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Abstract: In real-world robotic navigation, some ambiguous environments contain symmetrical
or featureless areas that may cause the perceptual aliasing of external sensors. As a result of that,
the uncorrected localization errors will accumulate during the localization process, which imposes
difficulties to locate a robot in such a situation. Using the ambiguity grid map (AGM), we address this
problem by proposing a novel probabilistic localization method, referred to as AGM-based adaptive
Monte Carlo localization. AGM has the capacity of evaluating the environmental ambiguity with
average ambiguity error and estimating the possible localization error at a given pose. Benefiting from
the constructed AGM, our localization method is derived from an improved Dynamic Bayes network to
reason about the robot’s pose as well as the accumulated localization error. Moreover, a portal motion
model is presented to achieve more reliable pose prediction without time-consuming implementation,
and thus the accumulated localization error can be corrected immediately when the robot moving
through an ambiguous area. Simulation and real-world experiments demonstrate that the proposed
method improves localization reliability while maintains efficiency in ambiguous environments.

Keywords: navigation; perceptual aliasing; ambiguous environment; Monte Carlo localization;
Dynamic Bayes network

1. Introduction

For an autonomous robot, reliable and fast localization is a critical prerequisite during navigation.
However, ambiguous environments may cause perception aliasing of the external sensors [1,2],
which makes it a challenging task for a robot to accurately determine its pose or even leads to
localization failure. As demonstrated in Figure 1, the ambiguous environments are specified as the
environments that contain ambiguous areas, including long corridors, empty space, and tangled thicket.
In such environments, however, there still exist some unambiguous areas that can help the robot to
locate itself. For this end, constructing a localization method on the basis of the modeled ambiguity of
the environment can increase the localization reliability without loss of efficiency.

Figure 1. Ambiguous environments: (a) long corridor; (b) empty space; (c) tangled thicket.

For localization procedure of a robot, global localization is firstly performed to obtain the initial
pose by using the observation data from external sensors, followed by the pose tracking which enables

Sensors 2019, 19, 3331; doi:10.3390/s19153331 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s19153331
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/15/3331?type=check_update&version=5


Sensors 2019, 19, 3331 2 of 22

the robot to rapidly track its pose [3]. To be more specific, pose tracking consists of two steps, i.e.,
prediction and update. In the prediction step, based on the odometry motion model, the pose increment
obtained by internal sensors is incorporated into the results of the previous localization moment to
predict the current pose. As for the update, the localization error of the predicted pose is corrected by
the observation data of external sensors, which respects the observation model to produce the final
localization results of the current moment.

Recently, most of the existing localization methods [4–9] only rely on the external sensors in
the update step, and it remains a tough job to satisfy the practical requirements when rectifying the
localization error in an ambiguous environment. This is because the external sensors may suffer from
perceptual aliasing, which implies that the observation data captured at different pose are difficult to
distinguish due to the environmental ambiguity. Consequently, the localization error of the prediction
step may accumulate as the robot moves through an ambiguous area of the environment. Even if
the robot reaches an unambiguous area, the accumulated localization error is often too large to be
corrected by those methods.

To solve the localization problem in an ambiguous environment, additional facilities such as
artificial reflectors [10,11] and wireless sensor networks [12] have attracted increasing attention.
With additional facilities, these methods require additional maintenance costs and need to modify the
existing environment, which are not unreasonable for some practical usage. Assuming that a robot
will leave the area where perceptual aliasing occurs and enters an unambiguous area, the pose of the
robot can be recovered by a global localization method. In an unambiguous area, although global
localization method can be used to estimate the pose of a robot according to the observation data
captured by external sensors, the operating time of global localization is much longer than that of
pose tracking. In addition, it is necessary to solve the detection problem of when the robot enters
the unambiguous area. Additional information [13,14] except for the readings of internal sensors
is utilized in the prediction step of pose tracking to allow more reliable pose prediction. However,
their methods are impractical to solve the robot localization problem in ambiguous environments due
to the fact that they do not explicitly consider the ambiguity of an environment and such environment
property contains useful information for robot localization.

For robot navigation, the adaptive Monte Carlo localization (AMCL) method is able to achieve
effective and fast robot localization in different environments [6–9] and the particle representation used
in AMCL has included some effects of ambiguity. However, due to the limitation of particle number,
the inaccurate motion model and observation model, it cannot cope with long term perception aliasing.
In this paper, the AGM which explicitly models the ambiguity of an environment is utilized to improve
the standard AMCL so that it can correct the accumulated localization error after robot moving through
an ambiguous area and ultimately achieve a fast and reliable robot localization. The main contributions
of this paper are summarized as follows:

• The AGM is achieved by proposing a new localizability evaluation method called average
ambiguity error (AAE) so that the possible localization error at a given pose can be estimated,
and those unambiguous areas of an environment can be identified.

• By integrating the AGM, the standard Dynamic Bayes network (DBN) for robot localization is
improved to model the localization problem in ambiguous environments. Moreover, a new motion
model referred to as portal motion model is implemented to obtain more reliable pose prediction
in ambiguous areas.

• Based on the improved DBN, the AGM-based adaptive Monte Carlo localization (AGM-AMCL)
method is derived to achieve fast probability inference.

• Simulation and real-world experiments validate the effectiveness of the AGM and the AGM-AMCL
method, which can reliably locate a robot with guaranteed efficiency in three different
ambiguous environments.
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The remainder of this paper is constructed as follows: Section 2 presents a range of related
work in terms of localizability evaluation and reliable localization. Section 3 provides the AGM
and its detailed implementation. In Section 4, we describe the improved DBN, and then we derive
the portal motion model and the AGM-AMCL. Finally, in Section 5, simulations and real-world
experiments are conducted to evaluate the performance of the AGM and the AGM-AMCL method.
Finally, some conclusions are offered in Section 6.

