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Abstract: The main goal of the research presented in this paper was to develop a refined machine
learning algorithm for industrial tomography applications. The article presents algorithms based
on logistic regression in relation to image reconstruction using electrical impedance tomography
(EIT) and ultrasound transmission tomography (UST). The test object was a tank filled with water
in which reconstructed objects were placed. For both EIT and UST, a novel approach was used in
which each pixel of the output image was reconstructed by a separately trained prediction system.
Therefore, it was necessary to use many predictive systems whose number corresponds to the number
of pixels of the output image. Thanks to this approach the under-completed problem was changed to
an over-completed one. To reduce the number of predictors in logistic regression by removing irrelevant
and mutually correlated entries, the elastic net method was used. The developed algorithm that
reconstructs images pixel-by-pixel is insensitive to the shape, number and position of the reconstructed
objects. In order to assess the quality of mappings obtained thanks to the new algorithm, appropriate
metrics were used: compatibility ratio (CR) and relative error (RE). The obtained results enabled
the assessment of the usefulness of logistic regression in the reconstruction of EIT and UST images.

Keywords: machine learning; electrical impedance tomography; ultrasound tomography; process
tomography; image reconstruction

1. Introduction

Tomography is a non-invasive method of identifying the interior of objects [1]. The non-destructive
nature of this method is both its advantage and disadvantage. Lack of the necessity of damaging or
total destruction of the examined object is burdened with the necessity to solve the inverse problem,
which is an immanent feature of every type of tomography [2–4].

The inverse problem belongs to the group of so-called ill-posed problems. According to Hadamard,
well-conditioned problems must meet three criteria: the solution exists, the solution is unambiguous
and the solution is stable [5]. A well-posed problem is likely to be solved on a computer using
a stable algorithm [6–8]. If the problem is not well-posed, it should be reformulated in a way that
allows the use of a numeric algorithm [9]. In such cases, additional assumptions are usually applied,
e.g., a smoothness of the solution. Such a process is called regularization. For example, regularization
of linear problems is usually carried out by Tikhonov regularization.

In the monitoring of industrial processes (e.g., during crystallization), several measuring techniques
can be used simultaneously. One of the possibilities is to combine two methods—electrical impedance
tomography and ultrasound transmission tomography. The physical source of data may be electricity,
magnetism, sound waves, electromagnetic waves, X-rays, visible light, etc. The most common types
of tomography used in industrial processes and medicine are: electrical impedance tomography
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(EIT) [10–12], computed tomography (CT) [13], radio tomographic imaging (RTI) [14], electrical
capacitance tomography (ECT) [15–20] and ultrasound transmission tomography (UST) [21].

EIT is included in a wider group of methods referred to as electrical tomography (ET) [22–24]. ET
involves several techniques for image reconstruction including: EIT [25], ERT which is a variation of
EIT, and ECT [15,18,19,26,27]. In ECT, we determine the value of the electrical permittivity ε [28–30],
while EIT and ERT reconstruct the conductivity σ [31]. The difference between EIT and ERT is mainly
a matter of name. The term ERT is usually used when the nature of the studied environment is
evidently resistant [32]. This is the case, for example, in geological applications of tomography [33,34].

The EIT tomography includes, for example, process industrial tomography, which consists of
non-invasive methods of imaging the interior of tanks, reactors or pipes. While the typical area of CT
applications is medicine, ERT tomography is applied in the study of geology, and EIT tomography is
applied in industry [35]. UST is associated with some forms of medical research, while in industry this
method is still not widely used. This is confirmed by the quotation from [36], in which the authors write
“in oil and gas industry, the applications of ultrasonic tomography technique for flaw detection in pipeline
are limited as this technology is still in its infancy”. When comparing electrical, magnetic and ultrasound
tomography, it can be noted that the most innovation is in the field of electrical impedance tomography
(EIT) [35], electrical capacitance tomography (ECT) [26] and magnetic resonance [37,38].

