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Abstract: Hybrid massive MIMO structures with lower hardware complexity and power consumption
have been considered as potential candidates for millimeter wave (mmWave) communications.
Channel covariance information can be used for designing transmitter precoders, receiver combiners,
channel estimators, etc. However, hybrid structures allow only a lower-dimensional signal to be
observed, which adds difficulties for channel covariance matrix estimation. In this paper, we formulate
the channel covariance estimation as a structured low-rank matrix sensing problem via Kronecker
product expansion and use a low-complexity algorithm to solve this problem. Numerical results with
uniform linear arrays (ULA) and uniform squared planar arrays (USPA) are provided to demonstrate
the effectiveness of our proposed method.
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1. Introduction

Millimeter wave (mmWave) communications are promising for future-generation wireless
communications for their advantages such as large bandwidths, narrow beams, and secure
transmissions [1,2]. Large-scale multiple-input multiple-output (MIMO) hybrid structures equipped
with only a few RF chains have generated great interests for mmWave systems due to their low
complexity and near-optimal performance [3,4]. Precoders and combiners must be carefully designed
to exploit the potential of large-scale MIMO hybrid systems, e.g., to achieve high data transmission
rates. They can be designed based on the instantaneous channel matrix [5,6], which may be estimated
by using channel estimation techniques [3,7]. However, the instantaneous channel can vary fast [8],
especially at mmWave frequencies [9,10], and the precoder/combiner has to be redesigned once the
instantaneous channel changes [5,6].

Although the instantaneous mmWave channel can change very fast, the long-term channel
statistics, e.g., the angular power spectrum, can be stationary for tens to hundreds of coherence
blocks [9]. Recently, the channel covariance information has been utilized to design the analog
precoders/combiners [9,11], which remain fixed when the covariance matrix is unchanged.
The effective digital system has a reduced dimensionality, which greatly reduces the cost of acquiring
the instantaneous channel state information (CSI) and simplifies the optimization of the digital
precoders and combiners. The channel covariance matrix should be firstly estimated to realize the
designs in [9,11]. With large antenna arrays, the channel covariance matrix has a large dimensionality,
which demands a large number of observations to be used when traditional covariance matrix
estimators are adopted. Meanwhile, the hybrid structure only allows a reduced number of observations
to be acquired at the receiver, which makes the task of channel covariance estimation challenging.
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In order to address this challenge, [10,12] propose several compressive sensing (CS) based channel
covariance estimators, which explore the relations between the angle of departure (AoD)/angle of
arrival (AoA) and the channel covariance matrix. Their methods need a dictionary for searching the
AoD/AoA, and the resulting performance improves when the resolution of the dictionary becomes
higher. However, high-resolution dictionary yields high computational complexity. Moreover,
these CS-based estimators require the number of paths in the channel to be known a priori. In [13],
an analytical expression of the channel covariance matrix is derived and computed through the
information obtained from one instantaneous channel realization, which can be estimated from
low-dimensional observations. In [14], the covariance matrices of vector channels are estimated by
solving a subspace estimation problem leveraging their low-rank property. Also, tensor decomposition
has been used for dimension reduction for the mmWave channel estimation problem [15,16]. It has been
recently used for channel covariance estimation in frequency-selective channels [17], where the channel
is represented as a low-rank third-order tensor in terms of factor matrices. The channel covariance
matrix is obtained from the estimated factor matrices. The methods of [13,14,17] focus on vector
channels, which may not be directly applicable to matrix channels where both the transmitter and
receiver employ multiple antennas.

In this paper, we investigate the mmWave channel covariance matrix estimation problem for
hybrid mmWave communication systems that are equipped with uniform linear arrays (ULA) or
uniform square planar arrays (USPA). Both the transmitter and the receiver have multiple antennas.
The main contributions are as follows:

1. We show that the mmWave MIMO channel covariance matrix follows a Kronecker product
expansion model [18]. Following [18–20], we show that this model can be used for reducing the
effective dimension of the large-dimensional channel covariance matrices in mmWave MIMO
systems. We further show that permutation can reduce the rank of the mmWave channel
covariance matrix, which admits an expression of the summation of vector outer products.
We thus formulate the channel covariance matrix estimation problem as a low-rank matrix
sensing problem.

2. Although the aforementioned low-rank matrix sensing problem has a smaller size than the original
problem, the complexity can still be high when the numbers of the transmitter/receiver antennas
are large. In order to reduce the complexity, we further exploit the structures of the ULA or USPA
to reduce the dimensionality of the problem and formulate the problem as a structured low-rank
matrix sensing problem. We adapt the recently proposed generalized conditional gradient and
alternating minimization (GCG-Alt) algorithm [21], which has low computational complexity,
to find the solution. Numerical results with ULA and USPA suggest that our proposed estimator
is effective in estimating the mmWave channel covariance matrix.

The rest of this paper is organized as follows. We introduce the spatial channel model and the
hybrid system in Section 2. In Section 3, we formulate the channel covariance estimation problem as a
structured low-rank matrix sensing problem and present the solution. We show the simulation results
in Section 4 and conclude the paper in Section 5.

Notations: Bold uppercase A denotes a matrix and bold lowercase a denotes a column vector.
A∗, AT , and AH denote the conjugate, transpose, and conjugate transpose of matrix A, respectively.
a(i) denotes the i-th element of vector a. [A]a:b,: denotes the submatrix of A made of its a-th to b-th
rows. [A]a:b,c:d denotes the submatrix of A defined by its a-th to b-th rows and c-th to d-th columns.
‖A‖F and ‖A‖∗ are the Frobenius norm and the nuclear norm of A. For A ∈ CM×N , vec(A) ∈ CMN×1

is a column vector obtained through the vectorization of A and vec−1(A) ∈ CM×N is a matrix obtained
by the inverse of vectorization. For matrices A and B, A⊗B denotes the Kronecker product of A and B.
CN (a, b2) represents complex Gaussian distribution with mean a and variance b2. U (a, b) represents
uniform distribution with support [a, b].



