
sensors

Article

Smart Industrial IoT Monitoring and Control System
Based on UAV and Cloud Computing Applied to a
Concrete Plant

Marouane Salhaoui 1,2, Antonio Guerrero-González 1,*, Mounir Arioua 2 , Francisco J. Ortiz 3,*,
Ahmed El Oualkadi 2 and Carlos Luis Torregrosa 4

1 Department of Automation, Electrical Engineering and Electronic Technology, Universidad Politécnica de
Cartagena, Plaza del Hospital 1, 30202 Cartagena, Spain

2 Laboratory of Information and Communication Technologies (LabTIC), National school of applied sciences
of Tangier (ENSATg), Abdelmalek Essaadi University, ENSA Tanger, Route Ziaten, BP 1818, Tanger, Tétouan
93000, Morocco

3 DSIE Research Group, Universidad Politécnica de Cartagena, Plaza del Hospital 1, 30202 Cartagena, Spain
4 FRUMECAR S.L., C/Venezuela P.17/10 Polígono Industrial Oeste, 30169 Murcia, Spain
* Correspondence: antonio.guerrero@upct.es (A.G.-G.); francisco.ortiz@upct.es (F.J.O.); Tel.: +34-628-310-671

(A.G.-G.)

Received: 29 May 2019; Accepted: 25 July 2019; Published: 28 July 2019
����������
�������

Abstract: Unmanned aerial vehicles (UAVs) are now considered one of the best remote sensing
techniques for gathering data over large areas. They are now being used in the industry sector as
sensing tools for proactively solving or preventing many issues, besides quantifying production and
helping to make decisions. UAVs are a highly consistent technological platform for efficient and
cost-effective data collection and event monitoring. The industrial Internet of things (IIoT) sends
data from systems that monitor and control the physical world to data processing systems that cloud
computing has shown to be important tools for meeting processing requirements. In fog computing,
the IoT gateway links different objects to the internet. It can operate as a joint interface for different
networks and support different communication protocols. A great deal of effort has been put into
developing UAVs and multi-UAV systems. This paper introduces a smart IIoT monitoring and control
system based on an unmanned aerial vehicle that uses cloud computing services and exploits fog
computing as the bridge between IIoT layers. Its novelty lies in the fact that the UAV is automatically
integrated into an industrial control system through an IoT gateway platform, while UAV photos are
systematically and instantly computed and analyzed in the cloud. Visual supervision of the plant
by drones and cloud services is integrated in real-time into the control loop of the industrial control
system. As a proof of concept, the platform was used in a case study in an industrial concrete plant.
The results obtained clearly illustrate the feasibility of the proposed platform in providing a reliable
and efficient system for UAV remote control to improve product quality and reduce waste. For this,
we studied the communication latency between the different IIoT layers in different IoT gateways.

Keywords: UAVs; drones; industry 4.0; concrete plant; IoT protocols; IoT gateway; image recognition;
cloud computing; network latency; end-to-end delay

1. Introduction

The emerging “Industry 4.0” concept is an umbrella term for a new industrial paradigm which
embraces a set of future industrial developments including cyber-physical systems (CPS), the Internet
of things (IoT), the Internet of services (IoS), robotics, big data, cloud manufacturing and augmented
reality [1]. Industrial processes need most tasks to be conducted locally due to time delays and security

Sensors 2019, 19, 3316; doi:10.3390/s19153316 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-6069-6298
https://orcid.org/0000-0002-4953-1000
http://www.mdpi.com/1424-8220/19/15/3316?type=check_update&version=1
http://dx.doi.org/10.3390/s19153316
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 3316 2 of 27

constraints, and structured data needs to be communicated over the internet. Fog computing is a
potential intermediate software that can be very useful for various industrial scenarios. It can reduce
and refine high volume industrial data locally, before being sent to the cloud. It can also provide local
processing support with acceptable latency for actuators and robots in a manufacturing industry [2].
The lack of interoperability between devices in the Industrial Internet of things (IIoT) considerably
increases the complexity and cost of IIoT implementation and integration. The search for seamless
interoperability is further complicated by the long lifetime of typical industrial equipment, which
require costly upgrades or replacements to work with the newest technologies [3].

One of the novelties of autonomous robots applied to industry 4.0 is the generalization of the
use of drones (unmanned aerial vehicles—UAVs) to carry out a multitude of inspection and data
collection tasks. In this paper, the focus is on the construction industry since it is one of the sectors
where traditionally less advanced technology has been applied and is therefore suitable for the use of
the new Technology of Industry 4.0 [4]. Construction companies have mostly been using UAVs for
real-time jobsite monitoring and to provide high-definition (HD) videos and images for identifying
changes and solving or preventing many issues [5]. They are also used for inspection and maintenance
tasks that are either inaccessible, dangerous, or costly from the ground [6].

Integrating UAVs into the IoT represents an interoperability challenge, as every IoT system has
its own communications protocol. Moreover, a small error or delay beyond the tolerated limit could
result in a disaster for various applications, such as UAV and aircraft manufacture and monitoring.
While the (IoT) provides Internet access to any ‘thing’, UAVs can also be part of these connected
things and send their on-board data to the cloud [7]. The off-board base station gives them higher
computational capacity and the ability to carry out more complex actions using high-level programming
languages, or leveraging services from computer vision tools by acquiring, processing, analyzing and
understanding digital images in real-time. Computing capabilities can be extended to the cloud, taking
advantage of the services offered, and saving the cost and energy consumption of an embedded UAV
system. There is a growing trend towards the three-layer IIot architecture with fog computing, with a
convergence network of interconnected and distributed intelligent gateways.