There are certain technical and construction conditions of process industrial facilities, which mean
the EIT method cannot be used. This happens if, for example, the interior environment of the reactor or
tank is highly dielectrical, or the walls of the tank conduct electricity and, due to moisture, the insulation
of the electrodes becomes very difficult. In these situations, the appropriate method to replace EIT
is UST.

Among the existing problems of process tomography, the following topics can be mentioned:
corrosion control of wall loss in places of pipe support [39], imaging of hidden defects inside metal
elements [40], reinforced concrete inspection [23,41], detection of cracks or voids in nonmetallic
materials [42], monitoring flaws of gas pipelines [36], bubble detection for two-phase liquid
and gas [15,20,43], monitoring of flood embankments [11,34,44] and others.

The general purpose of using tomography is a non-invasive imaging of the object interior with
the highest possible accuracy and speed. This goal is particularly difficult to achieve if the inclusions
are relatively small and occur individually (not in clusters). To overcome these problems, attempts
are made to optimally select physical and computational methods for a specific type of tested objects.
Researchers are striving to develop a tomography scanner that can be applied to the widest possible
range of problems.

The main goal of the research presented in this article is to develop a refined machine learning
algorithm for industrial tomography applications. The method proposed in this study is based on
machine learning linked to logistic regression. In the literature, one can find attempts to apply logistic
regression in both process and medical tomography [45,46].

Most of the novelties in tomographic issues include both equipment (sensors, computer systems)
as well as algorithms solving the inverse problem. Considering the frequency and the number of
new scientific achievements regarding innovative process industrial solutions, UST is less developed
than other tomographic methods. This may be due to the difficulty of developing an efficient system
that includes transducers and algorithms that would enable accurate image reconstruction under
industrial conditions.

The classic way of solving the inverse problem in tomography is Gauss-Newton method.
Other than this approach, currently the most commonly used methods employ machine learning
algorithms [27,44]. The popular methods of machine learning used in tomography include neural
networks [31], deep learning [27] and statistical methods [47]. Logistic regression is counted among
statistical methods of machine learning. Due to the original structure, the presented algorithm based
on logistic regression is a fresh proposition in the field of process tomography. Additionally, in order
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to solve the problem of selecting the relevant input variables in the regression model, the elastic net
method was used.

This article consists of four sections. Section 1 presents the state of art regarding tomographic
methods and algorithms used in the reconstruction of images in process tomography. Many types of
tomography are discussed, taking into account their most common practical applications. A detailed
description of the scientific contribution and novelties contained in the presented concept can
be found in Section 2. This section also contains a description of the test stand, the data used,
elastic net regularization, the multiple logistic regression system (LRS) concept and algorithm, as well
as information on the machine learning process. Section 3 presents examples of reconstructions
obtained by using the multiple LRS method. The quality of the logistic regression for EIT and UST is
also estimated. Two indicators are used as measures of image reconstruction quality: compatibility ratio
(CR) and relative error (RE). Section 4 contains a summary, conclusions and directions for further work.

2. Materials and Methods

The article presents two types of tomography—EIT and UST. Each type of tomography requires
the use of different hardware. The differences concern sensors and equipment for displaying the output
image. In EIT, images are created on a mesh of triangular pixels with a resolution of 2883. UST uses
a square screen with a resolution of 128 × 128, which gives 16,384 pixels.

A common feature for both methods is the application of a machine learning algorithm that
uses logistic regression to solve the inverse problem, and elastic net regularization of input values.
Figure 1 presents test benches for the EIT and UST methods. Based on the measurements carried out,
an algorithm was developed to generate training cases necessary for machine learning using computer
simulation. The validation of the algorithm was made by comparing simulated measurements with
real measurements.

Figure 1. The physical model of the reactor with: (a,b) electrical impedance tomography (EIT) electrodes,
(c) ultrasound transmission tomography (UST) transducers.
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2.1. The Novelty of the Presented Solution

The novelty of the algorithm presented in this article is the combination of elastic net methods
and logistic regression to generate the output image from the examples of EIT and UST. The original
approach is to use an algorithm consisting of many trained subsystems of an elastic net and logistic
regression system (LRS). An elastic net is used to reduce the vector of input variables by removing
mutually correlated predictors. After transforming predictors into pixel binary values, a tomographic
image is generated. In the case of EIT, the input data for LRS are measurements of voltage drops
between the electrodes. For UST, the predictors are the velocity of ultrasound waves emitted in
the examined cross-section of the object. The use of multiple LRS generating single-pixel binary
classifiers instead of a complex system generating multiple pixels of the output image increases
the accuracy of the reconstruction.