Sensors 2019, 19, 3368 3 of 20

2. Spatial Channel Model

Consider point-to-point mmWave transmissions, where the transmitter has Nt antennas and the
receiver has Nr antennas. We assume the following spatial channel [22]:

H =
1√
L

K

∑
k=1

L

∑
l=1

gklar(φ
r
kl , θr

kl)a
H
t (φt

kl , θt
kl) ∈ CNr×Nt , (1)

where K is the number of clusters, and L is the number of rays within each cluster. As reported in [22],
the number of clusters is often small, e.g., K = 1, 2, but the number of rays inside each cluster can
be large, e.g., L = 30. ar(φr

kl , θr
kl) and at(φt

kl , θt
kl) are the array response vectors at the receiver and

transmitter, respectively, where φr
kl , θr

kl , φt
kl , and θt

kl are the azimuth AoA, elevation AoA, azimuth AoD,
and elevation AoD on the l-th ray of the k-th cluster, respectively. These angles can be characterized by
cluster center angles and angular spreads: Each cluster covers a range of angles and the angular spread
describes the span of each cluster. The angular spread in the mmWave propagation environment is
considered to be small [13]. Measurements of the angular spread taken in the urban area of New York
City are presented in [22] in terms of the root-mean-square (rms) of all the measurements. At the
carrier frequency fc = 28 GHz, example angular spreads of 15.5◦, 6◦, 10.2◦, and 0◦ are reported for
φr

kl , θr
kl , φt

kl , and θt
kl , respectively. The small-scale fading coefficient gkl is assumed complex Gaussian,

i.e., gkl ∼ CN (0, γ2
k), where γ2

k is the fraction power of the k-th cluster [22] (Equation (7)).
As discussed in [9], though the small-scale fading gains {gkl} change fast, the AoDs/AoAs and

γ2
k may remain stationary over tens to hundreds of coherence blocks. Assume that {gkl , ∀k, ∀l} are

mutually independent, then channel covariance matrix can be modeled as

R , E[vec(H)vecH(H)]

=
1
L

K

∑
k=1

γ2
k

L

∑
l=1

T̃t
kl ⊗ T̃r

kl ∈ CNr Nt×Nr Nt , (2)

where
T̃t

kl , a∗t (φ
t
kl , θt

kl)a
T
t (φ

t
kl , θt

kl) ∈ CNt×Nt , (3)

and
T̃r

kl , ar(φ
r
kl , θr

kl)a
H
r (φr

kl , θr
kl) ∈ CNr×Nr . (4)

Note that Equation (2) is the same as the channel covariance expression in [9] when L = 1. In the
following, we first present our proposed covariance matrix estimation method for systems equipped
with the ULA and then discuss its adaptation to systems that adopt the USPA.

For the ULA, the array responses at(φt
kl , θt

kl) and ar(φr
kl , θr

kl) are independent of the elevation
angles. They can thus be abbreviated as at(φt

kl) and ar(φr
kl). For an Na-element ULA with distance d

between adjacent antennas, the array response is

a(φkl) =
1√
Na

[1, ej 2π
λc d sin(φkl), · · · , ej(Na−1) 2π

λc d sin(φkl)]T ,

where λc is the carrier wavelength and Na = Nt or Nr is the number of antennas at the transmitter or
receiver. Accordingly, T̃t

kl of Equation (3) and T̃r
kl of Equation (4) become

T̃t
kl = a∗t (φ

t
kl)a

T
t (φ

t
kl) (5)

and
T̃r

kl = ar(φ
t
kl)a

H
r (φt

kl), (6)
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respectively, which are Toeplitz–Hermitian. Since the Kronecker product of two Toeplitz–Hermitian
matrices is block-Toeplitz–Hermitian [23], the channel covariance matrix R defined in Equation (2) is
block-Toeplitz–Hermitian.

We next discuss the hybrid system. We assume phase shifter-based hybrid transceivers [21]
shown in Figure 1, where the antennas and analog phase shifters at the transmitter or receiver are fully
connected. Assume that there are Kt � Nt radio frequency (RF) chains at the transmitter and Kr � Nr

RF chains at the receiver. For single-stream transmissions with one symbol s transmitted, the received
signal is written as

y = WHHfs + WHn, (7)

where W and f are the receiving processing matrix and transmitting processing vector, respectively,
and n is the noise vector. Up to Kr digital symbols can be observed at the receiver after each
transmission. In hybrid transceivers, we have W = WRFWBB and f = FRFfBB, where WRF and
FRF are the analog combiner and precoder, respectively, and WBB and fBB are the digital combiner and
precoder, respectively. In addition, due to the constraints of the phase shifters in the RF combiner and
precoder, the entries in WRF and FRF have constant modulus.

RF Chain

Figure 1. The phase shifter-based hybrid transceiver.

Note that using single-stream transmissions during the channel training avoids the interferences
caused by transmitting multiple symbols simultaneously, and this has been widely considered [3,4,7].

When Nt and Nr are large, the dimension of the channel covariance matrix R is large. In this case,
estimating R can be difficult when only a small number of observations available, which is typical in
the hybrid system.

From Equation (2), R follows the Kronecker product expansion model [18]. In the following,
we explore this property and the block-Toeplitz–Hermitian structure of R to reduce the dimensionality
of the problem of estimating R, and formulate the channel covariance matrix estimation problem as
a structured low-rank matrix sensing problem.