2. Related Work

Considering the key issue we attempt to solve in this paper, we will focus on the related work
of localizability evaluation and reliable localization in ambiguous environments. To the best of our
knowledge, there are few articles explicitly dealing with the localization problem in ambiguous
environments. Global localization methods and optimized pose tracking methods can be used to
relocate a robot after the robot leaving an ambiguous area and entering an unambiguous area. Therefore
those methods were introduced in the reliable localization part.

2.1. Localizability Evaluation

Evaluating the localizability in an environment is to quantitatively estimate the achievable
localization accuracy of a given pose. In general, localizability evaluation methods are not related
to the property of an environment, therefore they are applicable in both ambiguous environments
and unambiguous environments. Fisher information matrix (FIM) is a useful indicator for evaluating
environmental localizability. Based on the Cramér-Rao lower bound, Censi [15,16] used FIM to
represent the theoretical accuracy limit of a localization method employing range-finder data and
attempted to use FIM to analyze the achievable accuracy of pose tracking. FIM has no analytical solution
if an environment is represented by the occupancy grid map. To solve this problem, a discrete FIM [17]
was proposed, which was obtained by simulated scan rays from an occupancy grid map. Afterwards,
Irani et al. [18] presented a path planning method for a mobile manipulator based on discrete FIM.
The localizability evaluation methods based on FIM can be used to evaluate the theoretical localization
accuracy limit of a certain position, however, it is difficult for FIM to estimate the localization accuracy
in a real localization process. This is because, under a given environment, the FIM is only related to the
robot’s pose, without considering the environmental similarity of different poses and the observation
model used in the actual localization process.

In addition to the localizability evaluation based on the FIM, there have been some related studies
in recent years. In [19], a novel strategy for incremental sampling-based motion planning was proposed,
which introduced a new evaluation of localizability using the trace change rate of covariance matrix
from the prediction step to the update the step of an extended Kalman filter. Zhen et al. [20] proposed
a method to evaluate the localizability based on the constraints provided by a sensor measurement.
The above methods can evaluate the environmental localizability relatively while the evaluation value
itself is meaningless for estimating localization error. In [21], to evaluate the localizability, a vehicle was
driven through the designated environment and an error model was learned. However, their method
takes a long time to experiment and is not suitable for large scale environments. Javanmardi et al. [22]
adopted four types of criteria to evaluate the capability of maps for localization. Based on their criteria,
the localizability of a map can be comprehensively evaluated. Our method differs from theirs in the
sense that the observation model adopted in the real localization process and the sensor measurement
uncertainties are involved in our evaluate method.

2.2. Reliable Localization

In recent years, many localization methods have been proposed to enhance localization reliability.
One of the commonly used methods is adding additional facilities. Our previous work [10] proposed a
new observation model for MCL, which improves the robustness of localization by reliable reflector
prediction in the ambiguous environments. Beinhofer et al. [23] addressed the data association problem
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by deploying a limited number of uniquely identifiable artificial landmarks. A practical approach to
landmark placement was presented in [24] that minimizes the localization errors. Besides, wireless
sensor networks [12], radio frequency identification [25,26], etc. were also applied to achieve reliable
localization. However, the additional facilities are costly for placement and maintenance, which limits
the abovementioned method for potential applications.

Once localization fails, re-localization can be achieved through global localization, thereby
improving the reliability of localization. A particle filter improved by a particle swarm optimization
algorithm was proposed in [27]. With their method, more robust global localization can be achieved
using fewer particles. A laser scan matching with an improved probabilistically-motivated Maximum
Likelihood Estimation algorithm is adopted to obtain the global optimum position [2], which can reach
an updating rate of 2 Hz in a feature-poor environment. A novel branch-and-bound multiresolution
global localization method using a multiresolution Gaussian mixture map was proposed in [28] which
was used for real-time localization in urban environments. By finding correspondences between a
set of sparse features detected in two occupancy grid maps, a map to map matching method was
designed [29], which can be used for global localization. In [30], a differential evolution approach
was tested for global localization in an environment with different types of occlusions, which used
three different cost functions based on a non-symmetric fitness function. The above methods attempt
to achieve reliable and fast global localization. However, due to the need for global optimization,
their running time is still longer than pose tracking. In [31] and [32], classifiers for pose recognition
were trained by the machine learning method. Through such classifiers, the global pose of a robot can
be identified quickly. However, those methods rely on reliable feature extraction methods, and wrong
feature extraction may result in large localization errors.

By optimizing the prediction step of pose tracking, it can generate more accurate pose samples,
also called particles, and improve the reliability of localization. Gutmann et al. [33] used sensor
resetting method to generate some pose particles in the prediction step. The number of particles relies
on the ratio between the short term and the long term average observation likelihood. Building on the
basic Monte Carlo localization algorithm, a robust localization algorithm called Mixture-MCL was
developed [34], which attempted to generate pose samples according to the observation model using a
set of learned kd-trees in the prediction step to complement the odometry motion model. However,
this method takes a large amount of memory, and as the size of the environment grows, the amount
of memory required grows rapidly. Zhang et al. [13] proposed the concept of similar energy region.
Extra pose samples can be generated in similar energy region to obtain a reliable pose prediction.
Oh et al. [14] developed an Augmented Motion model, which used the semantic information available
in maps to bias the motion model toward areas of higher probability. In [35], by using a global
hypothetical pose set to represent an environment, a novel qualitative motion model is proposed
to generate extra pose hypothesis. In [13,14,33–35], additional information is used in the prediction
step to generate extra pose samples which may closer to the robot true pose. Once the accumulated
localization error is too large, extra pose samples may compensate for such error and improve the
reliability of localization. However, their methods do not explicitly consider the ambiguous nature of
an environment, it is very difficult for these methods to achieve reliable localization in ambiguous
environments. Inspired by the abovementioned methods, additional information from the AGM is
exploited to improve the prediction step of the AMCL method, which allows our method to generate
some extra particles at a proper time with proper distribution and effectively improves the reliability
of localization.