The originality of the algorithm is analogous in both the EIT and UST applications. Figure 2a
concerns the EIT. It shows an algorithm based on the structure of an ordinary, singular logistic regression
unit with 96 inputs and 2883 binary {0,1} outputs. In Figure 2b, for comparison, the multiple LRS with
elastic nets scheme is shown. Each of the 2883 LRS after the input data reduction using elastic nets
generates a binary classifier as the output, which is a pixel value. Then, reconstructions of all 2883
pixels make up the output image. In the case of UST, the workflow is the same. Only the number of
inputs and the resolution of the reconstructed image change.

Figure 2. Comparison of algorithms for: (a)—single logistic regression unit, (b)—multiple LRS.

2.2. Logistic Regression

The main goal of both electric and ultrasound tomography is reconstruction of the cross-section
called the field of view. In many cases, we need to specify cross-sections of areas where there are
hidden objects requiring imaging. To identify these inclusions, the imaging domain was first defined
as a specially developed pixel mesh, acting as finite elements [48]. In the case of EIT, it was a mesh
of triangular elements, and for UST they were squares. To answer the question of whether a finite
element contains inclusion, it was necessary to define a function whose results belong to a set of binary
values {0,1}. The results of this function identify the object by selecting the appropriate pixel with
a different color than the background.

In logistic regression, we calculate the probability that the realization of the output variable
belongs to the appropriate category. In this case the probability of inclusion was estimated. In addition,
the use of logistic regression allows the determination of the resolution of the imaging domain.
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Let us consider a data set in which the implementation of the response variable belongs to a binary
file. For each finite element, we analyze the training set D =

{{
xi, yi

}}
16i6n, where {xi}16i6n means

a series of input variables,
{
yi
}
16i6n is a vector of response variable, and xi ∈ Rm, yi ∈ {0, 1} for 1 6 i 6 n

and m denotes number of measurements gained from transducers and sensors. If the finite element
reflects inclusion, then we assume yi = 1 otherwise we take yi = 0. The training set can be described
as D = {Y, X}, where

Y =


y1

y2
...

yn

, X =


x11 x12 · · · x1m
x21 x22 · · · x2m

...
...

...
...

xn1 xn2 · · · xnm

 =


x[1]
x[2]

...
x[n]


Detecting the signal xi ∈ Rm gained from sensors or transducers, it is obligatory to classify the presence
or not of inclusion in the finite element. The objective is to discover such a classifier f : Rm

→ {0, 1} ,
which allows categorization of the presence of object into categories y = 1 or y = 0 based on
observation x ∈ Rm.

We define a random variable Y with binomial distribution, i.e., Y : Ω→ {0, 1} on probability space
(Ω, F, P). Logistic regression is a method in which the Y response variable has a binomial distribution.
Based on observation of input variables X the logistic regression [49–51] describes probability of
realization of dependent variable Y. Therefore, it is necessary to determine probabilities of success
P(Y = 1|X), and defeat P(Y = 0|X). In the literature the odds are defined as in Equation (1):

Θ(X) =
P(Y = 1|X )

P(Y = 0|X )
=

P(Y = 1|X)

1− P(Y = 1|X)
(1)

Thus, the odds are the ratio probability of success to probability of defeat. The objective of logistic
regression is to determine the probability of success p(X) = P(Y = 1|X) based on observation X.
Since the probability of success p(X) ∈ (0, 1), based on Equation (1) it results that the odds Θ(X) ∈ (0,∞)

but ln(Θ(X)) ∈ (−∞,∞). The logarithm of odds can be called log-odds or logit. In logistic regression
the linear dependencies between log-odds and input variables are analyzed as in Equation (2):

lnΘ(X) = ln
(

p(β, X)

