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Abstract: Transmitter and receiver position errors have been known to significantly deteriorate
target localization accuracy in a multi-static passive radar (MPR) system. This paper explores the
use of calibration targets, whose positions are known to the MPR system, to counter the loss in
target localization accuracy arising from transmitter/receiver position errors. This paper firstly
evaluates the Cramér–Rao lower bound (CRLB) for bistatic range (BR)-based target localization
with calibration targets, which analytically indicates the potential of calibration targets in enhancing
localization accuracy. After that, this paper proposes a novel closed-form solution, which includes
two steps: calibration step and localization step. Firstly, the calibration step is devoted to refine
the inaccurate transmitter and receiver locations using the BR measurements from the calibration
targets, and then in the calibration step, the target localization can be accurately achieved by using the
refined transmitter/receiver positions and the BR measurements from the unknown target. Theoretical
analysis and simulation results indicate that the proposed method can attain the CRLB at moderate
measurement noise level, and exhibits the superiority of localization accuracy over existing algorithms.

Keywords: multi-static passive radar; target localization; calibration target; bistatic range; transmitter
and receiver position error; Cramér–Rao lower bound

1. Introduction

Passive radar technology, which allows operators to detect and localize potential targets using
already existing transmitters such as commercial frequency modulation (FM) broadcast/digital
audio broadcast (DAB)/terrestrial digital video broadcast (DVB-T) [1,2] and non-cooperative radar
transmission [3,4], has been interesting to both civilian and military fields in the last few decades [5].
This sort of radar, compared to active radar technology, offers numerous advantages including lower
cost, lower power usage and more covert surveillance capability, which suggests the possibility of
employing passive radars on a wide range of concerned applications such as homeland security, costal
surveillance and early warning system for vehicles detection, etc.

One of the remarkable characters of passive radar is the deployment of two receiving channels,
with one for capturing the direct path signal from the transmitter and the other for collecting the
potential target echoes [6]. By performing a cross-correlation operation between the direct path signal
and the target echoes, the time delay (TD) could be measured, which holds information about the
unknown target position. By multiplying with the signal propagation speed, the TD can be directly
converted into the bistatic range (BR) [7]. Each BR measurement traces out an ellipsoid equation,
with its foci located at the transmitter and the receiver positions. Theoretically, for multi-static passive
radar (MPR), if enough BR measurements with respect to multiple transmitter-receiver pairs are
available, the target position can be determined by solving the set of nonlinear ellipsoid equations.
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However, due to the high nonlinearity implied in the BR measurement equations, determining the
target position from the BR measurements obtained at a single time instant is not a trivial topic.

In recent years, numerous algorithms have been developed to address this challenging topic, mainly
including iterative methods [8,9] and closed-form solution methods [10–14]. Iterative methods [8,9]
rely on an initial position guess close to the true solution but such a good guess may not always be
available in reality. By contrast, closed-form solution methods [10–14] have always been more attractive
to researchers due to their computational efficiency, independence on initial guess and absence of
divergence problem. Illuminated by Ho and Xu’s two-step weighted least squares (2WLS) idea [15],
these closed-form solution methods [10–14] generally follow the basic two-step framework below:
in the first step, the non-linear BR equations are linearized into pseudo-linear ones by introducing
some proper nuisance parameters and a coarse estimate of target position can be obtained from the
pseudo-linear equation set via weighted least squares (WLS) minimization; then in the second step,
the function relation between the target position and the introduced nuisance parameters is explored
to refine the initial estimate.

Nevertheless, all the aforementioned methods are designed based on the assumption that the
positions of the transmitters and receivers are exactly known, but such exact priori knowledge may not
be available in reality. In fact, the positions of the transmitters and receivers are inevitably perturbed by
errors to some extent, and these errors (also referred to as position uncertainties) are often non-negligible,
especially when the antennas are mounted on moving platforms [16,17] or the exploited transmitters are
highly non-cooperative (such as the hostile radar radiation whose position could usually only roughly
determined by electronic reconnaissance technique [18,19]). On the other hand, Rui and Ho [20]
quantitatively analyze the influence of the transmitter and receiver position error on the localization
accuracy, indicating that the target localization accuracy can be very sensitive to the transmitter/receiver
position error and a slight error in transmitter/receiver position could remarkably deteriorate the
localization accuracy. More recently, some novel methods [21,22] that take the statistical distributions
of transmitter/receiver position error into consideration are developed to reduce the target localization
error, and they are shown to attain the Cramér–Rao lower bound (CRLB) under small measurement
noise and transmitter/receiver position error assumption. Nevertheless, these methods [21,22] only
present the solutions when the transmitter/receiver position errors exist, but cannot fundamentally
compensate the localization performance loss arising from transmitter/receiver position error at the
CRLB level.

The use of calibration sensors has been a common technique in wireless sensor network
self-localization, where each sensor broadcasts signals and receives signals from other sensors so as to
determine their positions collaboratively [23,24]. Syldatk [25,26] considers the calibration of ground
sensor networks where an accurate calibration of sensor positions and orientations is required for
target tracking. For source localization problem, Hasan first considered in [27] utilizing calibration
sensors to improve the angle-based source localization performance. Ho [28], Yang [29] as well as
Li [30] et al. further expanded and applied the calibration technique to range difference (RD)-based
source localization problem, where additional RD measurements from the calibration sensors were
incorporated to reduce the receivers’ position error and thus improve the source localization accuracy.
The successful use of calibration techniques in these fields inspires us the possibility of employing
calibration technique in the target localization for multi-static passive radar. When it comes to BR-based
target localization in multi-static passive radar, using a ‘calibration target’ with known position may also
be able to mitigate the target localization performance loss arising from the transmitter/receiver position
error. In theory, any target appearing in the radar coverage area and meanwhile broadcasting its position
can be taken as a calibration target. Typically, for example, to avoid potential accidents and collisions,
the commercial aircrafts will report their positions and other information to the ground stations and
other aircraft by using the automatic dependent surveillance broadcast (ADS-B) system [31]. Hence,
the commercial aircraft broadcasting ADS-B signal can be regarded as an off-the-shelf calibration target.
If no such off-the-shelf calibration targets are available in the radar coverage area, we can manually
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launch some strong scatterers with known positions as calibration targets. However, despite that, up to
now there exists no publication in the open literature that addresses refining inaccurate transmitter
and receiver positions using calibration targets for target localization in multi-static passive radar.

Motivated by these facts, in this paper, taking the transmitter and receiver position error into
consideration, we explore using calibration targets to counter the loss in BR-based target localization
accuracy arising from the transmitter/receiver position error. We begin our work by deriving the
CRLB for BR-based target position estimation when the BR measurements from the calibration
targets are available. The interpretation on the CRLB demonstrates that the use of calibration targets
can significantly mitigate the influence of the transmitter/receiver position error and dramatically
enhance the localization accuracy, at least in the sense of CRLB. We then proceed to develop a novel
localization method to alleviate the transmitter and receiver position error and enhance the localization
accuracy using calibration targets. It mainly includes two processing stages, referred to as calibration
stage and localization stage respectively. In the calibration stage, the BR measurements from the
calibration targets are exploited to refine the inaccurate transmitter and receiver positions; in the
localization stage, the refined transmitter and receiver positions and BR measurements corresponding
to the unknown target are exploited to determine the target position. Both processing stages are
closed-form, which brings the proposed method computational efficiency and high robustness.
Furthermore, the accuracy of the proposed solution is shown analytically to reach the CRLB when
the transmitters’/receivers’/calibration targets’ position errors and the BR measurement noises are
sufficiently small. Simulations will be conducted to verify the effectiveness and superiority of the
proposed solution over existing methods.