3. AGM

AGM is used for modeling the ambiguity of an environment, such that we can figure out which
positions suffer from perceptual aliasing and how much localization error will be caused by perceptual
aliasing at those positions. Analogical to the occupancy grid map, AGM has multiple cells, each of
which measures the localization error resulting from perceptual aliasing. In this paper, we refer the
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aforesaid localization error to the AAE, and it is crucial to build the AGM. Practically, it is noticed that a
robot cannot distinguish two different poses effectively due to the similar surroundings of these poses
or the considerable sensor noise or poor observation model [36]. Considering that, the formulation
of AAE should be related to the environment as well as the external sensor and the constructed
observation model.

Define x = (p,θ) as a pose with p = (x, y) used to denote a position in two-dimension. Let zx be
the observation data obtained by the external sensor of a robot at the pose x. Using the observation
data zx and an input pose y, the likelihood function of an observation model is denoted by:

Lx(y) , P(zx|y) (1)

From Equation (1), we conclude that Lx(x) represents the likelihood value when the input pose y
is equal to the robot’s true pose. For a general pose y if the maximum value of Lx(y) is identical with
Lx(x), the robot’s pose can be accurately obtained through maximum likelihood estimation. However,
in an ambiguous environment, there are other values of y that makes Lx(y) equal or bigger than Lx(x).
In this situation, it is difficult to distinguish pose x and pose y based on this likelihood function. Thus,
in this paper, the probability of a robot’s true pose x confused with some other pose y can be defined as:

PA
y|x , P(Lx(y) + ε ≥ Lx(x)) (2)

where ε is a small threshold to compensate the unmodeled factors of the likelihood computation.
Given the observation data zx, the likelihood value of Lx(y) can be uniquely determined.

Thus probability PA
y|x is rely on the distribution of zx and Equation (2) can be expressed as:

PA
y|x=

∫
zx

1(Lx(y)+ε≥Lx(x)|zx)(zx)P(zx)dzx (3)

where P(zx) is the distribution of observation data at the pose x and 1(Lx(y)+ε≥Lx(x)|zx)(zx) denote an
indicator function, i.e.:

1(Lx(y)+ε≥Lx(x)|zx)(zx) =

{
1 Lx(y) + ε ≥ Lx(x)|zx

0 Lx(y) + ε < Lx(x)|zx
(4)

Since PA
y|x cannot be determined analytically, we employ Monte Carlo integral to achieve its

approximation as:

PA
y|x ≈

1
N

N∑
i=1

1(Lx(y)+ε≥Lx(x)|zi
x )
(zi

x) (5)

where zi
x denotes the i-th sample of the observation data, N denotes the total number of samples.

Now we define the AAE of a given pose x as:

aae(x) =

∑
∆i∈M

d(x + ∆i, x)PA
x+∆i |x∑

∆i∈M
PA

x+∆i |x

(6)

where M is a set of the incremental pose, ∆i , (∆xi, ∆yi, ∆θi) denotes the i-th element in M, d(x + ∆i, x)
denotes the difference between x + ∆i and x, which is expressed by:

d(x + ∆i, x) =
√

∆x2
i + ∆y2

i + ξ|∆θi| (7)

where ξ is a coefficient factor used to convert the orientation difference into the distance difference.
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From Equation (6), it is known that the AAE of a pose represents the weighted average localization
error caused by the ambiguity between the true pose and the other poses which are contained by M.
Large AAE value of a given pose means that a large localization error may be induced after a robot
moving through that pose. Moreover, by exploiting the AAE value of a trajectory, the accumulated
localization can be estimated in some way and this property is used in our localization method in the
following section.

Then, based on Equation (6), the AAE of a position can be derived directly:

aae(px) =
1

nθ

360◦∑
θ=0◦

aae(x(p,θ)) (8)

where nθ denotes the number of discrete θ.
Figure 2 shows a schematic diagram of M. Defining Rd(M) and Rθ(M) as the distance range and

the orientations range of the set M, respectively, we have:

M =
{
∆i , (∆xi, ∆yi, ∆θi)|

√
∆x2

i + ∆y2
i ≤ Rd(M)∧ |∆θi| ≤ Rθ(M)

}
(9)

In this paper, in accordance with occupancy grid map, ∆xi and ∆yi are pre-selected as an integer
multiple of the grid map resolution and ∆θi is selected as an integer multiple of 3◦ to make the trade-off

between the efficiency and accuracy.

Figure 2. Schematic diagram of M. The black grids and white grids indicate the occupied cells and free
space cells, separately. The Rd(M) and Rθ(M) are marked on this figure. The position and the direction
of the red arrow represent the pose x to be evaluated. Those blue arrows represent those poses derived
from the incremental pose set M and x according to x + ∆i.

To derive a solvable solution for AAE determined by Equation (8), we need to focus on the
sampling method of P(zx) and the configuration of ξ, Rd(M) and Rθ(M). In addition, considering
that a 2-D laser range finder is used as the external sensor in this paper, the following method for
computing P(zx) is based on the 2-D laser range finder. First, sampling with a large amount of data is
time-consuming and unrealistic in a large-scale environment. As studied in [37], the 2-D laser range
finder and the beam model are suggested to be used as the external sensor and observation model
for the practical implementation, respectively. Then we can adopt the following feasible and effective
method to obtain observation data samples: (1) build the occupancy grid map of an environment
using SLAM method; (2) determine the parameters of the beam model by real observation data using
learning method presented in [37]; (3) obtain the observation data samples at various poses through
simulation. Second, the ξ is expressed by ξ = χ1/rad(χ2), where χ1 and χ2 denotes the maximum
tolerable distance error and the maximum tolerable orientation error for reliable localization, separately.
Finally, by using the inequality aae(xp) ≤ Rd(M)+ξRθ(M) , which can be derived from Equations (6)
and (7), we can obtain the range constraints for M, i.e., χ1 ≤ Rd(M), χ2 ≤ Rθ(M). More accuracy
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localizability evaluation can be obtained through a larger range of M while it is time-consuming.
Therefore, we select Rd(M) = χ1 and Rθ(M) = χ2.