Fog computing is a distributed computing paradigm that empowers network devices at different
hierarchical levels with various degrees of computational and storage capacity [8]. In this context,
fog computing is not only considered for computation and storage but also as a way of integrating
the different new systems capable of interconnecting urgent and complex processing tasks. The fog
can be responsible for technical assistance between humans and machines, information transparency,
interoperability, decentralized decision-making, information security, and data analysis. Its notable
benefits minimize human error, reduce human health risks, improve operational efficiency, reduce
costs, improve productivity, and maintain quality and customer satisfaction [2].

Here, we propose a UAV-based IIoT monitoring and control system integrated into a traditional
industrial control architecture by harnessing the power of fog middleware and cloud computing.
The main aim of the work was to present an innovative concept and an open three-layer architecture,
including a UAV, to enhance quality and reduce waste by introducing visual supervision through
cloud services as part of the three-layer IIoT architecture with fog computing and a control system.
We also analyzed the fog computing layer and the IoT gateways to comply with the requirements
of interoperability and time latency. We developed a theoretical model to mathematically represent
the end-to-end latency in UAV-based Industry 4.0 architecture. We provide a comparative study
of a fog computing system through different platforms and analyze the impact of these platforms
on the network performance. We also describe a case study in a bulk concrete production plant
using a drone-borne camera and IBM Watson’s service image recognition in the cloud. The study
involved monitoring the materials carried on conveyor belts and controlling the production process.
This operation was considered as cost-effective and time effective and reduced the concrete batch
production time.

The paper’s main contributions are as follows:

Sensors 2019, 19, 3316 3 of 27

• A proposal for an IIoT-based UAV architecture for monitoring and improving a production process
using cloud computing services for visual recognition.

• Assessment of the three-layer architecture latency.
• Practical implementation and validation of the proposed architecture.

2. Related Works

The Industry 4.0 concept was born to apply the ideas of cyber-physical systems (CPSs) and
IoT to industrial automation and to create smart products, smart production, and smart services [9].
It involves cyber-physical systems, the Internet of things, cognitive computing and cloud computing
and supports what has been termed a “Smart factory”. In 2011, Germany adopted the idea to develop
its economy in the context of an industrial revolution with new technologies compatible with old
systems [10]. Industry now faces the challenge of making the IT network compatible with its machines,
including interoperability, fog/cloud computing, security, latency, and quality of service. One of the
proposed solutions is smarter IoT gateways [11], which are the bridges between the traditional network
and sensor networks [12]. An IoT gateway is a physical device with software programs and protocols
that act as intermediaries between sensors, controllers, intelligent devices, and the cloud. The IoT
gateway provides the necessary connectivity, security, and manageability, while some of the existing
devices cannot share data with the cloud [13].

EtherCat, CANOpen, Modbus/Modbus TCP, EtherNet/IP, PROFIBUS, PROFINET, DeviceNet,
IEEE802.11, ISA100.11a, and Wireless HART are the most frequently used industrial protocols [14].
Due to the incompatible information models for the data and services of the different protocols,
interoperability between the different systems with different protocols is always difficult. Up to only a
few years ago the communication systems for industrial automation aimed only at real-time performance
suitable for industry and maintainability based on international standards [15]. The Industry 4.0 concept
has the flexibility to achieve interoperability between the different industrial engineering systems.
To connect the different industrial equipment and systems, the same standards and safety levels are
required. Open Platform Communications Unified Architecture (OPC UA) is a machine-to-machine
(M2M) communications protocol developed to create inter-operable and reliable communications
and is now generally accepted as standard in industrial plant communications [16]. OPC UA is an
independent service-oriented architecture that integrates all the functionality of the individual OPC
Classic specifications into one extensible framework [17]. Girbea, et al. [18] designed a service-oriented
architecture for the optimization of industrial applications, using OPC UA to connect sub-manufacturing
systems and ensure real-time communication between devices.

OPC UA can allocate all manufacturing resources, including embedded systems, to specific areas
and extensible computing nodes through the address space and a pre-defined model. It solves the
problem of unified access to the information of different systems [19]. Infrastructure protocols have
been proposed in many studies; for example, the authors of [19,20] developed an edge IoT gateway
to extend the connectivity of MODBUS devices to IoT by storing the scanned data from MODBUS
devices locally and then transferring the changes via an MQTT publisher to MQTT clients via a broker.
In [21], MQTT was adopted for machine-to-machine (M2M) communications to complement the
MODBUS TCP operations in an IIoT environment. This environment integrates the MQTT event-based
message-oriented protocol with the MODBUS TCP polling-based request–response protocol for
industrial applications. The authors of [22] designed and implemented a web-based real-time data
monitoring system that uses MODBUS TCP communications in which all the data are displayed in
a real-time chart in an Internet browser, which is refreshed at regular intervals using HTTP polling
communications. The success of the IIoT initiative depends on communication protocols able to ensure
effective, timely and ubiquitous aggregation [23].

Implementing an Industry 4.0 architecture requires integration of the latest technologies,
for example, IIoT, cyber-physical systems, additive manufacturing, big data and data analytics,
cyber-security, cloud and edge computing, augmented and virtual reality, as well as autonomous

Sensors 2019, 19, 3316 4 of 27

robots and vehicles [24]. The cloud robotics architecture is based on two elements: the cloud platform
and its associated equipment and the bottom facility. Bottom facilities usually encompass all kinds of
mobile robots, unmanned aerial vehicles, machines, and other equipment [25]. The next generation of
robots will include interconnected industrial robots [26], cobots [27] and autonomous land vehicles
(AGVs) [28]. Cobots support human workers in various tasks, while robots can carry out specific tasks,
such as looking for objects or transporting tools. UAVs and drones are among the emerging robot
technologies that leverage the power of perception science and are now the preferred remote sensing
system for gathering data over long distances in difficult-to-access environments [29]. Drone cameras
can collect remotely sensed images from different areas safely and efficiently.