Notations: There will be a lot of notations throughout this paper. Without exception, vectors
(matrices) are denoted by bold lower (upper) case letters, respectively. Also, notations (·)

◦

, (·)T, ‖ ·‖ ,
(·)−1, E(·), Op×q, Ip×p, 0p×1, diag(·) and tr(·), represent the true value of a noisy or an estimated variable,
transpose operation, Euclidean norm, inverse of matrix, statistical expectation, a p-by-q zero matrix,
an identity matrix of size p, a p-by-1 zero vector, diagonal matrix and the trace of a matrix, respectively.

The remainder of this paper is organized as follows. Section 2 is about the localization
scenario in the presence of transmitter/receiver position error and calibration targets. In Section 3,
the corresponding CRLB is evaluated, indicating the potential of calibration targets in improve
localization accuracy. In Section 4, a closed-form solution is developed for target localization in the
presence of transmitter/receiver position error and calibration targets, and theoretical performance
analysis is also given. Section 5 describes the results of Monte Carlo simulations that compare the
proposed solution with existing methods. Section 6 is the conclusion.

2. Problem Formulation

Address a typical multi-static passive radar localization scenario as presented in Figure 1, where
M non-cooperative transmitters located at so

t,m = [xo
t,m, yo

t,m, zo
t,m]

T (m = 1, 2, . . . , M) are employed to

illuminate the surveillance area, and N receivers located at so
r,n = [xo

r,n, yo
r,n, zo

r,n]
T (n = 1, 2, . . . , N) are

deployed to determine a single target’s position denoted by uo = [xo, yo, zo]T. In fact, the exact positions
of the transmitters and receivers might not be known, and only the inaccurate measured versions,
i.e., st,m = [xt,m, yt,m, zt,m]

T and sr,n = [xr,n, yr,n, zr,n]
T, are available for processing. Formulaically, we

arrive at
st,m = so

t,m + ∆st,m (1)

sr,n = so
r,n + ∆sr,n (2)

where ∆st,m and ∆sr,n are the position error of the mth transmitter and the nth receiver respectively
and also referred to as position uncertainty. Stacking (1) and (2) with respect to all the transmitters and
receivers, yields a 3(M + N)-by-1 transmitter and receiver position vector as

s = so + ∆s (3)
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where s = [sT
t , sT

r ]
T with st = [sT

t,1, sT
t,2, . . . , sT

t,M]
T and sr = [sT

r,1, sT
r,2, . . . , sT

r,N]
T is the noisy

transmitter and receiver position vector, so = [(so
t )

T, (so
r )

T]
T

with so
t = [(so

t,1)
T, (so

t,2)
T, . . . , (so

t,M)T]
T

and so
r = [(so

r,1)
T, (so

r,2)
T, . . . , (so

r,N)
T]

T
is the true transmitter and receiver position vector, and

∆s = [∆sT
t , ∆sT

r ]
T with ∆st = [∆sT

t,1, ∆sT
t,2, . . . , ∆sT

t,M]
T and ∆sr = [∆sT

r,1, ∆sT
r,2, . . . , ∆sT

r,N]
T is the

transmitter and receiver position error vector that can be assumed zero-mean Gaussian with covariance
Qs without loss of generality.

Sensors 2019, 19, x FOR PEER REVIEW 4 of 21 

 

where Δ t ,ms  and Δ r ,ns  are the position error of the mth transmitter and the nth receiver respectively 
and also referred to as position uncertainty. Stacking (1) and (2) with respect to all the transmitters 
and receivers, yields a 3(M + N)-by-1 transmitter and receiver position vector as 

= + Δos s s  (3) 

where = T T T
t r[ , ]s s s  with = …T T T T

t t,1 t,2 t,[ , , , ]Ms s s s  and = …T T T T
r r,1 r,2 r,[ , , , ]Ns s s s  is the noisy transmitter 

and receiver position vector, =o o T o T T
t r[( ) ,( ) ]s s s  with = …o o T o T o T T

t t,1 t,2 t,[( ) ,( ) , ,( ) ]Ms s s s  and 

= …o o T o T o T T
r r,1 r,2 r,[( ) ,( ) , ,( ) ]Ns s s s  is the true transmitter and receiver position vector, and 

Δ = Δ ΔT T T
t r[ , ]s s s  with Δ Δ Δ … Δ= T T T T

t t,1 t,2 t,[ , , , ]Ms s s s  and Δ = Δ Δ … ΔT T T T
r r,1 r,2 r,[ , , , ]Ns s s s  is the 

transmitter and receiver position error vector that can be assumed zero-mean Gaussian with 
covariance 

sQ  without loss of generality. 

 
Figure 1. Practical scenario geometry of multi-static passive radar in the presence of 
transmitter/receiver position error and calibration targets. 

Using the above notations, the distance from the mth transmitter to the target of interest is equal 
to 

= −‖ ‖o o o
t, t,m mR u s  (4) 

the distance from the target of interest to the nth receiver is equal to 

= −‖ ‖o o o
r, r,n nR u s  (5) 

and the baseline distance with respect to the mth transmitter and nth receiver is 

= −‖ ‖o o o
t, ,r, t, r,m n m nR s s  (6) 

According to this, the BR measurement with respect to the mth transmitter and nth receiver, i.e., 
the sum of the distances from the mth transmitter to the target and the target to the nth receiver, can 
be formulized as 

= + Δ

+ Δ

− − − − +

= + −

Δ= +‖ ‖‖ ‖‖ ‖

o
, , ,

o o o
t , r , t , ,r , ,

o o o o o o
t , r , t , r , ,

m n m n m n

m n m n m n

m n m n m n

r r r

R R R r

ru s u s s s

 (7) 

where = + −o o o o
, t, r, t, ,r,m n m n m nr R R R  represents the true BR with respect to the mth transmitter and nth 

receiver, Δ ,m nr  is the BR measurement noise. Herein, it is important to emphasize that the time delay 
measurement comes from the cross correlation operation between the target signal and the direct 

Nominal, known

Actual, unknown

mth transmitter nth receiver

Unknown target

Nominal, known

Actual, unknown

Calibration target

t ,ms

o
r ,ns

r ,ns

o
t ,ms

o
t ,mR o

r ,nR

o
c, ,t ,k mR o

c, ,r ,k nR

Figure 1. Practical scenario geometry of multi-static passive radar in the presence of transmitter/receiver
position error and calibration targets.