4. AGM-AMCL

As shown in Figure 3, the standard AMCL [38] mainly contains three steps: resampling step,
prediction step, and update step. In the resampling step, particles are sampled according to the
likelihood of each particle. Then new particles are generated in the prediction step based on the
odometry motion model. After that, the likelihood of each particle is evaluated by the observation
model in the update step. In addition to those three steps, our method also includes a step for estimating
the accumulated ambiguity error using the AGM. Moreover, in the prediction step of our method,
the portal motion model is used to generate extra particles in an adjacent unambiguous area if a robot
is in an ambiguous area. Due to the extra particles, large localization error can be corrected as soon as
the robot enters the adjacent unambiguous areas.

Figure 3. Main steps of AMCL and our method.

In fact, our method can be derived from a DBN which models the robot localization problem
in unambiguous environments. In the following part, the derivation of our method, as well as the
portal motion model and the estimation method for the accumulated localization error using the AGM,
will be detailed introduced.

4.1. Standard DBN for Localization

Given a prior occupancy grid map mg, the robot localization can be modeled as a probabilistic
inference problem:

Bel(xt) = P(xt|z1:t, u1:t, mg) (10)

where xt denotes the robot pose at a time t, z1:t is the sequence of observations, u1:t denotes a sequence
of motion control commands or odometry measurements.

Figure 4 demonstrates the standard DBN [39] for robot localization which contains two importance
independent assumptions: Markov independence of the odometry and Markov independence of
the observation.
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According to the independent assumptions embedded in the standard DBN, we can simplify the
robot pose belief that presented in Equation (10) as:

Bel(xt) = ηP(zt|xt, mg)

∫
xt−1

P(xt|xt−1, ut)Bel(xt−1)dxt−1 (11)

where η is a normalization coefficient, P(xt|xt−1, ut) and P(zt|xt, mg) are corresponding to the motion
model and observation model, respectively. To fast infer the robot’s pose belief in Equation (11),
AMCL [38] can be used with the KLD-sampling method regulating the particle set size.

Because of perception aliasing, the localization error accumulates rapidly when a robot moves
through an ambiguous area. However, the DBN, shown in Figure 4, does not explicitly consider the
accumulated localization error caused by perception aliasing so that it is not suitable for modeling the
robot localization problem in ambiguous environments. For this reason, an improved DBN is proposed.

Figure 4. Standard DBN for localization problem.

4.2. Improved DBN

The improved DBN is shown in Figure 5, where mg stands for the occupancy grid map and ma is
the corresponding AGM, et is the cumulative ambiguity error at time t, which reflects the accumulated
localization error caused by perception aliasing.

Figure 5. Improved DBN for localization problem. The AGM node (mg) and the cumulative ambiguity
error node (et) are introduced.
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To infer the robot’s pose, as well as the accumulated localization error, the robot localization in
ambiguous environments is expressed as:

Bel(xt, et) = P(xt, et|z1:t, u1:t, ma, mg) (12)

Also, based on the independent assumptions embedded in the improved DBN, we have:

Bel(xt, et) = P(xt, et|z1:t, u1:t, ma, mg)

= ηP(zt|xt, mg)P(xt, et|z1:t−1, u1:t, ma, mg)

= ηP(zt|xt, mg)
s

P(xt, et, xt−1, et−1|z1:t−1, u1:t, ma, mg)dxt−1det−1

= ηP(zt|xt, mg)
s

P(xt, et|xt−1, et−1, ut, ma)P(xt−1, et−1|z1:t−1, u1:t−1, ma, mg)dxt−1det−1

= ηP(zt|xt, mg)
s

P(et|xt, et−1, ma) P(xt|xt−1, et−1, ut, ma)Bel(xt−1, et−1)

(13)

As compared to Equation (11), we conclude that Equations (11) and (13) share the same observation
model P(zt|xt, mg). A different motion model P(xt|xt−1, et−1, ut, ma) considering the cumulative
ambiguity error et−1 and the ma are imposed in the improved DBN. Meanwhile, Equation (13)
has an additional term P(et|xt, et−1, ma) to estimate the cumulative ambiguity error. It is noted that
the multiple integrations in Equation (13) cannot be derived analytically. In our paper, the AMCL is
adopted to inference the robot’s pose as well as the accumulated localization error, which utilized a set
of weighted particles to estimate the probability distribution. Therefore, the probability distribution
P(xt, et, xt−1, et−1|z1:t−1, u1:t, ma, mg) can be reformulated according to [40] as:

P(xt, et, xt−1, et−1|z1:t−1, u1:t, ma, mg) =

nP∑
i=1

ωi
tδ([xt, et, xt−1, et−1] − [xi

t, ei
t, xi

t−1, ei
t−1]) (14)

where [xi
t, ei

t, xi
t−1, ei

t−1] denotes a sample of robot state also called particle, ωi
t stands for the i-th particle

weight, δ is the Dirac delta function and np is the number of particles.
Substituting Equation (14) into the second part of Equation (13) yields:

P(xt, et|z1:t, u1:t, ma, mg) =
s

P(xt, et, xt−1, et−1|z1:t−1, u1:t, ma, mg)dxt−1det−1

=
nP∑

i=1
ωi

t

s
δ([xt, et, xt−1, et−1] − [xi

t, ei
t, xi

t−1, ei
t−1])dxt−1det−1

=
nP∑

i=1
ωi

tδ([xt, et] − [xi
t, ei

t])

(15)

4.3. Portal Motion Model for Improved DBN

Intuitively, the prediction step of the AMCL generates some particles in an unambiguous area
which is adjacent to the ambiguous area, the update and resampling steps of the AMCL method will
make the particles immediately converge to the robot’s true pose when the robot leaves the ambiguous
area. To accommodate that, we rewrite the motion model P(xt|xt−1, et−1, ut, ma) as:

P(xt|xt−1, et−1, ut, ma)= (1−αt)Podo(xt|xt−1, ut) + αtPportal(xt|xt−1, et−1, ma) (16)

where Podo(xt|xt−1, ut) is the odometry motion model, αt is a weighting factor and Pportal(xt|xt−1, et−1, ma)

is the portal motion model to generate the particles in an adjacent unambiguous area, which is defined as:

Pportal(xt|xt−1, et−1, ma) =

 ηhite
−

1
2 (xt−µhit)

TΣ−1
hit (xt−µhit), f or aae(pxt

) ≤ ta

0, f or aae(pxt
) > ta

(17)

where ηhit is a normalization coefficient, aae(pxt
) denotes the AAE of the position pxt

for the pose xt, ta

is a threshold and aae(xt) ≥ ta implies the robot is in an ambiguous area. ta is set to χ1 which denote
the maximum tolerable distance error. It is concluded from Equation (17) that given xt−1, et−1 and ma,



Sensors 2019, 19, 3331 10 of 22

xt obeys a truncated Gaussian distribution. Specifically, in an ambiguous area, the probability of xt

is zero whereas it obeys a Gaussian distribution with a mean µhit and a covariance matrix Σhit in an
unambiguous area.

The portal motion model describes a state transition that a robot may be immediately moved
to someplace in the adjacent unambiguous area regardless of the odometer measurement. Despite
the physically impossible, it can be used to obtain more reliable pose prediction in an ambiguous
environment so that the accumulated localization error can be corrected immediately when the robot
reaches the adjacent unambiguous area. As a complement to the odometer motion model, the portal
motion model explicitly indicates the effect of cumulative localization error caused by perception
aliasing on prediction robot pose.

A schematic diagram for the portal motion model is shown in Figure 6. We define drange , et−1 as
the cumulative ambiguity error at the time t− 1, and its length is shown with a blue line. Assuming the
robot pose at the time t− 1 is x1 which is in the ambiguous area, µhit can be generated by a simulated
beam with ray casting method [41]. Practically, the simulated beam continues unless the endpoint of
the beam hits an unambiguous area or an obstacle or the length of the beam reaches drange. As shown
in Figure 6, the red line shows the simulated beam generated from x1 and the length of the beam
is represented as dhit. if the beam ends in an unambiguous area, the position and the orientation of
µhit can be determined by the position and orientation of the beam, respectively. And if the beam
ends because of the other two conditions, the portal motion model is not enabled. Define σp and σθ
representing the adjustable standard deviation of the position and orientation, respectively. Large σp

and σθ means large uncertainties of the truncated Gaussian distribution. Then, we can calculate Σhit by:

Σhit =


σ2

p 0 0
0 σ2

p 0
0 0 σ2

θ

[ν1,ν2,ν3]


1 0 0
0 khit 0
0 0 1

[ν1,ν2,ν3]
−1 (18)

where ν1 is a unit vector with the same orientation as x1, ν2 is the unit vector perpendicular to ν1,
ν3 = (0, 0, 1)T, khit is a stretch factor that used to adjust the ratio between the feature vectors of the
covariance matrix Σhit given by:

khit =

 kmax, f or
drange
dhit
≥ kmax

drange
dhit

, f or else
(19)

where kmax is the parameter to limit the ratio between the feature vectors of the covariance matrix Σhit.

Figure 6. Schematic diagram of the portal motion model. The white area, black area, and gray area
represent an ambiguous area, an unambiguous area, and area occupied by obstacles, respectively.
x1 is a pose sample. The blue transparent circle is the Gaussian distribution N(µhit, Σhit), and the blue
opaque portion expresses the truncated Gaussian distribution of Equation (17).
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Figure 7a–c depict the changing process of Σhit. It can be seen that as the pose of the robot changes
from x1 to x3, dhit gradually decreases (d1

hit > d2
hit > d3

hit). According to Equation (18), the uncertainties of
the truncated Gaussian distribution in the direction perpendicular to the robot’s orientation gradually
increase due to the decreasing of dhit, as represented by the blue oval area. We adopt the KLD-sampling
method such that few and relatively concentrated particles will be generated by the portal motion
model when the robot is in an ambiguous area and is far away from an unambiguous area. Moreover,
as the distance between the robot and the unambiguous area getting shorter, more dispersed particles
will be generated by the portal motion model due to large uncertainties of Σhit. With an adaptive
Σhit, we can reasonably add uncertainties for the portal motion model and improves the reliability
of localization.

Figure 7. Changing process of Σhit. The uncertainty of N(µhit, Σhit) is increasing as a robot moves in an
ambiguous area and more particles will be generated by the portal motion model.

4.4. AGM-AMCL Implementation

For implementation, P(et|xt, et−1, ma) is designed using a deterministic function:

et =

 et−1 +
aae(pxt

)

ρ·et−1+1 f or aae(pxt
) > ta

0 f or aae(pxt
) ≤ ta

(20)

where ρ ≥ 0 and is a parameter to control the changing rate of et. By Equation (20), we show that et

in an ambiguous area and an unambiguous area is derived as et = et−1 + aae(pxt
)/(ρ · et−1+1) and

et = 0, respectively.
Using the length of the beam dhit, we schedule the αt adaptively as:

αt =

 0 f or (dhit = drange)∨ (dhit = 0)
1 −

dhit
drange

f or 0 < dhit < drange
(21)

As demonstrated in Equation (21), if the beam ends due to the length restriction or the zero- length
of dhit which means the beam end because of obstacle or the pose xt in an unambiguous area, αt is
assigned to zero, otherwise, it is regulated in real-time where 0 < dhit < drange indicates that the robot is
in an ambiguous area and an unambiguous area is found in the scope of drange.