1− p(β, X)

)
= Xβ (2)

where β = (β1, . . . , βm) ∈ Rm. In the case that linear Equation (2) has an intercept, then the column
that corresponds to the intercept in matrix X contains ones. From Equation (2) we derive Equation (3):

p(β, X) =
eXβ

1− eXβ (3)

Generally, to estimate the unknown parameters β in Equation (3), the maximum likelihood
technique is applied. From above, the task shown in Equation (4)

max
β

L(β, Y, X) (4)

must be solved, where the likelihood function is defined as in Equation (5):

L(β, Y, X) =
n∏

i = 1

p
(
β, x(i)

)yi
(
1− p

(
β, x(i)

))1−yi (5)
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As a replacement for solving Equation (4) we solve the auxiliary task shown in Equation (6):

max
β

l(β, Y, X) (6)

where the objective function is defined as the logarithm of the likelihood function
l(β, Y, X) = ln(L(β, Y, X)) and equals Equation (7):

l(β, Y, X) =
n∑

i = 1

(
yix(i)β− ln

(
1 + ex(i)β

))
(7)

The Newton–Raphson algorithm was applied to determine the unknown parameters β.
Submission of this algorithm reasons that the unknown parameters β are estimated by iterative
steps. In the step j + 1 the estimators are determined by Equation (8):

β j + 1 = β j +

(
∂2l
∂β∂βT

(
β j

))−1
∂l
∂β

(
β j

)
(8)

where ∂l
∂β (β),

∂2l
∂β∂βT (β) represent first and second partial derivatives of the objective function (7).

2.3. Elastic Net

Taking into account the measurements obtained from individual electrode pairs and transducers,
one can note that the values are strongly correlated. This phenomenon is referred to as the problem of
multicollinearity. If the independent variables (predictors) in the system shown in Equation (2)
are correlated, the direct solution of the task in Equation (6) with the direct application of
the Newton–Raphson algorithm does not give the expected result. An additional problem is the lack of
stability of forecasts based on this model. Therefore, from the full measurement vector, the appropriate
predictors (input variables) should be selected, which will then be included in the regression model of
Equation (2). Selected predictors should significantly affect the response values and, at the same time,
should not generate multicollinearity.

There are many techniques to solve the optimization problem of input variable correlation (6).
Among these can be mentioned singular value decomposition, regularization or least angle regression.
In the literature, proper examples can be found in [50,52]. A possible way to reduce the problem of
multicollinearity between predictors is the application of the elastic net method [49]. An elastic net
relies on enforcing a penalty on large values of estimators and involving this penalty in the objective
function. To determine the unknown parameters of the logistic regression in Equation (2) for correlated
predictors we should solve the task of Equation (9):

max
β

n∑
i = 1

(
yix(i)β− ln

(
1 + ex(i)β

))
− λPα(β) (9)

where λ > 0 and value Pα(β) means the penalty. The elastic net is a mix of ridge regression (Tikhonov
regularization) and LASSO (least absolute shrinkage and selection operator). For 0 6 α 6 1 penalty
Pα(β) is a linear combination of vector norm of estimators β in spaces L1, L2. It is given by Equation (10):

Pα(β) = (1− α)
1
2
‖β‖L2

+ α‖β‖L1
(10)

This technique causes a reduction of estimators of unknown parameters. Because of this the use
of the elastic net method to solve the inverse problem in tomography allows accurate and stable
reconstruction images to be obtained [8].
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2.4. Electrical Impedance Tomography

The research described in this section uses a method based on many separately trained logistic
regression subsystems. The test object was a tank filled with liquid (tap water) with a diameter
of 300 mm. A total of 16 electrodes were arranged around the walls of the tank. The data was
obtained through EIT. The measuring vector constituting the LRS input consists of 96 input variables
(Figure 3). Each of the measurements reflects the voltage drops between 96 pairs of electrodes. In [31]
a detailed description of the method of generating the measurement vector was presented. Based on
96 measurements, 2883 LRSs were trained. Each of the 2883 subsystems generates only one binary
value, which is then displayed as the pixel of the output image. Since among the 96 input variables
considered in the context of a singular binary output a significant number of measurements could be
mutually correlated, they were reduced by an elastic net.