Using the above notations, the distance from the mth transmitter to the target of interest is equal to

Ro
t,m = ‖uo

− so
t,m‖ (4)

the distance from the target of interest to the nth receiver is equal to

Ro
r,n = ‖uo

− so
r,n‖ (5)

and the baseline distance with respect to the mth transmitter and nth receiver is

Ro
t,m,r,n = ‖so

t,m − so
r,n‖ (6)

According to this, the BR measurement with respect to the mth transmitter and nth receiver, i.e.,
the sum of the distances from the mth transmitter to the target and the target to the nth receiver, can be
formulized as

rm,n = ro
m,n + ∆rm,n

= Ro
t,m + Ro

r,n −Ro
t,m,r,n + ∆rm,n

= ‖uo
− so

t,m‖+ ‖u
o
− so

r,n‖ − ‖s
o
t,m − so

r,n‖+ ∆rm,n

(7)

where ro
m,n = Ro

t,m + Ro
r,n −Ro

t,m,r,n represents the true BR with respect to the mth transmitter and nth
receiver, ∆rm,n is the BR measurement noise. Herein, it is important to emphasize that the time delay
measurement comes from the cross correlation operation between the target signal and the direct path
reference signal [7], and its error characteristics are not affected by the transmitter/receiver position
error since the transmitter/receiver position error is not involved in the estimation of time delay. Thus,
the BR measurement noise is only related to the time delay measurement noise, and not related to the
transmitter/receiver position error. Obviously, there will be MN BR measurements to be produced
with respect to the M transmitters and N receivers, which can be recast into a MN-by-1 vector as

r = ro + ∆r (8)
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where r = [rT
1 , rT

2 , . . . , rT
M]

T with rm = [rm,1, rm,2, . . . , rm,N]
T is the BR measurement vector,

ro = [(ro
1)

T, (ro
2)

T, . . . , (ro
M)T]

T
with ro

m = [ro
m,1, ro

m,2, . . . , ro
m,N]

T is the true BR vector, and

∆r = [∆rT
1 , ∆rT

2 , . . . , ∆rT
M]

T with ∆rm = [∆rm,1, ∆rm,2, . . . , ∆rm,N]
T is the BR measurement noise vector,

which is usually assumed follow a Gaussian distribution with zero-mean and covariance Qr.
As presented in Figure 1, to alleviate the transmitter/receiver position error and enhance localization

accuracy, K calibration targets located at co
k = [xo

c,k, yo
c,k, zo

c,k]
T (k = 1, 2, . . . , K) are employed, and the

BRs among the calibration targets and the transmitter-receiver pairs are also measured. Similarly,
the exact positions of the calibration targets are not known to us, and the nominal versions denoted by
ck = [xc,k, yc,k, zc,k]

T (k = 1, 2, . . . , K) are given as

ck = co
k + ∆ck (9)

where ∆ck is the position error of the kth calibration target. Collecting (9) for all the K calibration targets
forms a 3K-by-1 calibration target position vector as

c = co + ∆c (10)

where c = [cT
1 , cT

2 , . . . , cT
K]

T is the nominal calibration target position vector, co =

[(co
1)

T, (co
2)

T, . . . , (co
K)

T]
T

is the true calibration target position vector, and ∆c = [∆cT
1 , ∆cT

2 , . . . , ∆cT
K]

T is
the calibration target position error vector that is usually supposed to obey Gaussian distribution with
zero-mean and covariance Qc. Herein, it should be pointed out that, the positions of calibration targets
are generally considered to be more precise compared with those of the transmitters and receivers,
although they are also contaminated by errors.

Then, the distance from the mth transmitter to the kth calibration target is given by

Ro
c,k,t,m = ‖co

k − so
t,m‖ (11)

and the distance from the kth calibration target to the nth receiver is given by

Ro
c,k,r,n = ‖co

k − so
r,n‖ (12)

Based on this, the BR measurement corresponding to the kth calibration target, mth transmitter
and nth receiver can be modeled as

rc,k,m,n = ro
c,k,m,n + ∆rc,k,m,n

= Ro
c,k,t,m + Ro

c,k,r,n −Ro
t,m,r,n + ∆rc,k,m,n

= ‖co
k − so

t,m‖+ ‖c
o
k − so

r,n‖ − ‖s
o
t,m − so

r,n‖+ ∆rc,k,m,n

(13)

where ∆rc,k,m,n represents measurement noise in rc,k,m,n, ro
c,k,m,n = Ro

c,k,t,m + Ro
c,k,r,n −Ro

t,m,r,n represents
the true BR with respect to the kth calibration target, mth transmitter and nth receiver. Collecting (13)
for the set of K calibration targets, M transmitters and N receivers, results in a KMN-by-1 vector as

rc = ro
c + ∆rc (14)

where rc = [rT
c,1, rT

c,2, . . . , rT
c,K]

T with rc,k = [rT
c,k,1, rT

c,k,2, . . . , rT
c,k,M]

T and rc,k,m =

[rc,k,m,1, rc,k,m,2, . . . , rc,k,m,N]
T denotes the BR measurement vector from the calibration targets,

ro
c = [(ro

c,1)
T, (ro

c,2)
T, . . . , (ro

c,K)
T]

T
with ro

c,k = [(ro
c,k,1)

T, (ro
c,k,2)

T, . . . , (ro
c,k,M)T]

T
and ro

c,k,m =

[ro
c,k,m,1, ro

c,k,m,2, . . . , ro
c,k,m,N]

T denotes the corresponding true value vector, ∆rc = [∆rT
c,1, ∆rT

c,2, . . . , ∆rT
c,K]

T

with ∆rc,k = [∆rT
c,k,1, ∆rT

c,k,2, . . . , ∆rT
c,k,M]

T and ∆rc,k,m = [∆rc,k,m,1, ∆rc,k,m,2, . . . , ∆rc,k,m,N]
T denotes the
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corresponding error vector, which is presumed to be a Gaussian random vector with zero mean and
covariance Qrc.

Now, the purpose of this work is to determine the target position from the noisy BR measurements
and the inaccurate transmitter/receiver positions. In particular, the calibration targets with known
position and the corresponding BR measurements are also available to reduce the transmitter/receiver
position error and improve localization accuracy.

3. Evaluation of the CRLB with Calibration Targets

The CRLB does not address the specific estimators employed, but simply reflects minimum
possible variance that an unbiased estimator can achieve with existing observations. In this section,
in order to justify the necessity of refining the inaccurate transmitter and receiver positions using
calibration targets, we shall first set up the CRLB for the target localization problem described
above. Besides the BR measurement noise, the position errors of transmitter, receivers and calibration
targets are also included. From the localization scenario presented in Section 2, the deterministic
but unknown parameters for the CRLB evaluation, collected into a 3(M + N + K + 1)-by-1 vector

ϕ = [(uo)T, (so)T, (co)T]
T

, include the target position vector uo, the transmitter and receiver position
vector so, and the calibration target position vector co; the observations, collected into a (MN + KMN +

3M + 3N + 3K)-by-1 vector z = [rT, rT
c , sT, cT]

T, include the BR measurement vector r from the unknown
target, the BR measurement vector rc from the calibration targets, the inaccurate measured transmitter
and receiver position vector s, and the nominal calibration target position vector c, which are Gaussian
distributed and independent with one another. Based on this, the joint probability density function
(pdf) of the observations parameterized by the unknown parameter vector is readily shown to be

p(z
∣∣∣ϕ) = p(r

∣∣∣uo, so) · p(rc
∣∣∣so, co) · p(s

∣∣∣so) · p(c
∣∣∣co)

= κ · exp
[
−

1
2 (r− ro)TQ−1

r (r− ro) − 1
2 (rc − ro

c )
TQ−1

rc (rc − ro
c )

−
1
2 (s− so)TQ−1

s (s− so) − 1
2 (c− co)TQ−1

c (c− co)
] (15)

where κ is a constant with respect to the unknown parameters. By taking the logarithm of (15), partial
derivatives with respect to the unknown parameters twice, and then expectation, the Fisher information
matrix (FIM) can be calculated as

FIM(ϕ) = E
[
∂ ln p(z|ϕ)

∂ϕ

(
∂ ln p(z|ϕ)

∂ϕ

)]
=


X Y O3×3

YT Z RT

O3×3 R P

 (16)

where the blocks X, Y, Z, R and P are respectively given by

X =

(
∂ro

∂uo

)T

Q−1
r

(
∂ro

∂uo

)
(17)

Y =

(
∂ro

∂uo

)T

Q−1
r

(
∂ro

∂so

)
(18)

Z = Q−1
s +

(
∂ro

∂so

)T

Q−1
r

(
∂ro

∂so

)
+

(
∂ro

c

∂so

)T

Q−1
rc

(
∂ro

c

∂so

)
(19)