3. Structured Low-Rank Covariance Matrix Sensing

3.1. Rank Reduction By Permutation

Define
Tt

kl =
γk√

L
T̃t

kl ∈ CNt×Nt (8)

and
Tr

kl =
γk√

L
T̃r

kl ∈ CNr×Nr (9)
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respectively, where 1 ≤ l ≤ L and 1 ≤ k ≤ K. Then R of Equation (2) can be written compactly as

R =
K

∑
k=1

L

∑
l=1

Tt
kl ⊗ Tr

kl ∈ CNt Nr×Nt Nr , (10)

where the summation involves KL terms. Note that Tt
kl and Tr

kl are Toeplitz–Hermitian. Denote the
following Nr × Nr submatrix of R as

Rmn , [R]((m−1)Nr+1):mNr ,((n−1)Nr+1):nNr , (11)

where 1 ≤ m ≤ Nt and 1 ≤ n ≤ Nt. Define a permutation operatorP(·) that permutes the NtNr×NtNr

matrix R into a N2
t × N2

r matrix
Rp = P(R)

by stacking each submatrix Rmn into a row vector as

[P(R)]m+(n−1)Nt ,: = vecT(Rmn) ∈ C1×N2
r .

We write
tt
kl = vec(Tt

kl) ∈ CN2
t ×1,

and
tr
kl = vec(Tr

kl) ∈ CN2
r ×1.

Then based on the Kronecker product expansion property [23,24], Rp can be written as a sum of
vector outer products

Rp =
K

∑
k=1

L

∑
l=1

tt
kl(t

r
kl)

T ∈ CN2
t ×N2

r . (12)

Note that if we have Rp, we can obtain R as P−1(Rp).
From Equation (12), we can see that the column space of Rp is spanned by {tt

kl} and the row space
of Rp is spanned by {tr

kl}. Recall that tt
kl = vec(Tt

kl) and by using the relation between Tt
kl and the

transmitter array response at(φt
kl) shown in Equations (5) and (8), tt

kl can be written as

tt
kl =

γk√
NtL

[aT
t (φ

t
kl), e−j 2π

λc d sin(φt
kl)aT

t (φ
t
kl), . . . , e−j(Nt−1) 2π

λc d sin(φt
kl)aT

t (φ
t
kl)]

T

=
γk√

L
a∗t (φ

t
kl)⊗ at(φ

t
kl), (13)

where φt
kl is the azimuth AoD. We can see that tt

kl consists of the array response vector at(φt
kl) and the

column space of Rp is determined by the set

Ct = {a∗t (φt
kl)⊗ at(φ

t
kl), 1 ≤ k ≤ K, 1 ≤ l ≤ L}.

As introduced earlier, small angular spreads are observed in the mmWave propagation
environment, which indicates that the AoDs inside a cluster are closely spaced and their corresponding
array response vectors are highly correlated. Therefore, for the k-th cluster, though the number of rays
L inside can be large, the space spanned by {a∗t (φt

kl)⊗ at(φt
kl), 1 ≤ l ≤ L}may be well approximated

by a low-rank space. In addition, since the number of clusters K is generally small (e.g., K = 1 or 2),
both Ct and R can be low-rank. This is similar to the low-rankness of the mmWave channel H,
which has been validated by the experimental and simulation results in [22]. The low-rank property of



Sensors 2019, 19, 3368 6 of 20

Rp can be shown numerically. Denote by rch the rank of Rp or R, and let σ1 > σ2 > . . . > σrch be the
singular values of Rp or R. We may use

pe
∆
=

∑rsub
j=1 σ2

j

∑rch
i=1 σ2

i
(14)

to measure the energy captured by a rank-rsub approximation of Rp or R, where rsub is the rank of the
subspace of Rp or R.

Figure 2 shows an example of a ULA system with K ∈ {1, 2, 3, 4}, L = 30, Nt = 64, and Nr = 16.
The covariance matrix R and its permuted version Rp have sizes of 1024 × 1024 and 4096 × 256,
respectively, which shows that Rp is a taller matrix. The horizontal AoDs

φt
kl ∼ U (φ

t
k − υt

h, φt
k + υt

h), l = 1, 2, · · · , L, (15)

where the center angles φt
k are distributed uniformly in [0, 2π] and separated by at least one angular

spread υt
h = 10.2◦. Similarly, the horizontal AoAs

φr
kl ∼ U (φ

r
k − υr

h, φr
k + υr

h), l = 1, 2, · · · , L, (16)

where υr
h = 15.5◦.

rsub

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

p
e

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rp – 1 cluster

R – 1 cluster

Rp – 2 clusters

R – 2 clusters

Rp – 3 clusters

R – 3 clusters

Rp – 4 clusters

R – 4 clusters

Permuted

covariance

matrix

Rp

Original

covariance

matrix

R

Figure 2. Energy captured by a rank-rsub approximation of Rp and R.

The cluster powers are generated following [22] (Table I). It can be seen from Figure 2 that for
capturing a majority of the total energy, e.g., with pe = 0.95, 0.99, the required rsub for Rp is generally
much smaller than min(N2

t , N2
r , KL) and is also much smaller than that for R. In the following, we use

rp as the rsub of Rp and rR as the rsub of R for a certain pe. As such, Rp may be well approximated as
a rank-rp matrix. One may use low-rank matrix recovery methods, e.g., matrix completion methods,
to estimate the best rank-rp approximation of Rp from a small amount of observations. However,
when Nt and Nr are large, which is the case in mmWave communications, the number of parameters
required by the rank-rp approximation of Rp, i.e., (N2

t + N2
t )× rp, is still large. Therefore, estimating

the subspaces of Rp can be computationally expensive.
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3.2. Dimension Reduction by Exploiting the Toeplitz–Hermitian Structure

Recall that R is block-Toeplitz–Hermitian and Rp = P(R) is a permutation of R.
From Equations (12) and (13), we can see that Rp is also specially structured: Rp is the summation of
the outer products of tt

kl and tr
kl , where tt

kl and tr
kl are the vectorizations of Toeplitz–Hermitian matrices

Tt
kl and Tr

kl , respectively. Since the Toeplitz–Hermitian matrix Tt
kl ∈ CN2

t ×N2
t is determined by its first

column and first row (its first row is the conjugate transpose of its first column), we can represent tt
kl

in terms of the entries in the first column and first row of Tt
kl . We can represent tr

kl in the same way.
Therefore, the total numbers of unknowns in tt

kl and tr
kl are 2Nt − 1 and 2Nr − 1, respectively. Then we

can reduce the problem size of (N2
t + N2

r )× rp to 2(Nt + Nr − 1)× rp. In the following, we show how
the problem size can be reduced.