UAVs can save time and money in different sectors, such as agriculture, public safety, inspection
and maintenance, transportation and autonomous delivery systems. This technological revolution
was conceived to make people’s lives easier and to provide machine-to-machine communications
without human intervention [30]. Many industries use drones or unmanned aerial vehicles to increase
sensing and manipulation capabilities, autonomy, efficiency, and reduce production costs. In the
construction sector, drones play a significant role in industrial sites; they can fly over and monitor an
area by acquiring photos and videos. They can be used to check a given installation or production
areas, to transmit data, monitor construction processes, and detect anomalies.

As mentioned in [4] many applications have already been implemented in the construction and
the infrastructure fields. The net market value of deploying UAVs in support of construction and
infrastructure inspection applications accounts for about 45% of the overall UAV market. UAVs are
also used for the real-time inspection of power lines. In [31], the authors implemented drones to
detect trees and buildings close to power lines. They can also be deployed to monitor oil, gas and
water pipelines. Industrial SkyWorks [32] employs drones for building inspections and oil and gas
inspections in North America using the powerful machine learning BlueVu algorithm to process the
data collected. They provide asset inspection and data acquisition, advanced data processing with 2D
and 3D images and detailed reports on the property inspected.

Crack assessment systems for concrete structures are constantly improving thanks to computer
vision technologies and UAVs. UAVs combined with digital image processing have been applied
to crack assessment as a cost-effective and time-effective solution, instead of visual observation [33].
Image processing has become a significant asset for UAVs systems and not only in industry. Capturing
footage and videos generates a huge amount of data, for which cloud computing is vital. Image
recognition technology has a great potential in various industries and has been improved by deep
learning and machine learning image recognition systems (TensorFlow, and MATLAB) or image
processing techniques such as computer algorithms for digital image processing. In [34], Machine
Learning Techniques were used to estimate Nitrogen nutrition levels in corn crops (Zea mays). The work
described in [35] introduced a real-time drone surveillance system to identify violent individuals in
public areas by a ScatterNet hybrid deep learning (SHDL) network. In [36], the images from a drone
camera were processed by the bag-of-words algorithm to detect crops, soils and flooded areas, with
MATLAB to program the feature extraction algorithm. In [37], a solution was proposed to detect a
final target using the drone’s camera. The system implemented image processing algorithms using
the open source computer vision library OpenCV. The main goal was to resolve the energy constraint
without any wire connections or human intervention. Cloud solutions like Google AI, Amazon Web
Services, and IBM Watson offer on-demand access to their image recognition services to connect with
other systems in the internet. The authors in [38] propose to move computationally-demanding object
recognition to a remote computing cloud, instead of implementing it on the drone itself, by means
of a cloud-based approach that allows real-time performance with hundreds of object categories.
Other cloud-based platforms, e.g., SenseFly [39], Skycatch [40], and DroneDeploy [41], offer their own
end-to-end solution that incorporates mission control, flight planning, and post-processing. These
solutions provide image analysis through a real connection with the main application.

Sensors 2019, 19, 3316 5 of 27

The aforementioned studies show the significant advantages in different sectors of cost-effective
and time-effective UAVs integrated with big data technology and machine learning. However, as
far as we know, no studies have so far been published on the integration of UAVs into a complete
industrial production system. Thus, here we propose an industrial real-time monitoring system with
UAVs, fog computing and deep learning in the cloud (Figure 1). The proposed IIoT-based UAVs collect
photos from an industrial plant, while the cloud processing platform analyzes them and sends the
results to a control system.

Sensors 2019, 19, x FOR PEER REVIEW 5 of 27

Other cloud-based platforms, e.g., SenseFly [39], Skycatch [40], and DroneDeploy [41], offer their
own end-to-end solution that incorporates mission control, flight planning, and post-processing.
These solutions provide image analysis through a real connection with the main application.

The aforementioned studies show the significant advantages in different sectors of cost-
effective and time-effective UAVs integrated with big data technology and machine learning.
However, as far as we know, no studies have so far been published on the integration of UAVs into
a complete industrial production system. Thus, here we propose an industrial real-time monitoring
system with UAVs, fog computing and deep learning in the cloud (Figure 1). The proposed IIoT-
based UAVs collect photos from an industrial plant, while the cloud processing platform analyzes
them and sends the results to a control system.

Figure 1. Proposed UAV-IIoT Platform.

3. Industrial IoT Monitoring and Control Platform

Industry is taking advantage of ever more complex and sophisticated systems. Systems not
designed to communicate across production lines often require integration with pre-existing
devices. The challenge of interoperability is thus one of the main concerns in designing intelligent
human-to-machine and machine-to-machine cooperation. Ensuring systems-of-systems
communications involves blending robotics, interconnected devices/sensors, actors, heterogeneous
systems, and convergent hybrid infrastructure with IIoT and CPS systems, including fog/edge
computing and cloud services. Our aim was to design a drone-based monitoring system able to
interact in real-time with industrial sensors, PLCs, and the cloud automatically via an IoT gateway
as middleware, and to transmit data between the different systems securely. We validated our
proposed architecture in an industrial concrete production plant in a case study to improve
production and reduce costs.

3.1. Proposed Platform/Architecture

A UAV monitoring system was elaborated as an industrial control system to reduce inspection
time and costs. An overview of the approach can be seen in Figure 1. The proposed IIoT architecture
is divided into three layers, with the UAVs in the data generation layer. The first layer consists of
an industrial control system connected to a central collection point, which is the IoT gateway. The
second layer is the fog computing layer for computation, storage, and communications. The last
layer is a cloud back-end with image processing techniques. The fog layer connects the industrial
control layer to the UAV system, the UAV system to the cloud, and finally the cloud to the
industrial control system.