R =

(
∂ro

c

∂co

)T

Q−1
rc

(
∂ro

c

∂so

)
(20)
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P = Q−1
c +

(
∂ro

c

∂co

)T

Q−1
rc

(
∂ro

c

∂co

)
(21)

Denote im,n = (m− 1)N + n, and ik,m,n = (k− 1)MN + (m− 1)N + n. From the formulations of (7) and
(13), the elements of the partial derivatives ∂ro/∂uo, ∂ro/∂so, ∂ro

c /∂co and ∂ro
c /∂so in (17)–(21), can be

determined as
∂ro

∂uo (im,n, 1 : 3) =
(uo
− so

t,m)
T

Ro
t,m

+
(uo
− so

r,n)
T

Ro
r,n

(22)

∂ro

∂so =
[
∂ro

∂so
t

∂ro

∂so
r

]
(23)

∂ro

∂so
t
(im,n, 3m− 2 : 3m) =

(so
t,m − uo)T

Ro
t,m

−

(so
t,m − so

r,n)
T

Ro
t,m,r,n

(24)

∂ro

∂so
r
(im,n, 3n− 2 : 3n) =

(so
r,n − uo)T

Ro
r,n

−

(so
r,n − so

t,m)
T

Ro
t,m,r,n

(25)

∂ro
c

∂co (ik,m,n, 3k− 2 : 3k) =
(co

k − so
t,m)

T

Ro
c,k,t,m

+
(co

k − so
r,n)

T

Ro
c,k,r,n

(26)

∂ro
c

∂so =
[
∂ro

c
∂so

t

∂ro
c

∂so
r

]
(27)

∂ro
c

∂so
t
(ik,m,n, 3m− 2 : 3m) =

(so
t,m − co

k )
T

Ro
c,k,t,m

−

(so
t,m − so

r,n)
T

Ro
t,m,r,n

(28)

∂ro
c

∂so
r
(ik,m,n, 3n− 2 : 3n) =

(so
r,n − co

k )
T

Ro
c,k,r,n

−

(so
r,n − so

t,m)
T

Ro
t,m,r,n

(29)

for k = 1, 2, . . . , K, m = 1, 2, . . . , M and n = 1, 2, . . . , N, and zeros elsewhere.
By definition, the CRLB ofϕ, denoted by CRLBc(ϕ), is given as FIM(ϕ)−1, where only the upper

left 3-by-3 block is for the target position uo. Invoking the partitioned matrix inversion formula as well
as the matrix inversion lemma [32] twice on (16), leads to the CRLB of uo as

CRLBc(uo) = X−1 + X−1Y(Z−YTX−1Y−RTP−1R)
−1

YTX−1 (30)

For comparison purposes, the CRLB of uo with transmitter/receiver position error but without
calibration derived in [22], denoted by CRLBs(uo), is also given below

CRLBs(uo) = X−1 + X−1Y(
_
Z −YTX−1Y)

−1
YTX−1 (31)

where
_
Z = Q−1

s + (∂ro/∂so)TQ−1
r (∂ro/∂so). For the sake of comparison, we proceed to construct

an equivalent form of CRLBc(uo) by denoting
^
Z as

^
Z = Z − RTP−1R. After invoking the matrix

inversion lemma [32] to (∂ro
c /∂so)TQ−1

rc (∂ro
c /∂so) −RTP−1R and some algebraic manipulations, we

further represent
^
Z as

^
Z = Q−1

s +

(
∂ro

∂so

)T

Q−1
r

(
∂ro

∂so

)
+

(
∂ro

c

∂so

)TQrc +

(
∂ro

c

∂co

)
Qc

(
∂ro

c

∂co

)T−1(
∂ro

c

∂so

)
(32)

Using (32), we obtain an equivalent expression of CRLBc(uo) as

CRLBc(uo) = X−1 + X−1Y(
^
Z −YTX−1Y)

−1
YTX−1 (33)
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Through the comparison of (31) and (33), it is readily to observe that the two CRLBs are identical in

structure, except that
^
Z is substituted by

_
Z. More specifically, the use of calibration targets introduces

an additional component into the bracketed matrix expression to be inverted as

~
Z =

^
Z −

_
Z

= (∂ro
c /∂so)TQ−1

rc (∂ro
c /∂so) −RTP−1R

= (∂ro
c /∂so)T

(
Qrc + (∂ro

c /∂co)Qc(∂ro
c /∂co)T

)−1
(∂ro

c /∂so)

(34)

Using (34), we can rewrite (
^
Z −YTX−1Y)

−1
in (33) as ((

_
Z −YTX−1Y) +

~
Z)
−1

. Invoking the matrix inversion

lemma [32] to the term ((
_
Z −YTX−1Y) +

~
Z)
−1

in (33), we obtain after some algebraic manipulations,

CRLBc(uo) −CRLBs(uo) = X−1YΓYTX−1 (35)

where
Γ = H−1Υ(I + ΥTH−1Υ)

−1
ΥTH−1 (36)

H = (
~
Z−YTX−1Y) (37)

Υ =

(
∂ro

c

∂so

)T

Lrc (38)

and Lrc is the Cholesky decomposition of (Qrc + (∂ro
c /∂co)Qc(∂ro

c /∂co)T)
−1

, i.e., LrcLT
rc =

(Qrc + (∂ro
c /∂co)Qc(∂ro

c /∂co)T)
−1

. In form, the right side of (35) is just the performance enhancement
because of the use of calibration targets. It is positive semi-definite (PSD) since it has a symmetric
structure and ΥT is not full column rank. Even if the nominal positions of calibration targets and
the corresponding BR measurements are very noisy, (35) can still remain PSD. In theory, only in

the edge case when (Qrc + (∂ro
c /∂co)Q−1

c (∂ro
c /∂co)T)

−1
tends to zero and then Lrc → O and Υ→ O ,

the performance enhancement in (34) would tend to zero. However, this edge case hardly exists in
reality. Thus, mathematically, we can arrive at

CRLBs(uo) ≥ CRLBc(uo) (39)

The matrix inequality A ≥ B means that A−B is PSD. It can be further deduced from (39) that
tr(CRLBs(uo)) ≥ tr(CRLBc(uo)). The trace of CRLBc(uo) and CRLBs(uo) respectively represents
minimum possible variance of target position estimation with and without using calibration targets.
Therefore, we can conclude that using calibration targets brings potential enhancement to the target
localization accuracy, at least at the CRLB level.

Example 1. To substantiate the evaluation on the CRLB presented above, a numerical example
using a typical multi-static passive radar localization scenario was conducted, as presented in Figure 2.
There are M = 3 transmitters, N = 4 receivers and K = 3 calibration targets in the scenario, and their
true positions are listed in Table 1. The noise covariance matrix of the BR measurements from the
unknown target are given by Qr = σ2

r Vr, where σr reflects BR measurement noise level and Vr is set
to 1 in the diagonal elements and 0.5 elsewhere. The covariance matrix of the transmitter/receiver
position error is given as Qs = σ2

sVs where σs reflects the transmitter/receiver position error level and
Vs = diag(5I3M×3M, I3N×3N). The covariance matrix of calibration target position error is Qc = σ2

cVc

where σc reflects the calibration target position error level and Vc = I3K×3K, and the covariance matrix of
the corresponding calibration BR measurement noise is Qrc = σ2

rcVrc where σrc = σr reflects calibration
BR measurement noise level and Vrc is set to 1 in the diagonal elements and 0.5 elsewhere. The target
of interest is located at position uo = [50000, 15000, 5000]Tm. The effect of the calibration targets on the
target localization accuracy, in the sense of CRLB, is presented in Figure 3.
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Figure 3. Comparison of the CRLBs with and without using calibration targets: (a) for different BR
measurement noise level σr; (b) for different transmitter/receiver position error level σs; (c) for different
calibration target position error level σc.

