBA and a map point is visible in all
keyframes, the second-order sparsity will disappear. In this case, the computation complexity of the
LBA is cubic with the number of keyframes. Therefore, the LBA’s maximum time consumption is
much larger than that of the HSWO. The mean time consumption is approximately equivalent for both
methods. During the initial period, the number of keyframes is small and the co-visibility is sparse, so
the LBA is much more efficient. As the map grows and the co-visibility gradually becomes denser,
the time consumed by LBA will increase. Therefore, the median time consumption of the HSWO is
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slightly greater than that of the LBA. Based on these statistical results, we claim that the HSWO shows
comparable efficiency as the LBA.

Generally, there are 30–80 map points to be marginalized at every step. But in some cases,
such map points increase to more than a hundred. In order to evaluate our marginalization method,
we increased the size of mature region for making more map points marginalized. Additionally,
we performed marginalization in one thread to remove randomness. Figure 6 plots the time consumed
by the traditional method (e.g., [8,18]) and by our method. The time consumed by the traditional
method is cubic with the number of map points used in marginalization, but the time consumed by
our method is linear with the number of map points used in marginalization. Therefore, our method is
much more efficient than the traditional method, especially with a large number of map points.
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6. Conclusions

Due to the complementary sensing characteristics, low cost, and small space requirements of
the visual-aided inertial navigation system, the VINS problem has become prevalent in the robotic
community. In this paper, we designed a hybrid sliding window optimizer for the VINS problem, the
method can effectively handle visual features whose tracking length exceeds the size of the sliding
window. The sliding window was divided into two parts: the mature area and the growing area.
The nodes outsides the window served as fixed basis. We marginalized a feature out only if all of its
measures lay within the fixed basis and the mature area. A distributed marginalization technology
was also used with significant efficiency improvement than the traditional method, and the accuracy
loss was negligible. Finally, we evaluated our implementation using the open shared EuRoC datasets,
and the results are competitive compared with other VINS pipelines.
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