Figure 3. Model of the EIT system converting electrical signals into a 2D image of the cross-section.

The selection of the number of input parameters was estimated separately for each pixel.
Figure 3 shows the workflow of the EIT system, converting the input electrical measurements into
the output image.

At the input of the EIT system, there are 96 electrical measurements. Then, thanks to the elastic
net, each input vector dedicated to a specific pixel is reduced to a dozen or so elements. This situation
is shown in Figure 4 where 96 predictors of pixel No. 181 (ψ181) are reduced to 19.

Figure 4. Model of elastic net + LRS hybrid subsystem dedicated to a particular pixel ψ181.

The input vectors, reduced by means of the elastic net, become the inputs of algorithmic subsystems
based on the logistic regression (LRS) principle. It should be noted that we are dealing here with
a hybrid system, because it combines two methods: the elastic net and logistic regression. In addition,
the use of a set of separately trained LRS turns the under-completed problem into over-completed,
which significantly improves the chances for better quality of reconstruction. An important issue is also
the fact that machine learning in the presented method is applied in two stages. The first stage, when
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the number of input measures is reduced using the elastic net, and the second stage, when the inverse
problem is solved with the use of multiple LRS.

To generate an appropriate training data set, a physical model of an industrial tank was built
(Figure 1). Using the finite element method, the tank cross-section mesh together with the electrode
system was designed using the MATLAB/EIDORS toolbox. Algorithms generating learning instances
were also developed, solving the forward problem. Each case consists of a measurement vector
and image generated on a two-dimensional mesh of pixels.

Figure 5 shows one of the 3281 generated cases used for training a predictive system for an EIT
model with 16 measuring electrodes (see Figure 3).

Figure 5. A measuring case generated with the simulation method of EIT with a graph showing the 96
voltage measurements between different pairs of electrodes.

Simulation training cases were generated in such a way as to take into account various (random)
amounts of inclusions, diameters and positions relative to the tank wall. The presented model
corresponds to a 96-element voltage measurement vector. Polarity of the electrodes changes during
individual measurements. For this reason, the voltages take positive and negative values. A more
precise method of generating simulation data in the form of pseudocode is presented in the article [47].

In the simulation algorithm, Gaussian noise has been implemented with a standard deviation
of 4% on the value of a given measurement. The way of adding noise for measurements is presented in
Algorithm 1.

Algorithm 1 The MATLAB code to generate noise for measurements

1: error_level = 0.04; % assumed 4% measurement error level
2: sigma_vector = error_level * measurements; % measurements—columnar vector with measurements

% adding 4% error to the measurement values; sigma_vector—columnar vector of standard deviations
3: measurements = measurements + sigma_vector.* randn (length(measurements),1)

Figure 6 shows a cross-validated MSE (mean squared error) of the elastic net with α = 0.9 for
an exemplary single pixel ψ181 of the output image. Coefficient α in Equation (10) is the weight
of LASSO versus ridge optimization. The value α = 1 represents LASSO regression, α close to 0
approaches ridge regression, and other values represent elastic net optimization.

The figure indicates two specific lambda values marked with green and blue dashed lines.
The green, dashed line shows the value of lambda with a minimum cross-validated mean squared error
(LambdaMinMSE). The blue, dashed line indicates the greatest lambda that is within one standard
error of the minimum MSE (Lambda1SE). This lambda value makes the sparsest model with relatively
low MSE.
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Figure 6. Cross-validated MSE of elastic net fit (alpha = 0.9) for pixel ψ181.

Figure 7 on the lower horizontal axis shows the values of estimators β from the L1 norm.
The horizontal axis at the top reflects the degrees of freedom (df), meaning the number of nonzero
values of beta (β). Beta values represent the coefficients of a sequence of regression fits, as returned from
the LASSO function. B is a (p × N) lambda matrix, where p is the number of predictors. Each column of
β is a set of coefficients LASSO calculates using one lambda penalty value. When L1 values decrease,
the number of degrees of freedom (predictors) also decreases.