First, let us use an example with Nt = 3 to illustrate the structure of tt
kl . The array response

at(φ
t
kl) =

1√
3
[1, ej 2π

λc d sin(φk
kl), ej2 2π

λc d sin(φk
kl)]T .

Then according to Equation (13), we have

tt
kl =

√
L

γk
a∗t (φ

t
kl)⊗ at(φ

t
kl) =

√
L

3γk



1

ej 2π
λc d sin(φk

kl)

ej2 2π
λc d sin(φk

kl)

e−j 2π
λc d sin(φk

kl)

1

ej 2π
λc d sin(φk

kl)

e−j2 2π
λc d sin(φk

kl)

e−j 2π
λc d sin(φk

kl)

1



.

We can see that all the 9 elements in tt
kl can be represented by the elements in at(φt

kl) and a∗t (φ
t
kl).

Now construct a vector

akl =

√
L

3γk
[aT

t (φ
t
kl), e−j 2π

λc d sin(φk
kl), e−j2 2π

λc d sin(φk
kl)]T ∈ C5×1,

then tt
kl can be rewritten as

tt
kl =



[I3, 03×2]

[01×3, 1, 0]
[I2, 02×3]

[01×4, 1]
[01×3, 1, 0]
[1, 01×4]


akl .

In fact, akl(4) = (akl(2))∗ and akl(5) = (akl(3))∗. Therefore, tt
kl can be expressed as a product of

a weight matrix and a vector akl . Furthermore, the weight matrix depends only on the structure of the
antenna array and is independent of the path angles.

Similarly, for the general cases, we can express tt
kl with a weight matrix Γu ∈ CN2

t ×(2Nt−1) and
a vector akl ∈ C(2Nt−1)×1, and express tr

kl with a weight matrix Γv ∈ CN2
r ×(2Nr−1) and a vector

bkl ∈ C(2Nr−1)×1. We require

akl(x + Nt − 1) = (akl(x))∗, 2 ≤ x ≤ Nt,
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and
bkl(y + Nr − 1) = (bkl(y))∗, 2 ≤ y ≤ Nr.

We then have
tt
kl = Γuakl , and tr

kl = Γvbkl , (17)

where Γu = [Γu1, Γu2] with Γu1 ∈ CN2
t ×Nt , Γu2 ∈ CN2

t ×(Nt−1), and

Γu1 =



INt

01×Nt

[INt−1, 0(Nt−1)×1]

02×Nt

[INt−2, 0(Nt−2)×2]

03×Nt
...

[1, 01×(Nt−1)]


, Γu2 =



0Nt×(Nt−1)
eT

1
0Nt−1×(Nt−1)

eT
2

eT
1

0(Nt−2)×(Nt−1)
eT

3
eT

2
eT

1
...

01×(Nt−1)


with ei ∈ C(Nt−1)×1 being a vector whose i-th entry is 1 and other entries are zero. Γv is constructed
similarly as Γu, and Γu and Γv are both full-rank. This is because Γu and Γv consist of 1’s and 0’s,
and there is only one 1 in each row of Γu and Γv. Therefore, Equation (12) can be rewritten as

Rp =
K

∑
k=1

L

∑
l=1

Γuaklb
T
klΓ

T
v

= Γu

(
K

∑
k=1

L

∑
l=1

aklb
T
kl

)
ΓT

v

= ΓuCΓT
v , (18)

where C = ∑K
k=1 ∑L

l=1 aklbT
kl .

As shown above, Rp is approximately low-rank. Since the fixed weight matrices Γu and Γv

are full-rank, C is approximately low-rank. Hence estimating a low-rank approximation of Rp is
equivalent to estimating a low-rank approximation of C. Note that the size of C ∈ C(2Nt−1)×(2Nr−1) is
much smaller than the size of Rp ∈ CN2

t ×N2
r , and this can greatly reduce the complexity of the problem.

3.3. Training

We assume that the channel matrix H remains static during a snapshot and suppose we have T
snapshots. For different snapshots, we assume that the AoAs/AoDs and the fraction power γ2

k remain
unchanged, but the small-scale fading gain gkl ∼ CN (0, γ2

k) can change [9]. Suppose the transmitter
sends out S training beams during each snapshot. For the s-th training beam of the t-th snapshot,
we employ the transmitting vector ft,s ∈ CNt and the receiving matrix Wt,s ∈ CNr×Kr . Therefore,
in each snapshot, after the transmitter sends out S training beams, the receiver receives SKr symbols,
and the sampling ratio is SKr/Nr Nt. We design ft,s and Wt,s and their corresponding FRF, fBB, WRF,
and WBB realizations for the hybrid structure according to the training scheme in [21] (Section III.D).
For the s-th training beam of the t-th snapshot, the received signal is

yt,s = WH
t,sHtft,ss + WH

t,snt,s

= (fT
t,s ⊗WH

t,s)vec(Ht)s + WH
t,snt,s, (19)
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where nt,s is the noise vector and Ht is the channel matrix at snapshot t. Without loss of generality,
assume identical training symbols s =