Figure 3a compares the CRLB curves with and without using calibration targets when the BR
measurement noise level σr is varied from 10−2 m to 103 m while the transmitter/receiver position
error level and calibration target position error level are fixed at σs = 20 m and σc = 10 m respectively.
It can be observed from Figure 3a that the CRLB with calibration targets is generally below the one
without, this coincides with the analytical conclusion given in (39). However, in the edge case where
the BR measurement noise is very large, two CRLBs would tend to be the same. This is because in
this case, the BR measurement noise dominates and effect of transmitter/receiver position error on the
localization accuracy is relatively small. The CRLB curves versus the transmitter/receiver position
error level σs are plotted in Figure 3b where the BR measurement noise level and calibration target
position error level are fixed at σr = 10 m and σc = 10 m respectively. A similar trend, i.e., two CRLBs
would tend to be the same, appears in Figure 3b, when the transmitter/receiver position error is
sufficiently small. A reasonable explanation is that, in this case, the transmitter/receiver positions are
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known very accurately and their influence on the localization accuracy can be ignored compared to
the BR measurement noise. The CRLB comparison versus calibration target position error level σc is
provided in Figure 3c where σr = 10 m and σs = 20 m. Interestingly, the trend of CRLB curves implies
that, even when the calibration target position error is extremely large, the CRLB with utilization of
calibration targets are still remarkably below the one without. This justifies again the analysis under
(35), and similar results have also been presented in previous studies [23–30] on source localization
and sensor network localization issues. Generally, from Figure 3, the use of calibration targets brings a
significant improvement in the localization accuracy in the normal case, at least at the CRLB level.

4. Proposed Localization Method

The evaluation of the CRLB in Section 3 has demonstrated the potential of calibration targets in
improving localization accuracy. In what follows, we will proceed to develop a novel closed-form
solution for the aforementioned practical localization scenario where the positions of transmitters and
receivers are inaccurate but calibration targets are used to refine the transmitter/receiver position and
enhance the localization accuracy. After that, a theoretical analysis will be performed to show that the
proposed solution achieves the CRLB when satisfying some mild conditions.

4.1. Algorithm Development

The proposed solution mainly includes two processing stages, referred to as calibration stage and
localization stage, respectively. The calibration stage is devoted to refining the inaccurate transmitter
and receiver positions, and then the localization stage is devoted to determining the target position on
the basis of the refined transmitter and receiver positions.

4.1.1. Calibration Stage

To make use of the BR measurements from the calibration targets, the calibration stage begins by
reorganizing (13) as

rc,k,m,n − ‖co
k − so

t,m‖ − ‖c
o
k − so

r,n‖+ ‖s
o
t,m − so

r,n‖ = ∆rc,k,m,n (40)

Since only the erroneous versions of co
k , so

t,m and so
r,n are available, we put co

k = ck−∆ck, so
t,m = st,m−∆st,m

and so
r,n = sr,n − ∆sr,n into (40), and then expand it around erroneous values ck, st,m and sr,n to the

linear error terms as

rc,k,m,n − ‖ck − st,m ‖ − ‖ck − sr,n ‖+ ‖st,m − sr,n‖ − (ρT
c,k,t,m + ρT

t,m,r,n)∆st,m − (ρT
c,k,r,n − ρ

T
t,m,r,n)∆sr,n

= −(ρc,k,t,m + ρc,k,r,n)
T

∆ck + ∆rc,k,m,n
(41)

where
ρc,k,t,m =

ck − st,m

‖ck − st,m‖
(42)

ρc,k,r,n =
ck − sr,n

‖ck − sr,n‖
(43)

ρt,m,r,n =
st,m − sr,n

‖st,m − sr,n‖
(44)

Stacking (41) for all the k, m and n, we can formulate them in matrix form as

h0 −G0∆s = ∆h0 (45)

The elements of h0, G0 and ∆h0 are given by

h0(ik,m,n, 1) = rc,k,m,n − ‖ck − st,m‖ − ‖ck − sr,n‖+ ‖st,m − sr,n‖ (46)
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G0 =
[

G0,t G0,r

]
, G0,t(ik,m,n, 3m− 2 : 3m) = ρT

c,k,t,m + ρT
t,m,r,n, G0,r(ik,m,n, 3n− 2 : 3n) = ρT

c,k,r,n − ρ
T
t,m,r,n (47)

Gc(ik,m,n, 3k− 2 : 3k) = −(ρc,k,t,m + ρc,k,r,n)
T (48)

∆h0(ik,m,n, 1) = −(ρc,k,t,m + ρc,k,r,n)
T

∆ck + ∆rc,k,m,n (49)

for ik,m,n = (k − 1)MN + (m − 1)N + n, k = 0, 1, . . . , K − 1, m = 0, 1, . . . , M − 1, n = 0, 1, . . . , N − 1,
and zeros elsewhere. Furthermore, the error vector ∆h0 can be recast using a compact representation
as follows

∆h0 = Gc∆c + ∆rc (50)

from which we have the mean E(∆h0) = 0KMN×1 and the covariance cov(∆h0) = GcQcGT
c + Qrc.

In (45), ∆s represents the difference between the true and the nominal transmitter/receiver positions.
In order to refine the transmitter and receiver positions, ∆s shall be estimated as accurately as

possible. Recall that ∆s is a Gaussian distributed random vector with mean E(∆s) = 03(M+N)×1 and
covariance matrix cov(∆s) = Qs, and it is independent of the error vector ∆h0. Thus according to the
Bayesian Gauss–Markov theorem [33], the linear minimum mean square error (LMMSE) estimate of
∆s can be obtained from (45) as

∆ŝ = E(∆s) +
(
cov(∆s)−1 + GT

0 cov(∆h0)
−1Gs

)−1
GT

0 cov(∆h0)
−1(h0 −G0E(∆s))

=
(
Q−1

s + GT
0 (GcQcGT

c + Qrc)
−1

G0

)−1
GT

0 (GcQcGT
c + Qrc)

−1
h0

(51)

Under the assumption that the noise in Gc and G0 is sufficiently small to be ignored, the covariance
matrix of ∆ŝ can be given as

cov(∆s− ∆ŝ) =
(
Q−1

s + GT
0 (GcQcGT

c + Qrc)
−1

G0

)−1
(52)

Using the estimate of transmitter and receiver position error in (51), we can refine the transmitter
and receiver positions as

ŝ = s− ∆ŝ (53)

Utilizing the fact s = so + ∆s, we can rewrite ŝ in (53) as ŝ = so + ∆s − ∆ŝ. Hence, the
refined estimate of transmitter/receiver positions ŝ has a covariance matrix identical with (52).
Forming the inverse of cov(∆s − ∆ŝ) and then comparing it to Q−1

s results in cov(∆s− ∆ŝ)−1
−

Q−1
s = GT

0 (GcQcGT
c + Qrc)

−1
G0. It is natural to deduce that cov(∆s− ∆ŝ)−1

≥ Q−1
s is PSD since

GT
0 (GcQcGT

c + Qrc)
−1

G0 has a symmetric structure and Gc is not full column rank. According to the
PSD matrix property [34], cov(∆s− ∆ŝ)−1

≥ Q−1
s is equivalent to Qs ≥ cov(∆s−∆ŝ). That is to say, the

refined positions of transmitters and receivers performs leastwise as well as, if not better than, the
original ones, in terms of target localization accuracy.