A detailed overview of the AGM-AMCL algorithm can be found in Algorithm 1. The output
particle set is initialized as an empty set in Step 1. Step 2 declares a variable Ct to store the ray casting
result to avoid repetitive computation and is initialized from Step 3 to Step 5. Step 7 to Step 23 show
the prediction step of our localization method which is derived from Equation (16). µhit and dhit are
obtained by the ray casting method at step 10, αt is calculated according to Equation (21) at step 15.
At step 16, c is a binary variable sampled from a Bernoulli distribution with parameter αt. c = 1
means that the prediction pose will be sampled from the portal motion model while c = 0 means
the prediction pose will be sampled from the odometry motion model. At step 18, Σhit is computed
according to Equation (18). Through step 19 and 20, the portal model is used to sample a prediction
pose. According to Equation (20), the cumulative ambiguity error et is updated at step 24. In order
to improve the efficiency of the particles, the KLD sampling method presented in [38] is adopted at
step 28.
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Algorithm 1 AGM-AMCL

Input: St−1 =

{〈
x[i]t−1, e[i]t−1,ω[i]

t−1

〉Nt−1

i=1

}
, ut, zt, mg, ma

Output: St =

{〈
x[i]t , e[i]t ,ω[i]

t

〉Nt

i=1

}
1: St ← ∅, Nx ← 0, n← 0, β← 0 // Initialization

2: Ct =

{〈
x[i]hit, d[i]hit, tag[i]

〉Nt−1

i=1

}
//For storing RAYCAST result

3: for i← 1, . . . , Nt−1 do //Initialize Ct

4: tag[i] ← 0
5: end for
6: do
7: j← RESAMPLING (St−1) //Resampling according to particle weight

8: drange = e[ j]t−1
9: if tag[ j] == 0 then

10: (µhit, dhit)← RAYCAST
(
x[ j]t−1, drange, ma

)
11: Ct[ j]← (xhit, dhit, 1)
12: else
13: (µhit, dhit)← Ct[ j]
14: end if
15: α← COMPUTEALPHA

(
dhit, drange

)
16: sample c according to Bernoulli_Distribution( α)
17: if c == 1

18: Σhit ← COMPUTESIGMAHITT
(
drange, dhit, x[ j]t−1

)
19: Create Pportal

(
xt|x

[ j]
t−1, e[i]t−1, ma

)
according to N(µhit, Σhit)

20: Sample x[n]t according to Pportal

(
xt|x

[ j]
t−1, e[i]t−1, ma

)
21: else

22: Sample x[n]t according to Podo

(
xt|x

[ j]
t−1, ut

)
23: end if

24: e[n]t ← PREDICTAMBIGUITYERROR
(
x[n]t , e[ j]t−1, ma

)
25: ω

[n]
t ← P

(
zt|x

[n]
t , ma

)
//Compute weight according to observation

26: β← β+ωt

27: St ← St ∪

{〈
x[n]t , e[n]t ,ωt

〉}
28: Nx ← ADPTINGSAMPLESIZE

(
x[n]t

)
29: n← n + 1
30: while n < Nx and n < Nmin
31: for i← 1, . . . , n do //Normalize particle weight

32: ω
[i]
t ← ω

[i]
t /β

33: end for
34: return St

5. Experiments and Results

In this section, we will verify the effectiveness of the AGM and the performance of the AGM-AMCL
algorithm severally. Note that, if not particularly indicated, AAE represents the AAE of a position in
this section.
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5.1. Platform and Environments

The experimental platform and environments are shown in Figure 8, respectively. The used mobile
robot named Turtlebot2 is equipped with a Hokuyo UTM-30LX LIDAR and an LPMS-RS232AL2 IMU,
which serve as the external and internal sensor, separately. As depicted in Figure 8a,b, three different
ambiguous environments with long corridors, open square and tangled thicket are considered for the
real-world experiments.

Figure 8. Experimental platform and real-world environments: (a) Turtlebot2 for data capturing;
(b) scene A: long corridors; (c) scene B: empty space; (d) scene C: tangled thicket. The red lines in scene
A show three parallel long corridors, and each corridor is surrounded by two parallel walls without
prominent features. The red square in scene B shows an open square. The red square in scene C show
area with tangled thicket.

5.2. AGM of Artificial Environments

To verify the effectiveness of the AGM, we draw several grid maps, in which the localizability of
different position can be easily distinguished manually. In our research, the log-likelihood is used for
observation likelihood computation. And is set to 0.5 which is a very small value for log-likelihood
and is useful to compensate for some numerical calculation error. χ1 and χ2 were selected as 0.25 m
and 5◦ respectively in this experiment, therefore the maximum AAE value is 0.5 m. As demonstrated
in Figure 9, the top row and bottom row present three artificial occupancy grid maps and their
corresponding AGM, respectively. Low AAE value (blue) of a cell means small localization error while
high AAE value (red) means large localization error. When building these AGMs, the range error of
the laser scan simulator was set to 0 m to simulate the laser scan data. The map shown in Figure 9(a1)
is a long corridor. It can be seen from its AGM that the AAE value in both ends of the corridor is
small, and the ε AAE value in the middle of the corridor is high, which is according with human
experience. The map shown in Figure 9(b1), is a circle. When a robot is at the center of the circle,
it will obtain the same sensor readings regardless of the orientation of the robot. Therefore, as shown
in Figure 9(b2), the AAE value at the center of the circle is very high. An open space environment
is shown in Figure 9(c1). We can see from its AGM that the farther a position is away from the
obstacle, the higher the AAE value. For those cells where the AAE value is higher than one-half of the
maximum AAE value (In this AGM experiment for artificial environments, the maximum AAE value
is 0.5 m), the AAE value shown in Figure 9(c2) is significantly higher than the AAE value shown in
Figure 9(a2,b2). This is because in the open space of Figure 9(c1), a robot actually cannot recognize
anything and it cannot localization itself. But in Figure 9(a1,b1), the robot is only confusing in some
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directions and the sensor reading obtained from those positions can be used to reduce some of the
localization uncertainties.
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5.3. AGM of Real Environments 

The SLAM method proposed in [42] was used to build the occupancy grid maps of scene A, B 
and C which are shown in Figure 11(a1–c1), respectively. In fact, it is difficult to build the occupancy 
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Figure 9. AGMs of virtual ambiguous environments: (a1–c1) are the occupancy grid maps of three
artificial environments. (a2–c2) are the corresponding AGMs. AGMs show that the middle area of (a1),
the center area of (b1) and the open area of (c1) get high AAE value because of their ambiguous.