√
P. By setting ‖ft,s‖2

F = 1, the total transmitting power is
‖ft,ss‖2

F = P, and the pilot-to-noise ratio (PNR) is defined as

PNR =
‖ft,ss‖2

F
σ2 , (20)

where the noise is assumed to be an additive white Gaussian noise (AWGN) with variance σ2. In the
t-th snapshot and after the transmitter sends out all the S training beams, stack the received signals as

yt =


fT

t,1 ⊗WH
t,1

fT
t,2 ⊗WH

t,2
...

fT
t,S ⊗WH

t,S

 vec(Ht) +


WH

t,1nt,1

WH
t,2nt,2

...
WH

t,Snt,S

 , (21)

= Ptvec(Ht) + nt ∈ CSKr×1, (22)

where

Pt =


fT

t,1 ⊗WH
t,1

fT
t,2 ⊗WH

t,2
...

fT
t,S ⊗WH

t,S

 , and nt =


WH

t,1nt,1

WH
t,2nt,2

...
WH

t,Snt,S

 .

Suppose the trainings are the same for different snapshots, i.e., f1,s = f2,s = . . . = fT,s = fs and
W1,s = W2,s = . . . = WT,s = Ws. We then have

P = P1 = . . . = PT =


fT

1 ⊗WH
1

fT
2 ⊗WH

2
...

fT
S ⊗WH

S

 , (23)

and
Σ = PRPH + Σn, (24)

where Σ and Σn represent the covariance matrices of the received signal yt and the noise nt, respectively.
After T snapshots, we can compute the dimension-reduced sample covariance matrix (SCM) of yt as

S =
1
T

T

∑
t=1

ytyH
t ∈ CSKr×SKr . (25)

We permute S into Sp ∈ CS2×K2
r in a similar procedure as R is permuted into Rp.

3.4. Low-Rank Matrix Sensing Problem

We can now formulate the channel covariance estimation problem as a low-rank matrix
sensing problem [25]:

min
R̂p

rank(R̂p) s.t. ‖A(R̂p)− vec(Sp)‖2
F ≤ ζ2, (26)

where R̂p is the estimate of Rp, A : CN2
t ×N2

r → CS2K2
r×1 is an appropriate linear map, and ζ2 is

a constant to account for the fitting error. Replacing R̂p with Equation (18), we can reformulate
Equation (26) as

min
Ĉ

rank(Ĉ) s.t. ‖A(ΓuĈΓT
v )− vec(Sp)‖2

F ≤ ζ2, (27)
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where Ĉ is the estimate of C.
In general, problem Equation (27) is a nonconvex optimization problem and difficult to solve.

In this paper, we solve the relaxed version of problem Equation (27) [26]:

min
Ĉ

φ(Ĉ) = f (Ĉ) + µ‖Ĉ‖∗ (28)

where
f (Ĉ) =

1
2
‖A(ΓuĈΓT

v )− vec(Sp)‖2
F (29)

and µ > 0 is a regularization coefficient. After some manipulations, we have A(ΓuĈΓT
v ) = Qvec(Ĉ),

where

Q =


(fH

1 ⊗ fT
1 )Γu ⊗ (W∗1 ⊗W1)Γv

(fH
1 ⊗ fT

2 )Γu ⊗ (W∗1 ⊗W2)Γv
...

(fH
S ⊗ fT

S )Γu ⊗ (W∗S ⊗WS)Γv

 , (30)

and Q ∈ CS2K2
r×(2Nt−1)(2Nr−1). The direct evaluation of ‖Ĉ‖∗, which is the nuclear norm (i.e.,

the summation of the singular values) of Ĉ, is computationally expensive. Following [21], ‖Ĉ‖∗
can be written as

‖Ĉ‖∗ =
1
2

min
U,V
{‖U‖2

F + ‖V‖2
F : Ĉ = UVT}. (31)

Therefore, finding a Ĉ to minimize the objective function in Equation (28) becomes finding a pair
of (U, V) to minimize

φ̃(U, V) , f (UVT) +
1
2

µ(‖U‖2
F + ‖V‖2

F)

=
1
2
‖Qvec(UVT)− vec(Sp)‖2

F

+
1
2

µ(‖U‖2
F + ‖V‖2

F). (32)

A similar low-rank recovery problem is recently studied in [21] for instantaneous mmWave
channel estimation, where a training scheme is designed such that the channel can be estimated
by solving a matrix completion (MC) problem. A generalized conditional gradient and alternating
minimization (GCG-Alt) algorithm is developed, which is shown to be able to provide accurate
low-rank solutions at low complexity. In this work, we adapt the GCG-Alt algorithm to solve
Equation (32) for our covariance matrix estimation problem. In the following, we discuss the
key steps of the GCG-Alt algorithm for solving Equation (32) and refer readers to [21] for more
detailed treatments.

The GCG-Alt algorithm consists of a relaxed GCG algorithm and an AltMin algorithm. Let Ĉk−1
be the solution to C at the (k − 1)-th GCG iteration. The relaxed GCG algorithm first produces
an output

Ĉk = (1− ηk)Ĉk−1 + θkZk, (33)

where Zk is the outer product of the top singular vector pair of vec−1(−∇ f (Ĉk)). The calculations of
vec−1(−∇ f (Ĉk)) and the parameter θk here are different from those in [21]. For problem Equation (32),
we calculate vec−1(−∇ f (Ĉk)) as

−∇ f (Ĉk) = −(QHQvec(Ĉk−1)−Qvec(Sp)),
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and the parameter θk as

θk =
R
(

qH
zk

vec(Sp)− (1− ηk)qH
zk

Qvec(Ĉk)
)
− µ

qH
zk

qzk

, (34)

where qzk = Qvec(Zk) and R(·) denotes the real part of a number. Since Ĉk = UkVT
k , updating Ĉk

is equivalent to updating Uk = [
√

1− ηkUk−1,
√

θkuk] and Vk = [
√

1− ηkVk−1,
√

θkvk]. Then the
obtained Uk and Vk are used as the initial input of the AltMin algorithm, i.e., U0

k ← Uk, V0
k ← Vk.