4.1.2. Localization Stage

The localization stage starts by linearizing the BR equations from the unknown target. Firstly,
reorganize (7) as

(rm,n + Ro
t,m,r,n) −Ro

t,m = Ro
r,n + ∆rm,n (54)

Since we have obtained the refined estimate of so
t,m and so

r,n from calibration stage, we plug
so

t,m = ŝt,m − (∆st,m − ∆ŝt,m) and so
r,n = ŝr,n − (∆sr,n −∆ŝr,n) into (54) and ignoring the second and higher

error terms as
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2(ŝt,m − ŝr,n)
Tuo + 2(rm,n + Rt,m,r,n)Ro

t,m = (rm,n + Rt,m,r,n)
2 + ŝT

t,mŝt,m − ŝT
r,nŝr,n − 2Ro

r,n∆rm,n

+2(uo
− ŝt,m −Ro

r,nρt,m,r,n)
T(∆st,m − ∆ŝt,m) − 2(uo

− ŝr,n −Ro
r,nρt,m,r,n)

T(∆sr,n − ∆ŝr,n)
(55)

By forming an auxiliary vector as θo = [(uo)T, Ro
t,1, Ro

t,2, . . . , Ro
t,M]

T
, we can collect (55) for all the

m and n into a matrix form as
G1θ

o = h1 + ∆h1 (56)

where
G1 =

[
G1,s G1,r

]
(57)

G1,s = 2


ŝ1

ŝ2
...

ŝM

, sm =


(ŝt,m − ŝr,1)

T

(ŝt,m − ŝr,2)
T

...
(ŝt,m − ŝr,N)

T

, (58)

G1,r = 2


r1 0N×1 · · · 0N×1

0N×1 r2 · · · 0N×1
...

...
. . .

...
0N×1 0N×1 · · · rM

, rm =


rm,1

rm,2
...

rm,N

 (59)

h1 =


h1,1

h1,2
...

h1,M

, h1,m =


(rm,1 + Rt,m,r,1)

2 + ŝT
t,mŝt,m − ŝT

r,1ŝr,1

(rm,2 + Rt,m,r,2)
2 + ŝT

t,mŝt,m − ŝT
r,2ŝr,2

...
(rm,N + Rt,m,r,N)

2 + ŝT
t,mŝt,m − ŝT

r,N ŝr,N

 (60)

and the error vector ∆h1 is related to the target position as

∆h1 = B1∆r + D1(∆s− ∆ŝ) (61)

where

B1 =


B1,1 ON×N · · · ON×N

ON×N B1,2 · · · ON×N
...

...
. . .

...
ON×N ON×N · · · B1,M

 (62)

D1 =


D1,t,1 ON×3 · · · ON×3 D1,r,1

ON×3 D1,t,2 · · · ON×3 D1,r,2
...

...
. . .

...
...

ON×3 ON×3 · · · D1,t,M D1,r,M

 (63)

with
B1,m = −2diag

(
Ro

r,1, Ro
r,2, . . . , Ro

r,N

)
(64)

D1,t,m = 2


(uo
− ŝt,m −Ro

r,1ρt,m,r,1)
T

(uo
− ŝt,m −Ro

r,2ρt,m,r,2)
T

...
(uo
− ŝt,m −Ro

r,Nρt,m,r,N)
T

 (65)
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D1,r,m = −2


(uo
− ŝr,1 −Ro

r,1ρt,m,r,1)
T 0T

3×1 · · · 0T
3×1

0T
3×1 (uo

− ŝr,2 −Ro
r,2ρt,m,r,2)

T
· · · 0T

3×1
...

...
. . .

...
0T

3×1 0T
3×1 · · · (uo

− ŝr,N −Ro
r,Nρt,m,r,N)

T


(66)

From the set of linear equations in (56), the WLS estimate of θo, denoted by θ, which minimizes
∆hT

1 W1∆h1 can be produced as

θ = (GT
1 W1G1)

−1
GT

1 W1h1 (67)

where W1 represents the weighting matrix and it can be computed by

W1 =
[
E(∆h1∆hT

1 )
]−1

=
[
B1QαBT

1 + D1cov(∆s− ∆ŝ)DT
1

]−1 (68)

However, to compute W1, the unknown target position has to be acquired in advance. To resolve
this contradiction, we preliminarily let W1 = IMN×MN and use (67) to compute a least squares estimate
of θo, and then use the estimated θo to update W1 for another repetition.

Based on the WLS theorem, it can be deduced that the estimate θ is approximately unbiased and
the corresponding covariance matrix can be obtained, given sufficiently small BR measurement noise
and transmitter/receiver position error, as

cov(θ) = (GT
1 W1G1)

−1
(69)

Next, the functional relation between the target position uo and the introduced nuisance parameters
Ro

t,1, Ro
t,2, . . . , Ro

t,M, is explored to compute the final estimate of target position. To this end, reorganize
the functional relation in (4) as

2(so
t,m)

Tuo = (uo)Tuo + (so
t,m)

Tso
t,m − (R

o
t,m)

2 (70)

Denoting the estimation error of θ by ∆θ, mathematically we arrive at

uo = θ(1 : 3) − ∆θ(1 : 3) (71)

Ro
t,m = θ(3 + m) − ∆θ(3 + m) (72)

Putting (71), (72) into the right side of (70) and so
t,m = ŝt,m − (∆st,m − ∆ŝt,m) into the both sides, we

have after ignoring second-order error terms,

2ŝT
t,muo = θ(1 : 3)T

θ(1 : 3) −θ(m + 3)2 + ŝT
t,mŝt,m

− 2θ(1 : 3)∆θ(1 : 3) + 2θ(m + 3)∆θ(m + 3) + 2(uo
− ŝt,m)

T(∆st,m − ∆ŝt,m)
(73)

The final estimate of target position should satisfy (73) and meanwhile retain as close as possible
to the estimated values of target position in θ. In line with this principle, one has the following set
of equations

G2uo = h2 + ∆h2 (74)
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where

G2 =



I3×3

2sT
t,1

2sT
t,2
...

2sT
t,M


(75)

h2 =



θ(1 : 3)
θ(1 : 3)T

θ(1 : 3) −θ(1 + 3)2 + ŝT
t,1ŝt,1

θ(1 : 3)T
θ(1 : 3) −θ(2 + 3)2 + ŝT

t,2ŝt,2
...

θ(1 : 3)T
θ(1 : 3) −θ(M + 3)2 + ŝT

t,Mŝt,M


(76)

∆h2 = B2∆θ+ D2(∆s− ∆ŝ) (77)

B2 =



−I3×3 03×1 03×1 · · · 03×1

−2θ(1 : 3) 2θ(1 + 3) 0 · · · 0
−2θ(1 : 3) 0 2θ(2 + 3) · · · 0

...
...

...
. . .

...
−2θ(1 : 3) 0 0 · · · 2θ(M + 3)


(78)

D2 =

 O3×3M O3×3N

2diag
{
(uo
− ŝt,1)

T, (uo
− ŝt,2)

T, . . . , (uo
− ŝt,M)T

}
O3M×3N

 (79)

Invoking the WLS theorem again, one has the solution of target position, denoted by u, from (74) as

u = (GT
2 W2G2)

−1
GT

2 W2h2 (80)

where W2 is the weighting matrix and it is determined by

W2 =
[
E(∆h2∆hT

2 )
]−1

=
[
B2cov(θ)BT

2 + D2cov(∆s− ∆ŝ)DT
2 + B2(GT

1 W1G1)
−1

GT
1 W1D1cov(∆s− ∆ŝ)DT

2

+D2cov(∆s− ∆ŝ)DT
1 W1G1(GT

1 W1G1)
−1

BT
2

]−1
(81)

But as presented in (81), the unknown target position is required in the computation of W2. Herein,
to circumvent this dilemma, we preliminarily exploit the target position estimate contained in θ to
form W2 and use (80) to estimate target position. After that we can utilize the estimated target position
to update W2 for another repetition.