The control system receives data from remote or connected sensors that measure the process
variables’ (PVs) setpoints (SP). When the system detects a trend change between PVs and SP, the

Figure 1. Proposed UAV-IIoT Platform.

3. Industrial IoT Monitoring and Control Platform

Industry is taking advantage of ever more complex and sophisticated systems. Systems
not designed to communicate across production lines often require integration with pre-existing
devices. The challenge of interoperability is thus one of the main concerns in designing
intelligent human-to-machine and machine-to-machine cooperation. Ensuring systems-of-systems
communications involves blending robotics, interconnected devices/sensors, actors, heterogeneous
systems, and convergent hybrid infrastructure with IIoT and CPS systems, including fog/edge
computing and cloud services. Our aim was to design a drone-based monitoring system able to
interact in real-time with industrial sensors, PLCs, and the cloud automatically via an IoT gateway as
middleware, and to transmit data between the different systems securely. We validated our proposed
architecture in an industrial concrete production plant in a case study to improve production and
reduce costs.

3.1. Proposed Platform/Architecture

A UAV monitoring system was elaborated as an industrial control system to reduce inspection
time and costs. An overview of the approach can be seen in Figure 1. The proposed IIoT architecture is
divided into three layers, with the UAVs in the data generation layer. The first layer consists of an
industrial control system connected to a central collection point, which is the IoT gateway. The second
layer is the fog computing layer for computation, storage, and communications. The last layer is a
cloud back-end with image processing techniques. The fog layer connects the industrial control layer
to the UAV system, the UAV system to the cloud, and finally the cloud to the industrial control system.

The control system receives data from remote or connected sensors that measure the process
variables’ (PVs) setpoints (SP). When the system detects a trend change between PVs and SP, the
change is routed to the programmable logic controllers (PLCs) and the central point (IoT gateway)
to trigger the UAV system’s reaction. In this case, the human operator is replaced by a remote cloud
calculation algorithm and a UAV system, in the sense that the UAV’s front camera serves as an

Sensors 2019, 19, 3316 6 of 27

additional surveillance sensor that is processed in the cloud to imitate an operator’s visual inspection.
The drone goes to a specific point to supervise the process using the front camera. The UAV system is
triggered automatically by responding to the sensor data from the industrial control system and data
analyzed in the IoT gateway. The IoT gateway receives the captured photos and sends them to the
cloud, which adopts deep learning techniques to analyze and send the results to the IoT gateway and
the control system to confirm the anomaly.

3.2. IoT Gateway Capabilities

The IoT gateway is able to connect the sensor network to the cloud computing infrastructure
and perform edge and fog computing and serves as a bridge between sensor networks and cloud
services. Experiments were carried out using Node-RED and Ar.Drone library [42] to connect to the
industrial control system, the cloud, and the UAV. Node-RED is a programming tool for wiring together
hardware devices, APIs, and online services using JavaScript runtime Node.js and a browser-based
editor. It controls the flows to be designed and managed graphically. Node-RED has a sample set of
nodes for communications between different protocols and platforms. Node.js is considered one of the
best platforms to build real-time, asynchronous and event-driven applications [15,43,44]. The Ar.Drone
library [42] is an application also developed in Node.js and implements the networking protocols used
by the Parrot AR Drone 2.0 [42]. This library provides a high-level client API that supports all drone
features and enables developers to write autonomous programs. Using this library, the drone can be
controlled via Wi-Fi, and automatically moves to a given target. It is also possible to describe the path,
height, and direction the drone must follow to take the required photos.

3.3. The UAV-IIoT Architecture Development

This section describes the development of the proposed IIoT-UAV control system and its network
protocols. It contains three layers, namely the industrial control system and UAVs, the IoT gateway,
and the cloud. In the first layer, the industrial sensors of the control system are connected to a PLC that
acts as OPC UA server, which routes the sensor data to the IoT gateway, which incorporates an OPC
UA client installed in Node-RED. With the OPC UA client-server, data communication is independent
of any particular operating platform. The central layer of the architecture augments the processing and
communication abilities in the IoT gateway by connecting to the control system and cloud services,
this part is considered as fog computing and depends on the sensor data retrieved from the sensors
and driven to the OPC UA client node.

The fog layer is responsible for communications between all the other layers; it takes decision
automatically based on the results and data received and conveys the output to the other layers
or applications. The fog layer is presented in Figure 2 as an IoT gateway, which can support all
the necessary tools and protocols to ensure communication storage and computing. Node-RED
is considered the key programming tool for wiring together the industrial control system, UAV
applications, and the cloud. Node-RED makes it easy to wire together flows using a wide range
of nodes.

Sensors 2019, 19, 3316 7 of 27

Sensors 2019, 19, x FOR PEER REVIEW 7 of 27

node, which is connected to the Cloudant database in the IBM. These photos can also be requested
at any time by the Cloudant node in Node-RED (Figure 2).

Figure 2. Development design of autonomous IIoT flight.

By implementing an MQTT client library in Node.js, MQTT messages can be used to send
commands to the drone through a MQTT broker installed in the cloud and also request Navigation
Data (NavData) from the drone, such as battery life, wind-speed, and velocity. MQTT can also be
used as an alternative or supplement to the OPC UA protocol in the industrial control system. The
focus of the present paper is to evaluate the proposed approach using only the OPC UA protocol.