After Ia iterations of the AltMin algorithm, update Uk = UIa
k and Vk = VIa

k . For completeness, we
summarize the GCG-Alt algorithm in Algorithm 1. After obtaining Ĉ, we have R̂r

p = ΓuĈΓT
u and

R̂ = P−1(R̂r
p).

Algorithm 1 The GCG-Alt Algorithm for Estimating Ĉ of Equation (28)

1: Input: vec(Sp), Q, QHQ, µ, ε, εa

2: Initialization: U0 = ∅, V0 = ∅, k = 0, ε0 = ∞

3: while εk > ε do

4: (uk, vk)← singular vector pair of Zk

5: k = k + 1

6: ηk ← 2/(k + 1) and determine θk using Equation (34)

7: Uk ← [
√

1− ηkUk−1,
√

θkuk]

8: Vk ← [
√

1− ηkVk−1,
√

θkvk]

9: Initialization: i = 0, ε0
k = ∞, (U0

k , V0
k)← (Uk, Vk)

10: while εi
k > εa do

11: i = i + 1

12: update Ui
k and Vi

k via the AltMin algorithm [21]

13: calculate εi
k =

φ̃(Ui−1
k ,Vi−1

k )−φ̃(Ui
k ,Vi

k)

φ̃(Ui−1
k ,Vi

k)

14: end while

15: (Uk, Vk)← (Ui
k, Vi

k)

16: calculate εk =
φ̃(Uk−1,Vk−1)−φ̃(Uk ,Vk)

φ̃(Uk−1,Vk−1)

17: end while

18: Output: Ĉ = Ĉk = UkVT
k

3.5. Computational Complexity

Define a flop as an operation of real-valued numbers. Let M = SKr be the number of
received symbols during each snapshot. Following the computational complexity analysis in [21],
the computational complexity of the GCG-Alt estimator is about 8rest(Iarest + Ia + 1)(2Nt − 1)2(2Nr −
1)2 + 8/3Iarest(rest + 1)(2rest + 1)(2Nt − 1)(2Nr − 1)(Nr + Nt − 1) + Iar2

est(rest + 1)2((2Nr − 1)3 +

(2Nt− 1)3) + 16rest(2Nr − 1)(2Nt− 1)M2, where Ia is the number of iterations of the AltMin algorithm
and rest is the estimated rank of Ĉ by the GCG-Alt estimator. Later in Section 4, we show the
computational complexity of the GCG-Alt estimator with specific examples.



Sensors 2019, 19, 3368 12 of 20

3.6. Extension to the USPA System

We now follow the same process introduced in Section III. A-D to estimate the channel covariance
matrix for USPA systems. To account for the different array structure of the USPA, the weight matrices
of Equation (17) are redesigned. For a

√
Na ×

√
Na USPA placed on the yz plane with distance d

between adjacent antennas, the array response is

a(φkl , θkl) = ay(φkl , θkl)⊗ az(θkl), (35)

where
ay(φkl , θkl) =

1

N
1
4
a

[1, ej 2π
λc d sin(φkl) sin(θkl), · · · , ej(

√
Na−1) 2π

λc d sin(φkl) sin(θkl)]T

is the array response along the y axis and

az(θkl) =
1

N
1
4
a

[1, ej 2π
λc d cos(θkl), · · · , ej(

√
Na−1) 2π

λc d cos(θkl)]T

is the array response along the z axis. We design the weight matrices by examining the structure of T̃t
kl

defined in Equation (3) which is written as

T̃t
kl = a∗t (φ

t
kl , θt

kl)a
T
t (φ

t
kl , θt

kl)

=
(

aty(φ
t
kl , θt

kl)⊗ atz(θ
t
kl)
)∗ (

aty(φ
t
kl , θt

kl)⊗ atz(θ
t
kl)
)T

where aty(φ
t
kl , θt

kl) and atz(θ
t
kl) are the transmitter array response vectors along the y axis and z axis,

respectively. Note that T̃t
kl is block-Toeplitz–Hermitian. Let

T̃y
kl = a∗ty(φ

t
kl , θt

kl)a
T
ty(φ

t
kl , θt

kl) ∈ C
√

Nt×
√

Nt

and
T̃z

kl = a∗tz(θ
t
kl)a

T
tz(θ

t
kl) ∈ C

√
Nt×
√

Nt ,

we can verify that
T̃t

kl = T̃y
kl ⊗ T̃z

kl , (36)

and T̃y
kl and T̃z

kl are Toeplitz–Hermitian. Then for the USPA, Tt
kl of Equation (8) can be written as

Tt
kl =

γk√
L

T̃y
kl ⊗ T̃z

kl . (37)

In Section III. B, we have expressed tt
kl = vec−1(Tt

kl), where Tt
kl of Equation (8) is Toeplitz–Hermitian

matrix, in terms of a weight matrix and a vector. We have similar expressions for the vectorizations of
the Toeplitz–Hermitian matrices T̃y

kl and T̃z
kl . Let

t̃y
kl = vec(T̃y

kl)

= Γyay
kl (38)

where Γy ∈ CNt×(2
√

Nt−1) is the weight matrix and ay
kl ∈ C(2

√
Nt−1)×1, and

t̃z
kl = vec(T̃z

kl)

= Γzaz
kl (39)
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where Γz ∈ CNt×(2
√

Nt−1) is the weight matrix and az
kl ∈ C(2

√
Nt−1)×1. Let

Γ
(a)
y = [Γy]1+(a−1)

√
Nt :a
√

Nt ,:, 1 ≤ a ≤
√

Nt,

and
Γ
(b)
z = [Γz]1+(b−1)

√
Nt :b
√

Nt ,:, 1 ≤ b ≤
√

Nt.