Figure 7. β vs. L1—trace plot of coefficients fit by elastic net (alpha = 0.9) for pixel ψ181.

Figure 8 is analogous to Figure 7, however, it shows the horizontal axis reflecting the lambda
coefficient in relation to the values of beta. Lambda is a penalty factor. It can be noted that along with
lambda’s growth there is also a growth of the predictors’ number (df), by means of which the binary
value of a given pixel can be predicted. The largest reduction of input variables takes place in the range
of 0 < λ < 0.005. It can be seen that a slight increase in the lambda parameter above zero results in
a significant reduction in degrees of freedom.
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Figure 8. β vs. lambda—trace plot of coefficients fit by elastic net (alpha = 0.9) for pixel ψ181.

2.5. Ultrasound Transmission Tomography

As mentioned before, the research described in this paper uses the method based on multiple
logistic regression subsystems (LRS) combined with elastic net. The measurement set constituting
the LRS input vector consists of 496 measurements. Each of the measurements reflects the time taken
for the sound wave to travel the distance between an individual pair of transducers. Each of the 32
transducers placed around the tank walls can both emit and receive ultrasonic signals. If there are
no inclusions on the sound wave path, the time is the shortest. Before starting the measurements,
the system makes a reference measurement in the environment free of hidden objects. Thanks to this,
the presence of some elements disturbs (decreases) the speed of sound, thus increasing the time recorded
between specific transducers. On this basis, it is possible to determine the quantity, location and size of
the inclusions.

The test object is an industrial tank filled with tap water. Various sets of inclusions were immersed
in the water and appropriate sound velocity measurements were made. Knowledge of the location
and dimensions, as well as the number, of all inclusions corresponding to individual measurements
allowed the creation of a simulation algorithm. In this way, 3602 cases of simulation measurements
were generated. The simulation algorithm for generating input data for UST has been developed
analogically to the EIT method (see Figure 5).

As mentioned previously, each training vector consisted of 496 measurements and one binary
output image with a resolution of 128 × 128 = 16,384 pixels. The number of measurements is the result
of using 32 transducers. During one measurement cycle, one of the transducers acts as the sound wave
emitter. In the same time the other sensors receive the emitted signal. In this way the full matrix of
input vectors counts 992 (32 × 31) measurements. It should be noted that half of the measurements
concern the same transducers. The sound wave moves at the same speed regardless of the direction
(v1−2 = v2−1), so the measurement matrix should be symmetrical. Due to measurement errors,
there are usually small differences between the measurements (v1−2 , v2−1), hence the symmetric
matrix is transformed into a triangular matrix that contains the average values of the sound waves’
speed, as shown in Equation (11):

vi, j =


v1,1

v2,1
· · ·

v1,31

v2,31
...

. . .
...

v32,1 · · · v32,31

→


v1,1

v2,1
...

. . .
v32,1 · · · v32,31

 (11)
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where I is the number of transducers, and j is the number of individual measures in one cycle.

2.6. The Method of Reconstruction

In this further part of the study, the reconstruction with application of logistic regression is
presented. Based on measurements x ∈ Rm obtained from sensors or transducers for the j-th finite
element, 1 6 j 6 k, the probability of inclusion should be calculated as follows:

ŷJ =
exb̂J

1 + exb̂J
(12)

where β̂J ∈ Rm is the estimator of unknown parameters β for the logistic regression in Equation (2).
This process should be repeated for each finite element. The result is a sequence

{
ŷJ

}
1≤ j≤k

, where

ŷJ ∈ (0, 1) for 1 6 j 6 k probabilities of hidden object presence for imaging domain.
Modeling of the imaging cross-section therefore consists of the identification of these finite

elements, which are a reflection of the detected inclusions and, consequently, on the display of image
reconstruction. The main task for solving the problem in question therefore lies in finding a classifier that
shows inclusion areas based on the sequence of probabilities. According to the sequence of probabilities
of inclusion occurrence (sought for hidden objects), a sequence consisting of elements such as success
and failure due to the classification threshold l ∈ (0, 1) should be defined. Success corresponds to
the existence of an inclusion for a finite element. Otherwise the finite element does not consist of
an inclusion.