Figure 10 shows the performance of the AGM of an unambiguous environment under the condition
that the simulated laser scan data have different range error. Figure 10a shows the occupancy grid
map. Figure 10b,c are the corresponding AGM of Figure 10a when the range error of the laser scan
simulator is set to 0 m and 0.5 m, respectively. By comparing Figure 10b with Figure 10c, we can clearly
see that even in the same environment, large range error will lead to large AAE value. Although
the environment shown in Figure 10a does not seem to be an ambiguous environment, experiment
results show that large range error of the laser scan data may still lead to perception aliasing, which
demonstrates the importance of sensor noise for localizability evaluation.
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Figure 10. AGMs with different range error for virtual unambiguous environments: (a) Occupancy
grid map of an unambiguous environment. (b) AGM with zero distance error. (c) AGM with 0.5 m
distance error. The figure clearly shows that large distance error leads to large AAE value.

5.3. AGM of Real Environments

The SLAM method proposed in [42] was used to build the occupancy grid maps of scene A, B and
C which are shown in Figure 11(a1–c1), respectively. In fact, it is difficult to build the occupancy
grid maps of these three environments because of their ambiguity. However, with the help of those
vehicles parked on the side of the road, localization can be achieved during mapping. Moreover,
loop closure and offline optimization adopted by the SLAM method enable us to build consistent
occupancy grid maps. After mapping, those vehicles are manually removed from the occupancy grid
maps due to the fact that the position of those parked vehicles had been changed when we carried out
our localization experiment. The resolution of our occupancy grid maps was set as 0.2 m. In addition,
χ1 and χ2 are selected as 0.5 m and 10◦, respectively, in our experiments. The true noise parameters of
the Hokuyo UTM-30LX 2D Laser range finder are adopted to generate more realistic laser scan data for
computing AAE.
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C. (a2–c2) are the corresponding AGMs. Blue curves show the ground truth for localization simulation.
Those positions in the middle of a long corridor, in the center of an open square, near a straight-line
wall and tangled thicket get high AAE value.

It can be seen from the AGM, shown in Figure 11(a2–c2) that those positions which are in the
middle of a long corridor, in the center of the open square, near a straight-line wall and tangled
thicket get high AAE value. Those positions near a corner get low AAE. The results are in line with
human experience.

5.4. Localization Simulation

The aim of the simulation experiments is to comprehensively evaluate the performance of our
proposed AGM-AMCL method and compare it with the AMCL method and the augmented MCL
method proposed in [37]. In fact, the augmented MCL is very similar to the method proposed
in [33]. The difference is that extra random particles are added in [37] while sensor resetting method
was adopted to generate extra particles in [33], which is not suitable in large scale and ambiguous
environments. The trajectories (Figure 11) which are selected to pass through an ambiguous area are
used for all simulation experiments. Laser scan data used for localization simulation can be generated
at each pose on the simulation trajectories with the help of the occupancy grid maps. ta is set to 0.5
which is the maximum tolerable distance error. kmax is selected to 2 and ρ is set to 0.5. These three
parameters were used in all of our experiments. In addition, the localization methods are initialized
around the true position in our simulation experiments only to verify the pose tracking performance.

Figure 12 presents the evolution process of particles during localization simulation in scene B.
The color of a particle visualizes the particle weight just like the color used in Figure 10 except that the
range represented by the color is 0 to 1.

In the beginning, those particles (Figure 12(a1)) generated by AMCL can follow the true pose of
the robot but as the robot entering an ambiguous area, the particles (Figure 12(b1)) became divergent
and there were fewer and fewer particles (Figure 12(c1)) near the true pose of the robot during the
robot moving through an ambiguous area. Even the robot entered an unambiguous area, the particles
(Figure 12(d1)) generated by AMCL could not correct the accumulated localization error and converged
to a wrong pose. For augmented MCL, extra random particles Figure 12(b2–d2) are added when the
average likelihood of particles was decreased. However, those extra random particles led the method
to converge to a wrong place in large scale and ambiguous environment. This result shows that it is
essential to generate particles in proper locations, otherwise wrong convergence could occur. On the
other hand, as the robot entered the ambiguous area, our localization method generate extra particles
(Figure 12(c3)) in the adjacent unambiguous area when the accumulated localization error is large
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enough. Once the robot reached the unambiguous area, those extra particles (Figure 12(d3)) help the
robot to correct its accumulated localization error immediately.

Figure 12. Evolution of particles using AMCL (top), Augmented-MCL (middle) and AGM-AMCL
(bottom) in scene B. The letters a, b, c and d denote four locations shown in Figure 11(b1) with red
dots. The blue square with a red triangle inside represents the true pose and the colored points denote
particles. With some particles in the nearby unambiguous area, our method can converge to the true
pose after a robot moving through an ambiguous area.

Figures 13–15 present the localization simulation results of three localization methods using the
trajectory shown in Figure 11. Distance error and orientation error are shown in (a) and (b). Number of
particles and the running time are shown in (c) and (d). In terms of the distance error, our method has
better performance than the other two methods. The distance error of AMCL is divergent when the
robot moved through the ambiguous areas while the distance error of augmented MCL fluctuate greatly
because of the randomly added particles. This is because the orientation can be easily determined
in the long corridor while it will cause large distance error. The computational complexity of those
three methods is related to the number of particles. However, the particle number of our method and
AMCL is stochastic, which rely on the sensor measurement data during robot moving. For this reason,
it is hard to evaluate the efficiency theoretically. From the results of three different environments,
the efficiency of our method can be demonstrated in three aspects. First, the running time of our
method is similar to AMCL in unambiguous environments by using the AGM. Second, because of
the right convergence, our method is more efficiency after the robot moving through an ambiguous
environment. Third, our method is slower than AMCL when the robot is in an ambiguous area and
near an unambiguous area, but it is still enough for real-time localization.