Figure 3 details the communication process between the different parts of the proposed
approach, including data flows between the different nodes, the industrial control system, UAVs
and the cloud. Two main applications are installed in the IoT gateway: the Node-RED application
and the Node.js application. The former facilitates communications, while the latter controls the
drone. Node-RED checks the flow by reading the data from the OPC UA node, which is connected
to the automation control system. If a problem is confirmed from the PLC, Node-RED triggers the
drone mission executed by Node.js. The drone mission (Figure 4) is split into three paths: planning
the mission, taking photos, and returning to the starting point. The Watson visual recognition node
and Cloudant node receive the images and send them to the IBM cloud for processing and storage.
The visual recognition node then forwards the results to the plant control system.

Figure 5 shows the flows used in Node-RED in the IoT gateway. The OPC UA node is
responsible for reading the updated data from the PLC and sending the results to the Exec node to
launch the UAV mission. After the mission, the drone photos are saved in a folder on the IoT
gateway by the watch node that monitors all new photos and sent to Watson’s visual recognition
node for processing. The cloud visual recognition service analyzes the photos and classifies them
into two classes. Each WVR result is provided as a score between 0.0 and 1.0 for each image for
each trained class. The IoT gateway then receives the classification scores via the Watson VR node,
the images’ scores are compared by the function node and the results are forwarded to the
industrial control system and the PLC via the OPC UA write node for decision making.

Figure 2. Development design of autonomous IIoT flight.

The main nodes in this case study are the visual recognition node, OPC UA client, Cloudant node
and Exec node. In Figure 2, Node-RED is connected to the other systems and applications. Node-RED
can connect to the Node.js Ar.Drone library in the IoT Gateway using the Exec node. While carrying out
the mission triggered from Node-RED, the drone takes the necessary photos and sends them to the IoT
gateway, in which Node-RED connects them to the Watson Visual recognition (WVR) node, which uses
Watson visual recognition in the IBM cloud. The WVR node identifies the types of material transported
on the conveyor belts and classifies the images according to the trained custom model. The photos are
then sent to the IBM cloud by the Cloudant node, which is connected to the Cloudant database in the
IBM. These photos can also be requested at any time by the Cloudant node in Node-RED (Figure 2).

By implementing an MQTT client library in Node.js, MQTT messages can be used to send
commands to the drone through a MQTT broker installed in the cloud and also request Navigation
Data (NavData) from the drone, such as battery life, wind-speed, and velocity. MQTT can also be used
as an alternative or supplement to the OPC UA protocol in the industrial control system. The focus of
the present paper is to evaluate the proposed approach using only the OPC UA protocol.

Figure 3 details the communication process between the different parts of the proposed approach,
including data flows between the different nodes, the industrial control system, UAVs and the cloud.
Two main applications are installed in the IoT gateway: the Node-RED application and the Node.js
application. The former facilitates communications, while the latter controls the drone. Node-RED
checks the flow by reading the data from the OPC UA node, which is connected to the automation
control system. If a problem is confirmed from the PLC, Node-RED triggers the drone mission executed
by Node.js. The drone mission (Figure 4) is split into three paths: planning the mission, taking photos,
and returning to the starting point. The Watson visual recognition node and Cloudant node receive the
images and send them to the IBM cloud for processing and storage. The visual recognition node then
forwards the results to the plant control system.

Sensors 2019, 19, 3316 8 of 27Sensors 2019, 19, x FOR PEER REVIEW 8 of 27

Figure 3. Communication process in the fog layer.

Figure 4. An AR.Drone 2.0 mission in the concrete plant.

Figure 5. Node-RED flow of the IoT gateway with the path from PLCs to drone, drone to Watson,
and Watson to the plant control.

Figure 3. Communication process in the fog layer.

Sensors 2019, 19, x FOR PEER REVIEW 8 of 27

Figure 3. Communication process in the fog layer.

Figure 4. An AR.Drone 2.0 mission in the concrete plant.

Figure 5. Node-RED flow of the IoT gateway with the path from PLCs to drone, drone to Watson,
and Watson to the plant control.

Figure 4. An AR.Drone 2.0 mission in the concrete plant.

Figure 5 shows the flows used in Node-RED in the IoT gateway. The OPC UA node is responsible
for reading the updated data from the PLC and sending the results to the Exec node to launch the UAV
mission. After the mission, the drone photos are saved in a folder on the IoT gateway by the watch node
that monitors all new photos and sent to Watson’s visual recognition node for processing. The cloud
visual recognition service analyzes the photos and classifies them into two classes. Each WVR result
is provided as a score between 0.0 and 1.0 for each image for each trained class. The IoT gateway
then receives the classification scores via the Watson VR node, the images’ scores are compared by the
function node and the results are forwarded to the industrial control system and the PLC via the OPC
UA write node for decision making.

Sensors 2019, 19, 3316 9 of 27

Sensors 2019, 19, x FOR PEER REVIEW 8 of 27

Figure 3. Communication process in the fog layer.

Figure 4. An AR.Drone 2.0 mission in the concrete plant.

Figure 5. Node-RED flow of the IoT gateway with the path from PLCs to drone, drone to Watson,
and Watson to the plant control.

Figure 5. Node-RED flow of the IoT gateway with the path from PLCs to drone, drone to Watson, and
Watson to the plant control.

3.4. UAV Mission Planning

The drone takes off at position (x,y), climbs to a certain altitude, hovers, returns to the start,
and lands. The autonomous flight library was based on the AR.drone library [42], which is an
implementation of networking protocols for the Parrot AR Drone 2.0. This library has four features: an
extended Kalman filter, camera projection, and back-projection to estimate distance to an object, a PID
Controller to control drone position, and a VSLAM to improve the drone position estimates [45,46].