For different thresholds 0 ≤ l ≤ 1 we can obtain different reconstructions of the visual field.
The reconstruction of the imaging domain is the sequence vrec(ŷ, l) =

{
v j{l}

}
16 j6k

, where v j(l) = 0 for

ŷJ < l and v j(l) = 1 for ŷJ > l. The measure of reconstruction quality was the calculation of the value of
two indicators. The first indicator determines the effectiveness of the reconstruction and the second its
accuracy. To make a meaningful comparison between the pattern and the obtained image reconstruction,
the basic property of the scalar product was used (Cauchy–Bunyakovsky–Schwarz inequality).

Let vrec(ŷ, l) be an image reconstruction corresponding to measures x ∈ Rm and let y =
{
y j

}
16 j6k

be

a pattern that corresponds to the same measures. We define the compatibility ratio (CR) as Equation (13):

CR(l) =

〈
vrec(ŷ, l), y

〉√
‖vrec(ŷ, l)‖‖y‖

(13)

In case the sequences vrec(ŷ, l) and y are collinear (vrec(ŷ, l) = ry, where r ∈ R r {0}), then
CR(l) = 1.

The relative error (RE) of reconstruction is another indicator that is useful for measuring accuracy:

RE(l) =
‖vrec(ŷ, l) − y‖

‖y‖
(14)

Because the elements of vectors vrec(ŷ, l) and y belong to the binary set, the above indicator shows
what percentage part of the imaging domain is different from the pattern image.

3. Results

In order to compare cases of reconstruction of EIT and UST, data generated by simulation were
used. Figure 9 shows six examples of reconstructions of EIT made using an elastic net and LRS. A pattern
image was assigned to each analyzed case, and the performed reconstructions were divided into three
variants differing with the applied coefficient l (classification threshold): l = 0.6, l = 0.5 and l = 0.4.
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Figure 9. EIT image reconstructions for different classification thresholds l.

Analyzing the obtained images, it can be noted that it is not possible to determine which level of
the coefficient l is suitable for all reconstructions. For example, in the case of No. 1, containing a single
inclusion, the best result was gained for l = 0.4. In turn, in the case of No. 2, despite also a single
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inclusion, the image closest to the pattern seems to be the image obtained using l = 0.6. Cases 5 and 6
with double inclusions are not satisfactory with any of the used parameters l.

Figure 10 shows the cases of reconstruction of images obtained using an elastic net and LRS with
the UST method. All presented reconstructions were made with the classification threshold l = 0.9.
The value of coefficient l has been selected experimentally. The obtained images are more repeatable
than in the case of EIT. In contrast to EIT, one constant value of the l factor, suitable for different
reconstructive cases, can be selected in UST.

Figure 10. Cont.



Sensors 2019, 19, 3400 14 of 19

Figure 10. UST image reconstructions for classification threshold l = 0.9.

Tables 1 and 2 show the values of reconstruction quality assessment coefficients. As is known,
the image compared to the pattern may roughly inform about the quality of the tomography method,
but only the use of objective measures enables a meaningful assessment. Table 1 presents CR
and RE indices for all EIT reconstructions performed, with respect to three variants of the factor l.
The higher the compatibility ratio (CR) and the smaller the relative error (RE), the better the quality of
the reconstruction.

As mentioned in the introduction to this article, cases in which inclusions are relatively small
and occur individually (not in clusters) are particularly difficult to tomographically image. One of
the most commonly used measures of imaging quality in CT is RMSE (root mean squared error).
This indicator is suitable for regression problems, especially where there are large inclusions or a large



Sensors 2019, 19, 3400 15 of 19

number of them. In the described case, the output image consists of pixels that take only binary values.
For example, if there was one small inclusion in the field of view that would not have been detected
by the tomograph, then the RMSE would be close to zero. To avoid such misunderstandings, it was
decided to use the CR indicator, which in the mentioned case would reach the value of 1.