From the WLS theorem, the covariance matrix of u can be approximated, given sufficiently small
BR measurement noise and transmitter/receiver position error, as

cov(u) = (GT
2 W2G2)

−1
(82)

4.2. Performance Analysis

As mentioned above, the CRLB traces out a lower bound for minimum possible variance that
an unbiased estimator can achieve. Next, we will analyze the efficiency of the proposed solution by
comparing its covariance matrix with the benchmark, i.e., CRLB. For derivation simplicity, we would
compare their inverse, rather than directly compare the two separately. The CRLB has been presented
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in (33). By invoking the matrix inversion lemma [32] to (33) and using the definitions of X and Y, we
have after mathematical simplifications,

CRLBc(uo)−1 =

(
∂ro

∂uo

)T

Q−1
r

(
∂ro

∂uo

)
−

(
∂ro

∂uo

)T

Q−1
r

(
∂ro

∂so

)
^
Z
−1

(
∂ro

∂so

)T

Q−1
r

(
∂ro

∂uo

)
(83)

where the expression of
^
Z has been given in (32).

On the other hand, using (82), (81), (69), (68) and (52) successively, we can reformulate the inverse
of cov(u) as

cov(u)−1 = GT
3 Q−1

r G3 −GT
3 Q−1

r G4
¯
Z
−1

GT
4 Q−1

r G3 (84)

where G3 = B−1
1 G1B−1

2 G2, G4 = B−1
1 D1, and

¯
Z = Q−1

s + GT
4 Q−1

r G4 + GT
0 (GcQcGT

c + Qrc)
−1

G0.
Comparing (83) with (84), we observe that CRLBc(uo)−1 and cov(u)−1 are identical in structure.

Next, we proceed to prove their equivalency under the following conditions:
(C1) ‖∆st,m‖ � ‖co

k − so
t,m‖, ‖∆st,m‖ � ‖so

t,m − so
r,n‖, ‖∆sr,n‖ � ‖co

k − so
r,n‖, ‖∆sr,n‖ � ‖so

t,m − so
r,n‖, and

‖∆ck‖ � ‖co
k − so

t,m‖, ‖∆ck‖ � ‖co
k − so

r,n‖, for k = 1, 2, . . . , K, m = 1, 2, . . . , M and n = 1, 2, . . . , N;
(C2) ‖∆rm,n‖ � ‖uo

− so
t,m‖, ‖∆rm,n‖ � ‖uo

− so
r,n‖, ‖∆rm,n‖ � ‖so

t,m − so
r,n‖, and ‖∆st,m − ∆ŝt,m‖ �

‖uo
− so

t,m‖, ‖∆sr,n − ∆ŝr,n‖ � ‖uo
− so

r,n‖ for m = 1, 2, . . . , M and n = 1, 2, . . . , N;
The condition C1 implies the transmitter/receiver position error and the calibration target

position error are negligibly small compared with the range between the calibration target and the
transmitter/receiver. The condition C2 implies the BR measurement noise and the error in the refined
transmitter/receiver position are negligibly small compared to the range between the calibration target
and the transmitter/receiver. Using the conditions C1 and C2, we obtain, after some involved algebraic
manipulations, that

G3 =
∂ro

∂uo , G4 = −
∂ro

∂so , G0 = −

(
∂ro

c

∂so

)
, Gc = −

(
∂ro

c

∂co

)
(85)

By this point, we can draw the conclusion that

cov(u)−1 = CRLBc(uo)−1 (86)

That is, the proposed solution accomplishes the CRLB accuracy if the two conditions C1 and C2
are satisfied. In reality, localization scenarios, which satisfy the conditions C1 and C2, are not rare.
These two conditions can be satisfied if the unknown target and the calibration targets are far from the
transmitters and receivers, if not these conditions can still be satisfied if the BR measurement noise and
the transmitter/receiver/calibration target position errors are sufficiently small.

5. Simulation Results

In this section, the efficiency and superiority of the proposed solution will be corroborated through
Monte Carlo simulations. Amiri’s method presented in [14], which does not consider the transmitter
and receiver position error and Zhao’s method proposed in [22], which considers the statistical
distributions of transmitter/receiver position error but does not use any calibration targets, are chosen
as references for comparison. The exact positions of transmitters/receivers/calibration targets are the
same as those in Table 1. Localization accuracy is quantitatively evaluated using root mean squares
error (RMSE), which comes from 1000 independent Monte Carlo runs. In each run, the zero-mean
Gaussian random errors with covariance matrices Qr = σ2

r Vr, Qrc = σ2
rcVrc, Qs = σ2

sVs and Qc = σ2
cVc

are added to the BRs from unknown target, BRs from calibration targets, actual transmitter and receiver
positions, and actual calibration target positions, respectively, in order to simulate a real localization
scenario. The setting of Vr, Vrc, Vs and Vc are also the same as that in Example 1.
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First of all, in order to intuitively show the difference between target localization with and without
the use of calibration targets, we plot in Figure 4 the estimated target positions from each Monte Carlo
run, which forms a scatter plot for target position estimation. For comparison, the scatterplots of
Amiri’s method and Zhao’s method are also plotted. The transmitter/receiver position error level is
set to σs = 20 m, the noise level of BR measurements from unknown target and calibration targets is
set as σr = σrc = 10 m, and the calibration target position error level is set to be σc = 10 m. The true
position of the unknown target is uo = [50000, 15000, 5000]Tm, which is marked with red pentagram
in Figure 4 for comparison. By comparing the scatterplots of the methods, we find that with the use of
calibration targets, the scattered dots of target position estimation are more closely around the target’s
true position, which intuitively illustrates the performance gain from the use of calibration targets.
Without the use of calibration targets, considering the statistical distributions of transmitter/receiver
position error can also reduce dispersion of estimated target position dots to some extent, but compared
to using calibration targets, this degree of reduction in dispersion is not sufficiently impressive.
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Figure 4. Scatter plots of estimated positions from different methods.

Now, in order to quantitatively evaluate the localization accuracy of the methods, we calculate the
RMSE of the proposed solution under different error or noise conditions, and compare it with Amiri’s
method, Zhao’s method, as well as the CRLB. As mentioned in Section 4.2, the localization accuracy of
the proposed solution is related to the distance between the target and MPR system. Hence, in order to
achieve a more comprehensive insight on the performance of the proposed solution, we consider two
cases, i.e., the near-field case where the target is close to the MPR system, and the far-field case where
the target is far away from the MPR system. The exact positions of transmitters/receivers/calibration
targets remain the same as before. We first address the far-field target, whose position is set to
uo = [120000, 120000, 12000]Tm. The results are presented in Figure 5.



Sensors 2019, 19, 3365 17 of 20
Sensors 2019, 19, x FOR PEER REVIEW 18 of 21 

 

   

(a) (b) (c) 

Figure 5. Comparison of the RMSEs among different localization methods in the far-field case: (a) 

with different BR measurement noise level 
r  and  

s
20m ,  

c
10m ; (b) with different 

transmitter/receiver position error level  s  and  
r

10m ,  
c

10m ; (c) with different calibration 

target position error level  c  and 
r

10m ,  
s

20m . 