The AR.Drone 2.0 is equipped with sensors with precise controls and automatic stabilization
features, two cameras, a 60 fps vertical QVGA camera for measuring ground speed and a 1280 × 720
at 30 fps resolution front camera with a 92◦ (diagonal) field of view, Ultrasound sensors to measure
height, three-axis accelerometer with +/−50 mg precision, three-axis gyroscope with 2000◦/s precision,
three-axis magnetometer with 6◦ precision, and a pressure sensor with +/−10 Pa precision. The drone
can monitor its own position and mapping (SLAM), robustness and controls.

3.5. Case Study

Concrete batching plants form part of the construction sector. Their many important components
include cement and aggregate bins, aggregate batchers, mixers, heaters, conveyors, cement silos,
control panels, and dust collectors. Concrete plants involve a human–machine interaction between
the control system and the operator. The operator introduces the concrete formula by selecting the
quantities of materials to be mixed and this data is processed by a control system so that the correct
amount of material is conveyed to the mixer (Figure 6). The materials used in the concrete plant are
aggregates, cement, admixtures, and water. The quality and uniformity of the concrete depend on the
water-cement ratio, slump value, air content, and homogeneity.

Sensors 2019, 19, 3316 10 of 27

Sensors 2019, 19, x FOR PEER REVIEW 9 of 27

3.4. UAV Mission Planning

The drone takes off at position (x,y), climbs to a certain altitude, hovers, returns to the start,
and lands. The autonomous flight library was based on the AR.drone library [42], which is an
implementation of networking protocols for the Parrot AR Drone 2.0. This library has four features:
an extended Kalman filter, camera projection, and back-projection to estimate distance to an object,
a PID Controller to control drone position, and a VSLAM to improve the drone position estimates
[45,46].

The AR.Drone 2.0 is equipped with sensors with precise controls and automatic stabilization
features, two cameras, a 60 fps vertical QVGA camera for measuring ground speed and a 1280 ×
720 at 30 fps resolution front camera with a 92° (diagonal) field of view, Ultrasound sensors to
measure height, three-axis accelerometer with +/− 50 mg precision, three-axis gyroscope with
2000°/s precision, three-axis magnetometer with 6° precision, and a pressure sensor with +/− 10 Pa
precision. The drone can monitor its own position and mapping (SLAM), robustness and controls.

3.5. Case Study

Concrete batching plants form part of the construction sector. Their many important
components include cement and aggregate bins, aggregate batchers, mixers, heaters, conveyors,
cement silos, control panels, and dust collectors. Concrete plants involve a human–machine
interaction between the control system and the operator. The operator introduces the concrete
formula by selecting the quantities of materials to be mixed and this data is processed by a control
system so that the correct amount of material is conveyed to the mixer (Figure 6). The materials
used in the concrete plant are aggregates, cement, admixtures, and water. The quality and
uniformity of the concrete depend on the water-cement ratio, slump value, air content, and
homogeneity.

Figure 6. SCADA Industrial concrete plant with a typical concrete formula.

Traditionally, to control concrete quality, microwave sensors are used in aggregate bins to
measure the aggregate water content and then adjust the formula as required. Aggregates of
different sizes are stored in bins for different formulas. Due to certain errors during the discharge
and filtering process, these materials are sometimes mixed together incorrectly, affecting concrete
quality and consistency.

The UAV camera and the service IBM WVR in the cloud can identify the state of the aggregate
materials transported on the conveyor belts to make adjustments to the production process.

We use the cloud service to classify normal and mixed aggregates. The role of the drone in this
case is to take pictures when the materials are being transported on the belts before they reach the
mixer. The cloud classifies each image and returns the results to the IoT gateway as a score between
0.0 and 1.0 for each class. This result is sent to the PLC via the IoT gateway. Using these scores, any

Figure 6. SCADA Industrial concrete plant with a typical concrete formula.

Traditionally, to control concrete quality, microwave sensors are used in aggregate bins to measure
the aggregate water content and then adjust the formula as required. Aggregates of different sizes are
stored in bins for different formulas. Due to certain errors during the discharge and filtering process,
these materials are sometimes mixed together incorrectly, affecting concrete quality and consistency.

The UAV camera and the service IBM WVR in the cloud can identify the state of the aggregate
materials transported on the conveyor belts to make adjustments to the production process.

We use the cloud service to classify normal and mixed aggregates. The role of the drone in this
case is to take pictures when the materials are being transported on the belts before they reach the
mixer. The cloud classifies each image and returns the results to the IoT gateway as a score between
0.0 and 1.0 for each class. This result is sent to the PLC via the IoT gateway. Using these scores, any
excess quantity of a material can be measured, and the required adjustments can be made to achieve
the final formula. This operation eliminates wasted time and achieves the desired formula before the
final mixing.

Drones are flexible, easy to deploy, can quickly change their position in a time-sensitive situation,
and can be quickly configured. Incorporating them in a control system speeds up the production line
by responding in real-time to the different requirements of the control system using the cloud services.
The proposed approach is considered a cost-effective solution and replaces unnecessary and repeated
operator controls, traditional monitoring, and control systems.

4. Delay Assessment in the Proposed Platform

One of the important challenges to overcome is the high-latency and unreliable link problems
between the cloud and the IIoT terminals. Fog computing extends computing and storage to the
network edge and is not only considered for computation and storage, but also as a way of integrating
new systems capable of interconnecting urgent and complex processing systems. However, each fog
and edge application may have different latency requirements and may generate different types of data
and network traffic [47]. In this section, we focus on the latency between the data generation layer and
the data communication layer (Figure 1). The data generation layer is composed of the UAV system
and the industrial control system.