In order to evaluate the localization reliability of our method, we consider the last localization
result after a robot traveling through a trajectory. If the distance error of the last localization result is
smaller than 0.5 m and the angular error of the last localization result is smaller than 10◦, we assume this
localization experiment is successful, otherwise, this localization experiment fails. Then the reliability
of our localization method can be verified through the localization success rate of repeated localization
experiments on the same trajectory. Various degrees of odometer errors were adopted in our reliability
experiment. The true odometry data is computed according to:

utrue
t = 	xtrue

t−1 ⊕ xtrue
t (22)

where 	 and ⊕ are the pose compounding operator [43], xtrue
t−1 and xtrue

t are the true pose of a robot
at time t − 1 and time t, respectively. xtrue

t−1 and xtrue
t can be obtained from the simulated trajectory.
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Taking the true odometer data as the mean and setting a covariance matrix, a Gaussian distribution
can be obtained. The odometer data with errors can be obtained by sampling from such Gaussian
distribution. In our experiments, the abovementioned covariance matrix is set to a diagonal matrix
with one parameter:

Σsample =


m 0 0
0 m 0
0 0 0.2 ∗m

 (23)

Then we define the odometry error rate η as:

ς =
m

distance(xtrue
t , xtrue

t−1 )
(24)

By changing ς, the odometer data with different degrees of error can be obtained. In our reliability
experiments, eleven different value of ς varying from 0 to 1 were selected to evaluate the localization
reliability under different degree of odometry error. In addition, given ς and a trajectory, we carried
out one hundred repetitive experiments to get the localization success rate. The results of the reliability
experiments with different odometry errors are shown in Figure 16.

As shown in these results, the localization success rate of AGM-AMCL is significantly higher than
that of AMCL and augmented-MCL under different odometry error in three scenes. The minimum
success rate of AMCL, augmented-MCL and AGM-AMCL are 6%, 0% and 79%, respectively. Moreover,
the localization success rate of AMCL and augmented-MCL decrease rapidly with the increase of
odometry error in three scenes while the localization success rate of AGM-AMCL is always 100% in
scene A and slightly decreases in scene B and C. The results of the reliability experiments show that
our localization method is more reliable when locating a robot in ambiguous environments.

Figure 13. Localization results in scene A: (a) distance error; (b) orientation error; (c) number of
particles; (d) running time. Note that the orientation errors of AMCL are small in most times. This is
because the orientation can be easily determined in the long corridor while it will cause large distance
error. The running time of our method is similar to AMCL in unambiguous areas (the zoomed result
from step 100 to 150). Our method is more efficient than AMCL after the robot moving through an
ambiguous area (the zoomed result from step 450 to 500). Our method needs more particles when
the robot is in an ambiguous area and near an unambiguous area (step 300 to 400), therefore it is less
efficient than AMCL. Because of the fixed particle number, augmented-MCL takes more time than the
other two methods in most time.



Sensors 2019, 19, 3331 18 of 22

Figure 14. Localization results in scene B: (a) distance error; (b) orientation error; (c) number of particles;
(d) running time. From step 700 to 800, our method is more efficient because of the right convergence.
The zoomed results from step 0 to 80 show that our localization method has similar running time with
AMCL in unambiguous area.

Figure 15. Localization results in scene C: (a) distance error; (b) orientation error; (c) number of particles;
(d) running time. The zoomed results from step 50 to 150 show that our localization method has similar
running time with AMCL. Our method takes less time from step 600 to 800 while more time is need
from step 400 to 550.
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Figure 16. The success rate of three localization methods with different odometry errors: (a) Results
in Scene A. (b) Results in Scene B. (c) Results in Scene C. The results show that our method has a
considerable success rate even in the case when the odometry error is high in ambiguous environments.

5.5. Localization Using Real-World Data

Based on the real-world laser scan data and the odometry data captured by our robot in scene
A, B and C, the localization results of three localization methods are obtained, as shown in Figure 17.
As we can see from these figures, AMCL and augmented-MCL failed to track the robot pose due to
the fact that the registered laser scan data obtained by AMCL and augmented-MCL are inconsistent
with the maps. On the contrary, the registered laser scan data obtained by our method is consistent
with the maps and the resulting trajectories are closed successfully which are in line with the actual
robot trajectories. The inconsistent laser scan data registration obtained by AGM-AMCL is caused
by dynamic obstacles and localization error. From the trajectories generated by AGM-AMCL, it can
be seen that some discontinuous points appeared on the neighboring locations of an ambiguous area
and an unambiguous area. This is because the accumulated localization error was corrected by our
localization method after the robot moving through an ambiguous area, which demonstrates that our
localization method is more reliable in real-world ambiguous environments.

Figure 17. Localization results using real-world data. (a1–c1) show the localization result using AMCL.
(a2–c2) show the localization result using augmented-MCL. (a3–c3) show the localization result using
our method. Blue curves show the robot trajectories obtained by localization methods. Red point
clouds represent the registered laser scan data using the trajectories. Based on the trajectories obtained
by our method, laser scan data can be successfully registered in three ambiguous environments.
The discontinuity of the trajectories obtained by our method is caused by the portal motion model.
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6. Conclusions

In this paper, an AGM-based AMCL method to achieve fast and reliable localization of a robot in
ambiguous environments was presented. Our method was derived from an improved DBN which
introduces two nodes to represent the accumulated ambiguity error and the AGM separately. The AGM
models the ambiguity of an environment, and it can be used to predict the accumulated localization error
during pose reasoning. Moreover, utilizing the AGM, a portal motion model was implemented to obtain
more reliable pose prediction in an ambiguous area. We evaluated the effectiveness of the AGM and
the AGM-AMCL method through simulation and real-world experiments. The results demonstrated
that the proposed AGM is in line with human experience and our localization method can achieve fast
and reliable localization in ambiguous environments, as compared with conventional methods.

In the future, we will improve the AGM to model the ambiguity in dynamic environments so
as to address the localization problem in an environment where the ambiguity is not only caused by
symmetrical or featureless areas but also by dynamic objects.
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