Figure 5a plots the RMSE curves of the methods versus the BR measurement noise level. It shows 

that the localization RMSE of the proposed solution matches the CRLB very well and is about an 

order of magnitude lower than that of Amiri’s method and Zhao’s method at a low-to-moderate BR 

measurement noise level. Although it deviates from the CRLB when the BR measurement noise level 

is large, it is still much smaller than that of other two methods. The deviation from the CRLB, known 

as the thresholding phenomenon, is due to the ignored second order error terms in the design of the 

solution, which is invalid for large error levels. Owing to considering the statistical distributions of 

the transmitter/receiver position error, the RMSEs produced by Zhao’s method is generally lower 

than that by Amiri’s method. But compared with the use of the calibration targets in the proposed 

solution, the localization accuracy improvement brought by the consideration of transmitter/receiver 

position error in Zhao’s method is not so significant. Figure 5b gives the RMSE curves of the methods 

versus the transmitter/receiver position error level. It can be seen that, the superiority of the proposed 

solution in localization accuracy is mainly reflected at moderate to high transmitter/receiver position 

error level. When the transmitter/receiver position error is small, the localization accuracy of the 

proposed solution and the other two methods is comparable. This again agrees very well with the 

theoretical performance in Section 3. Figure 5c compares the RMSEs from the methods with respect 

to different calibration target position error levels. As is illustrated in Figure 5c, the proposed solution 

always offers a remarkable advantage over the other two methods at different calibration target 

position error level, even when the calibration target position error is extremely large. This is in 

agreement with the previous simulation results for the CRLB in Section 3. 

Next, the same set of simulations was repeated for a near-field target, whose position is set to be 

o T12000,1200,1200 m[ ]u . The results are provided in Figure 6, from which we observe that the 

proposed solution still performs much better than the other methods. However, comparing with the 

corresponding results in Figure 5, we find the localization accuracy for near-field target is generally 

better than a far-field target, given the same noise and error levels. One reason may be that, when the 

target is close to the MPR system, the transmitters/receivers are far apart relative to the distance 

between the target and the MPR system. Thus, the localization geometry would become more regular 

and the corresponding geometric dilution of precision (GDOP) value would be smaller compared to 

the far-field case. However, on the other hand, comparing the thresholding values in Figure 5 and 

Figure 6 indicates that the RMSE curves for the near-field target deviate from the CRLB at smaller 

values than those for the far-field target. This phenomenon is consistent with the analysis under (83) 

that the equivalency between the estimate variance and the CRLB is more affected by the BR 

measurement noises when the target is close to the MPR system. 

Figure 5. Comparison of the RMSEs among different localization methods in the far-field case: (a) with
different BR measurement noise level σr and σs = 20 m, σc = 10 m; (b) with different transmitter/receiver
position error level σs and σr = 10 m, σc = 10 m; (c) with different calibration target position error level
σc and σr = 10 m, σs = 20 m.

Figure 5a plots the RMSE curves of the methods versus the BR measurement noise level. It shows
that the localization RMSE of the proposed solution matches the CRLB very well and is about an
order of magnitude lower than that of Amiri’s method and Zhao’s method at a low-to-moderate BR
measurement noise level. Although it deviates from the CRLB when the BR measurement noise level
is large, it is still much smaller than that of other two methods. The deviation from the CRLB, known
as the thresholding phenomenon, is due to the ignored second order error terms in the design of the
solution, which is invalid for large error levels. Owing to considering the statistical distributions of the
transmitter/receiver position error, the RMSEs produced by Zhao’s method is generally lower than that
by Amiri’s method. But compared with the use of the calibration targets in the proposed solution,
the localization accuracy improvement brought by the consideration of transmitter/receiver position
error in Zhao’s method is not so significant. Figure 5b gives the RMSE curves of the methods versus the
transmitter/receiver position error level. It can be seen that, the superiority of the proposed solution
in localization accuracy is mainly reflected at moderate to high transmitter/receiver position error
level. When the transmitter/receiver position error is small, the localization accuracy of the proposed
solution and the other two methods is comparable. This again agrees very well with the theoretical
performance in Section 3. Figure 5c compares the RMSEs from the methods with respect to different
calibration target position error levels. As is illustrated in Figure 5c, the proposed solution always
offers a remarkable advantage over the other two methods at different calibration target position error
level, even when the calibration target position error is extremely large. This is in agreement with the
previous simulation results for the CRLB in Section 3.

Next, the same set of simulations was repeated for a near-field target, whose position is set to
be uo = [12000, 1200, 1200]Tm. The results are provided in Figure 6, from which we observe that the
proposed solution still performs much better than the other methods. However, comparing with the
corresponding results in Figure 5, we find the localization accuracy for near-field target is generally
better than a far-field target, given the same noise and error levels. One reason may be that, when
the target is close to the MPR system, the transmitters/receivers are far apart relative to the distance
between the target and the MPR system. Thus, the localization geometry would become more regular
and the corresponding geometric dilution of precision (GDOP) value would be smaller compared
to the far-field case. However, on the other hand, comparing the thresholding values in Figures 5
and 6 indicates that the RMSE curves for the near-field target deviate from the CRLB at smaller values
than those for the far-field target. This phenomenon is consistent with the analysis under (83) that the
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equivalency between the estimate variance and the CRLB is more affected by the BR measurement
noises when the target is close to the MPR system.Sensors 2019, 19, x FOR PEER REVIEW 19 of 21 
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(a) with different BR measurement noise level σr and σs = 20 m, σc = 10 m; (b) with different
transmitter/receiver position error level σs and σr = 10 m, σc = 10 m; (c) with different calibration
target position error level σc and σr = 10 m, σs = 20 m.

At an intuitive level, the more calibration targets are used, the better the localization accuracy
is. In what follows, we will quantitatively analyze the effect of number of calibration targets on the
localization accuracy by varying the number of calibration targets from 1 to 10. The positions of
the transmitters and receivers remain the same as before. The positions of calibration targets and
unknown target are chosen randomly from the 50 km × 40 km × 5 km volume as presented in Figure 2.
The simulation results are depicted in Figure 7.

1 

 

 

Figure 7. Localization accuracy versus the number of calibration targets.

Figure 7 shows the RMSE, as well as the CRLB, versus the number of calibration targets.
As expected, when the number of calibration targets is small, the localization accuracy improves
significantly as the number of calibration targets increases. However, it is seen that there is no obvious
dependence on the number of calibration targets as soon as the number of calibration targets is larger
than 3. This indicates that when the number of calibration targets reaches 3, the use of more calibration
targets would only increase the computational expense and not remarkably enhance the localization
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accuracy. Therefore, in the absence of any other consideration, it is reasonable to set the number of
calibration targets as 3.

6. Conclusions

This paper explores the use of calibration targets with known positions to refine the inaccurate
transmitter/receiver positions and thus enhance target localization accuracy in MPR systems. We start
our research by evaluating target localization CRLB in the presence of calibration targets, which justifies
the potential of calibration targets in enhancing localization accuracy. Then, in order to fulfill this
potential, a novel closed-form solution was designed for target localization using BR measurements
from the unknown target as well as the calibration targets. The proposed solution was shown both
analytically and numerically to attain the CRLB under some mild conditions, and verified to outperform
existing methods in terms of localization accuracy. Furthermore, from the view of engineering practice,
if the employed calibration targets are off-the-shelf, such as the commercial aircrafts broadcasting an
ADS-B signal, the use of calibration targets would bring little added cost or complexity to the MPR
system, but could bring a significant enhancement to target localization accuracy.
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