4.1. Industrial Control System Architecture

Figure 7 shows the proposed approach system for data collection and the first layer control between
the sensors in the concrete plant. The sensors are connected to the PLC S7-1214 and all information for
these sensors is sent from PLC S7-1214 to PLC S7-1512 using the industrial communication standard
PROFINET over Ethernet. The PLC S7-1512 supports OPC-UA, which adopts client-server architecture.
The OPC UA client is installed in the IoT gateway using the Node-RED OPC UA node. UaExpert is

Sensors 2019, 19, 3316 11 of 27

used in this case to check connectivity with the server. All the incoming information is controlled
by Node-RED.

Sensors 2019, 19, x FOR PEER REVIEW 10 of 27

the final formula. This operation eliminates wasted time and achieves the desired formula before
the final mixing.

Drones are flexible, easy to deploy, can quickly change their position in a time-sensitive
situation, and can be quickly configured. Incorporating them in a control system speeds up the
production line by responding in real-time to the different requirements of the control system using
the cloud services. The proposed approach is considered a cost-effective solution and replaces
unnecessary and repeated operator controls, traditional monitoring, and control systems.

4. Delay Assessment in the Proposed Platform

One of the important challenges to overcome is the high-latency and unreliable link problems
between the cloud and the IIoT terminals. Fog computing extends computing and storage to the
network edge and is not only considered for computation and storage, but also as a way of
integrating new systems capable of interconnecting urgent and complex processing systems.
However, each fog and edge application may have different latency requirements and may
generate different types of data and network traffic [47]. In this section, we focus on the latency
between the data generation layer and the data communication layer (Figure 1). The data
generation layer is composed of the UAV system and the industrial control system.

4.1. Industrial Control System Architecture

Figure 7 shows the proposed approach system for data collection and the first layer control
between the sensors in the concrete plant. The sensors are connected to the PLC S7-1214 and all
information for these sensors is sent from PLC S7-1214 to PLC S7-1512 using the industrial
communication standard PROFINET over Ethernet. The PLC S7-1512 supports OPC-UA, which
adopts client-server architecture. The OPC UA client is installed in the IoT gateway using the Node-
RED OPC UA node. UaExpert is used in this case to check connectivity with the server. All the
incoming information is controlled by Node-RED.

Figure 7. Functional description of the proposed architecture.

In this first part of the delay analysis, our focus will be only on the OPC UA communications
between the IoT gateway and the PLC with the OPC UA server.

4.2. Latency between Two Terminals

Latency is the time network traffic delayed by the system processing, or the total time needed
to send a network packet from the application on one server to the application on another server
through the network interface controller (NIC), network (cable, Wi-Fi etc.), second NIC, and into
an application on another server (or client). To assess the latency between two terminals, most
approaches use the round-trip delay time (RTD) or the one-way delay (OWD). The latency in the
context of networking is the time spent by propagation through the network support and hardware
of the adapter, as well as the software execution times (application and OS) (Figure 8).

Figure 7. Functional description of the proposed architecture.

In this first part of the delay analysis, our focus will be only on the OPC UA communications
between the IoT gateway and the PLC with the OPC UA server.

4.2. Latency between Two Terminals

Latency is the time network traffic delayed by the system processing, or the total time needed to
send a network packet from the application on one server to the application on another server through
the network interface controller (NIC), network (cable, Wi-Fi etc.), second NIC, and into an application
on another server (or client). To assess the latency between two terminals, most approaches use the
round-trip delay time (RTD) or the one-way delay (OWD). The latency in the context of networking is
the time spent by propagation through the network support and hardware of the adapter, as well as
the software execution times (application and OS) (Figure 8).Sensors 2019, 19, x FOR PEER REVIEW 11 of 27

Figure 8. Latency between two terminals in a network.

The hardware latency inside switches and on wires can be easily identified from the switch
specifications, length of the wires, and the maximal transmission data rates, while the software
latency imposed by processing a packet in the software stack is more arduous to evaluate. Several
parameters like system workload, operating system and executed application influence software
latency.

Equation (1) defines the RTD between two terminals in a network, where tA and tB are the
software latency of the terminals A and B respectively, and tH marks the hardware latency of
switches and wires connecting the terminals A and B. 𝑅𝑇𝐷 = 2.𝑂𝑊𝐷 = 2. 𝑡 + 2. 𝑡 + 2. 𝑡 (1)

To accurately calculate OWD (by dividing the round-trip time by two), the configuration of
the test systems must be perfectly symmetrical, meaning they must be running the same software,
using the same settings, and have equal network and system performance.

4.3. Latency in OPC UA Network

In this section, we analyze the delays involved in client-server OPC UA communications in a
switched Ethernet network. This model serves to define in detail the non-deterministic sources of
end-to-end delay. The proposed model is based on time delays defined in [48,49] in an Ethernet-
based network. Figure 9 shows the round-trip data path from an OPC UA server in PLC automate
to an OPC UA client on the IoT gateway and the hardware OWD required.

Figure 9. OPC UA delay in OPC UA client server in an Ethernet network.

Figure 8. Latency between two terminals in a network.

The hardware latency inside switches and on wires can be easily identified from the switch
specifications, length of the wires, and the maximal transmission data rates, while the software latency
imposed by processing a packet in the software stack is more arduous to evaluate. Several parameters
like system workload, operating system and executed application influence software latency.

Equation (1) defines the RTD between two terminals in a network, where tA and tB are the software
latency of the terminals A and B respectively, and tH marks the hardware latency of switches and wires
connecting the terminals A and B.

RTD = 2.OWD = 2.tA + 2.tH + 2.tB (1)

Sensors 2019, 19, 3316 12 of 27

To accurately calculate OWD (by dividing the round-trip time by two), the configuration of the
test systems must be perfectly symmetrical, meaning they must be running the same software, using
the same settings, and have equal network and system performance.