By exploring the matrix vectorization process, we have

tt
kl = vec(Tt

kl)

= Γuakl , (40)

where

Γu =



Γ
(1)
y ⊗ Γ

(1)
z

Γ
(1)
y ⊗ Γ

(2)
z

...

Γ
(1)
y ⊗ Γ

(
√

Nt)
z

Γ
(2)
y ⊗ Γ

(1)
z

Γ
(2)
y ⊗ Γ

(2)
z

...

Γ
(
√

Nt)
y ⊗ Γ

(
√

Nt)
z


∈ CN2

t ×(2
√

Nt−1)2
(41)

is the weight matrix and

akl =
γk√

L
(ay

kl ⊗ az
kl) ∈ C(2

√
Nt−1)2×1

is a vector. Then for the USPA system, Γu of Equation (17) becomes Equation (41) and Γv of Equation (17)
is constructed similarly as Equation (41); the sizes of vectors akl and bkl of Equation (17) have changed:
akl ∈ C(2

√
Nt−1)2×1 and bkl ∈ C(2

√
Nr−1)2×1, and consequently, the size for matrix C of Equation (18)

has changed: C ∈ C(2
√

Nt−1)2×(2
√

Nr−1)2
. After obtaining the weight matrices, we can follow the

process in Section III. C-D to estimate C and then have the channel covariance matrix estimated as
R̂ = P−1(ΓuĈΓT

v ).

4. Simulations

We now evaluate the performance of our proposed design for fully connected hybrid transceivers
with the ULA and USPA.

4.1. The ULA System

We assume a carrier frequency of fc = 28 GHz. For the ULA system, Nt = 64, Nr = 16, Kt = 16,
and Kr = 4. The number of clusters K ∈ {1, 2}, and there are L = 30 rays in each cluster. The horizontal
AoDs and AoAs are generated as Equation (15) with υt

h = 10.2◦ and as Equation (16) with υr
h = 15.5◦,

respectively. The cluster powers are generated following [22] (Table I). We compare the GCG-Alt
estimator with the DCOMP estimator in [10], which has varying receiving processing matrices Wt,s

and transmitting processing vectors ft,s during training and has the best performance among other
estimators in [10]. The DCOMP estimator needs a dictionary matrix with Gt grid points that is
associated with AoD and a dictionary matrix with Gr grid points that is associated with AoA. Let Lp be
the number of paths in the channel, the DCOMP estimator assumes that Lp is known. For the DCOMP
estimator, we set Gt = 2Nt = 128, Gr = 2Nr = 32, and Lp = rR. Based on Figure 2, for pe = 0.99,
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rR = 18 and 24 for K = 1 and 2, respectively. For the GCG-Alt estimator, we set µ = σ2, ε = 0.003,
and εa = 0.1. The performance metric η [10]

η =
tr(M̂HRM̂)

tr(MHRM)

is used to measure how close the subspace of R̂ is to the subspace of R, where M̂ ∈ CNt Nr×rR and
M ∈ CNt Nr×rR are the singular vector matrices of R̂ and R, respectively. We also use the average of the
normalized mean square error

NMSE =
‖R̂− R‖2

F
‖R‖2

F

to measure their performance.
We set PNR = 10 dB and the number of training beams S = 32, and compare the GCG-Alt

estimator with the DCOMP estimator under different T. With S = 32 per snapshot, the sampling
ratio at each snapshot is SKr/Nr Nt = 12.5%. The comparison result shown in Figure 3 suggests that
when the sampling ratio per snapshot is 12.5%, our proposed estimator requires fewer snapshots to
obtain an R̂ whose subspace is close to that of R, as compared to the DCOMP estimator. The NMSE
result shown in Figure 4 suggests that our proposed GCG-Alt estimator can obtain a more accurate
covariance matrix estimate.

T

4 8 12 16 20 24 28 32 36 40

η

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

GCG-Alt - 1 cluster

DCOMP - 1 cluster

GCG-Alt - 2 clusters

DCOMP - 2 clusters

Figure 3. Comparison of η of the GCG-Alt estimator and the DCOMP estimator under the ULA system,
where Nt = 64, Nr = 16, PNR = 10 dB, and S = 32.
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T

4 8 12 16 20 24 28 32 36 40

N
M
S
E

-10

-8

-6

-4

-2

0

2

4

6
GCG-Alt - 1 cluster

DCOMP - 1 cluster

GCG-Alt - 2 clusters

DCOMP - 2 clusters

Figure 4. Comparison of NMSE of the GCG-Alt estimator and the DCOMP estimator under the ULA
system, where Nt = 64, Nr = 16, PNR = 10 dB, and S = 32.

We also compare the computational complexity of the GCG-Alt estimator and the DCOMP
estimator. The computational complexity of the DCOMP estimator is about 8TLpGtGr(M2 + M) flops,
where M = SKr. For the GCG-Alt estimator, based on our observations, the number of iterations of the
AltMin algorithm Ia ≤ 2, the estimated rank rest ≈ 4 when K = 1 and rest ≈ 5 when K = 2. Figure 5
shows the comparison results with different T. We can see that the computational complexity of the
GCG-Alt estimator is lower than that of the DCOMP estimator. Also, the computational complexity of
the GCG-Alt estimator does not increase as T increases. This is because we use Sp ∈ CS2×K2

r , which is
the permutation of the SCM of yt shown in Equation (25), and its size is irrelevant to T.

4 8 12 16 20 24 28 32 36 40

0

1

2

3

4

5

6
10

11

Figure 5. Complexity comparison of the GCG-Alt estimator and the DCOMP estimator under the ULA
system, where Nt = 64, Nr = 16, PNR = 10 dB, and S = 32.