The expected time of reconstruction with the use of laptop (battery powered, Intel Core i5 2nd
generation) for EIT was about tEIT ≈ 10−3 s, and for UST tUST ≈ 8·× 10−3 s. It should be taken into
account that a significant part of this time was not absorbed by the calculation, but by generating
a graphic image.

Table 1. EIT imaging quality parameters.

CR for Reconstruction with: RE for Reconstruction with:

Case ID l = 0.6 l = 0.5 l = 0.4 l = 0.6 l = 0.5 l = 0.4
1 0.9900 0.9927 0.9956 0.1416 0.1207 0.0933
2 0.9868 0.9820 0.9769 0.1637 0.1919 0.2187
3 0.9899 0.9926 0.9954 0.1421 0.1212 0.0955
4 0.9799 0.9812 0.9776 0.1995 0.1931 0.2124
5 0.9679 0.9606 0.9553 0.2568 0.2876 0.3088
6 0.9807 0.9724 0.9639 0.1955 0.2361 0.2736

Arithmetic Mean 0.9825 0.9803 0.9775 0.1832 0.1918 0.2004

Table 2. UST imaging quality parameters for l = 0.9.

Case ID 1 2 3 4 5 6 Arithmetic Mean

CR 0.9874 0.9915 0.9958 0.9930 0.9878 0.9864 0.9903
RE 0.1585 0.1301 0.0919 0.1185 0.1583 0.1677 0.1375

To enable comparison of EIT with UST, both arithmetic mean values of CR and RE coefficients
are shown in both tables. It can be seen that in EIT for any of the three variants of the coefficient l,
the mean values CR and RE do not match the UST rates. On this basis, it should be stated that better
reconstructions were obtained using UST.

4. Conclusions

The article presents examples of the use of logistic regression supported by the elastic net for
tomographic imaging in the context of two methods: EIT and UST. The novelty of the presented
concept is the training of many logistic regression subsystems (LRS) operating simultaneously, thanks to
which each of them generates a binary value of a single pixel of the reconstructed image. The number
of LRSs is equal to the resolution of the output image. With this approach, when each LRS based on
several or many hundred input variables supports one output, many predictors can be correlated with
each other. This causes a distortion of the training process and increases the risk of an overfitting.
To filter out unnecessary input variables and reduce the number of predictors, the elastic net method
was used. Reduction of inputs significantly simplifies the tomographic system, thanks to which several
thousands of LRS subsystems can be used in parallel, avoiding a long reconstruction time. The research
carried out showed that the time of a single EIT reconstruction oscillated about tEIT ≈ 10−3 s, and UST
tUST ≈ 8·× 10−3 s. This is a sufficiently short time for the described method to be used in industrial
processes with significant dynamics, including flow systems.

Due to the limited volume of the text, the article presents only a small part of the obtained results.
On the basis of observations of several hundred reconstructions, one can note a certain regularity.
In many cases, the reconstruction of objects located in the center of the field of observation by the EIT
method is slightly worse, and objects located close to the electrodes are better mapped. Perhaps this
is due to the fact that the electric current in the tested environment does not propagate in straight
lines. In turn, in the case of UST, slightly better results were obtained for inclusions located closer
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to the center of the tank, and worse in the vicinity of transducers. This problem can be the result of
reflection of sound waves from the tank walls, which introduces interference noise.

The analysis of the obtained results allows one to conclude that it is not possible to choose the one,
universal value of classification threshold l appropriate for both EIT and UST. In addition, even within
EIT only, the l factor must be selected individually, according to specific cases of reconstruction.

A possible way to overcome the above inconveniences, leading to an increase in the effectiveness
of the LRS method, would be to combine the EIT method with UST. This could require installation of
both types of sensors around the tested tank: electrodes for EIT and transducers for UST. This idea
requires prior solving of several technical problems related to the packing of such a large number of
different sensors in close proximity, but we think that it is feasible. Therefore, future research will
investigate verification of the super-hybrid method not only at the algorithmic level (LRS + elastic net)
but also at the physical level (EIT + UST).
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