Then we set the number of snapshots T = 40, and compare the GCG-Alt estimator with the
DCOMP estimator under different S. The result shown in Figure 6 suggests that when T = 40,
the GCG-Alt estimator can obtain a more accurate subspace estimation than the DCOMP estimator
when the number of training beams S ≥ 24 per snapshot. Note that S = 24 corresponds to a sampling
ratio of 9.375% per snapshot.
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S

16 24 32 40 48 56 64

η

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

GCG-Alt - 1 cluster

DCOMP - 1 cluster

GCG-Alt - 2 clusters

DCOMP - 2 clusters

Figure 6. Comparison of η of the GCG-Alt estimator and the DCOMP estimator under the ULA system,
where Nt = 64, Nr = 16, PNR = 10 dB, and T = 40.

The GCG-Alt estimator explores both the Kronecker structure and the block-Toeplitz–Hermitian
structure of R while the DCOMP estimator only considers the Hermitian structure of R, so the GCG-Alt
estimator can reach an accurate subspace estimation of R with fewer snapshots. We use the same
training for different snapshots while the DCOMP estimator uses different trainings per snapshot
(i.e., varying Wt,s and ft,s ). When S is small (e.g., S ≤ 16), the DCOMP estimator outperforms
the GCG-Alt estimator. However, the GCG-Alt estimator performs better when S becomes larger
(e.g., S ≥ 24). Note that for the DCOMP estimator, estimating more paths (i.e., Lp is large) yields better
performance, but its computational complexity also increases.

4.2. The USPA System

We next consider the system with the USPA at the transmitter and receiver. The parameters
fc, K, L, φt

kl , and φr
kl are assumed the same as in the ULA system. The transmitter has an 8× 8 USPA

(i.e., Nt = 64) and Kt = 16 RF chains, and the receiver has a 4× 4 USPA (i.e., Nr = 16) and Kr = 4 RF
chains. We assume the elevation AoD angular spread υt

v = 0◦ and the elevation AoA angular spread
υr

v = 6◦ based on the measurement results in [22]. The elevation AoDs and AoAs are distributed as

θt
kl ∼ U (θ

t
k − υt

v, θt
k + υt

v),

θr
kl ∼ U (θ

r
k − υr

v, θr
k + υr

v),

with the elevation center angles θt
k and θr

k being generated in the same manner as the azimuth center
angles in the ULA system. For the DCOMP estimator, we set Gt = 2

√
Nt × 2

√
Nt = 256 and

Gr = 2
√

Nr × 2
√

Nr = 64. The parameters Lp, µ, ε, and εa for the GCG-Alt estimator and DCOMP
estimator are the same as in the ULA system.

We set PNR = 10 dB. The performance comparison with S = 32 under different T is shown in
Figure 7 and the performance comparison with T = 40 under different S is shown in Figure 8. We can
see that both of the GCG-Alt estimator and the DCOMP estimator achieve higher η for the USPA system.
One reason for this is that the USPA system has lower resolution than the ULA system in the azimuth
direction even though they have the same number of transmitter and receiver antennas. For the USPA
system, the azimuth AoD is resolved by an

√
Nt = 8-element antenna array and the azimuth AoA is

resolved by a
√

Nr = 4-element antenna array; while for the ULA system, the azimuth AoD is resolved
by a Nt = 64-element antenna array and the azimuth AoA is resolved by a Nr = 16-element antenna
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array. Therefore, for the same angular spread, the USPA system resolves fewer paths than the ULA
system, which results in a lower rank.

T

4 8 12 16 20 24 28 32 36 40

η

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

GCG-Alt - 1 cluster

DCOMP - 1 cluster

GCG-Alt - 2 clusters

DCOMP - 2 clusters

Figure 7. Comparison of η of the GCG-Alt estimator and the DCOMP estimator under the USPA
system, where Nt = 64, Nr = 16, PNR = 10 dB, and S = 32.

S

8 12 16 20 24 28 32

η

0.88

0.9

0.92

0.94

0.96

0.98

1

GCG-Alt- 1 cluster

DCOMP - 1 cluster

GCG-Alt - 2 clusters

GCG-Alt - 2 clusters

Figure 8. Comparison of η of the GCG-Alt estimator and the DCOMP estimator under the USPA
system, where Nt = 64, Nr = 16, PNR = 10 dB, and T = 40.

We also show the effects of angular spreads on the performance of the estimators. We set υt
v = 0◦,

υr
v = 6◦, K = 1, PNR = 10 dB, S = 16, and T = 16. The estimators’ performance under different

angular spreads for the azimuth AoD/AoA (i.e., different υt
h and υr

h) shown in Figure 9 suggests that
the estimators achieve lower η when υt

h and υr
h are larger.
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Figure 9. Comparison of η of the GCG-Alt estimator and the DCOMP estimator under the USPA
system, where Nt = 64, Nr = 16, K = 1, PNR = 10 dB, S = 16, T = 16, υt

v = 0◦, and υr
v = 6◦.

5. Conclusions

We have formulated the channel covariance estimation problem for hybrid mmWave systems
as a structured low-rank matrix sensing problem by exploiting Kronecker product expansion and
the structures of the ULA/USPA. The formulated problem has a reduced dimensionality and is
solved by using a low-complexity GCG-Alt algorithm. The computational complexity analysis and
numerical results suggest that our proposed method is effective in estimating the mmWave channel
covariance matrix.
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Abbreviations

The following abbreviations are used in this manuscript:

mmWave Millimeter wave
MIMO Multiple-input multiple-output
CSI Channel state information
CS Compressive sensing
AoA Angle of arrival
AoD Angle of departure
ULA Uniform linear arrays
USPA Uniform squared planar arrays
RF Radio frequency
NMSE Normalized mean square error
PNR Pilot-to-noise ratio
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