4.3. Latency in OPC UA Network

In this section, we analyze the delays involved in client-server OPC UA communications in a
switched Ethernet network. This model serves to define in detail the non-deterministic sources of
end-to-end delay. The proposed model is based on time delays defined in [48,49] in an Ethernet-based
network. Figure 9 shows the round-trip data path from an OPC UA server in PLC automate to an OPC
UA client on the IoT gateway and the hardware OWD required.

Sensors 2019, 19, x FOR PEER REVIEW 11 of 27

Figure 8. Latency between two terminals in a network.

The hardware latency inside switches and on wires can be easily identified from the switch
specifications, length of the wires, and the maximal transmission data rates, while the software
latency imposed by processing a packet in the software stack is more arduous to evaluate. Several
parameters like system workload, operating system and executed application influence software
latency.

Equation (1) defines the RTD between two terminals in a network, where tA and tB are the
software latency of the terminals A and B respectively, and tH marks the hardware latency of
switches and wires connecting the terminals A and B. 𝑅𝑇𝐷 = 2.𝑂𝑊𝐷 = 2. 𝑡 + 2. 𝑡 + 2. 𝑡 (1)

To accurately calculate OWD (by dividing the round-trip time by two), the configuration of
the test systems must be perfectly symmetrical, meaning they must be running the same software,
using the same settings, and have equal network and system performance.

4.3. Latency in OPC UA Network

In this section, we analyze the delays involved in client-server OPC UA communications in a
switched Ethernet network. This model serves to define in detail the non-deterministic sources of
end-to-end delay. The proposed model is based on time delays defined in [48,49] in an Ethernet-
based network. Figure 9 shows the round-trip data path from an OPC UA server in PLC automate
to an OPC UA client on the IoT gateway and the hardware OWD required.

Figure 9. OPC UA delay in OPC UA client server in an Ethernet network. Figure 9. OPC UA delay in OPC UA client server in an Ethernet network.

We consider the end-to-end network delay in the switches and wires from the client request to
the server, which can be divided into three categories, the frame transmission delay (dt), the time
required to transmit all of the packet’s bits to the link, the propagation delay (dl), the time for one bit to
propagate from source to destination at propagation speed of the link, and the switching delays (ds),
which depend on the route through the network to the server.

The transmission delay depends on the length of packet L and capacity of link C. The propagation
delay is related to the distance between two switches and the propagation speed of the link S.

dl =
D
S

, dt =
L
C

(2)

The switch delay is defined as the time for one bit to traverse from switch input port to the
switch output port. It is divided into four delays: the first is the switch input delay (dSin), the delay
of the switch ingress port, including the reception of the PHY and MAC latency. The second is the
switch output delay (dSout), the delay of the switch egress port, including the transmission PHY and
MAC latency. The third delay is the switch queuing delay (dSq), the time a frame waits in the egress
port of a switch to start the transmission onto the link. The last is the switch processing delay (dSp),
the time required to examine the packet’s header and determine where to direct the packet is part of
the processing delay.

dS(t) = dSin + dSp + dSout + dSq(t) (3)

Sensors 2019, 19, 3316 13 of 27

The hardware end-to-end delay dCS presented as a request from an endpoint server S to the
destination endpoint in a client C can be expressed as the sum of the delays of all the switches and
links in the path, n being the number of links and n − 1 the number of switches along the path.

dCS(t) = dt +
n∑

i=1

(
dl,i

)
+

n−1∑
i=1

ds,i(t) (4)

Figure 10 reveals the architecture of the OPC UA server. The server application is the code that
implements the server function. Real objects are physical or software objects that are accessible by
the OPC UA server or internally maintained by it, such as physical devices and diagnostic counters.
Particular objects, such as Nodes, are used by OPC UA servers to represent real objects, their definitions
and references; all nodes are called AddressSpace. Nodes are accessible by clients using OPC UA
services (interfaces and methods) [50].

Sensors 2019, 19, x FOR PEER REVIEW 12 of 27

We consider the end-to-end network delay in the switches and wires from the client request
to the server, which can be divided into three categories, the frame transmission delay (dt), the time
required to transmit all of the packet’s bits to the link, the propagation delay (dl), the time for one
bit to propagate from source to destination at propagation speed of the link, and the switching
delays (ds), which depend on the route through the network to the server.

The transmission delay depends on the length of packet L and capacity of link C. The
propagation delay is related to the distance between two switches and the propagation speed of
the link S. 𝑑 = 𝐷𝑆 , 𝑑 = 𝐿𝐶 (2)

The switch delay is defined as the time for one bit to traverse from switch input port to the
switch output port. It is divided into four delays: the first is the switch input delay (dSin), the delay
of the switch ingress port, including the reception of the PHY and MAC latency. The second is the
switch output delay (dSout), the delay of the switch egress port, including the transmission PHY and
MAC latency. The third delay is the switch queuing delay (dSq), the time a frame waits in the egress
port of a switch to start the transmission onto the link. The last is the switch processing delay (dSp),
the time required to examine the packet’s header and determine where to direct the packet is part
of the processing delay. 𝑑 (𝑡) = 𝑑 + 𝑑 + 𝑑 + 𝑑 (𝑡) (3)

The hardware end-to-end delay dCS presented as a request from an endpoint server S to the
destination endpoint in a client C can be expressed as the sum of the delays of all the switches and
links in the path, n being the number of links and n − 1 the number of switches along the path.

𝑑 (𝑡) = 𝑑 + 𝑑 , + 𝑑 , (𝑡) (4)

Figure 10 reveals the architecture of the OPC UA server. The server application is the code that
implements the server function. Real objects are physical or software objects that are accessible by
the OPC UA server or internally maintained by it, such as physical devices and diagnostic counters.
Particular objects, such as Nodes, are used by OPC UA servers to represent real objects, their
definitions and references; all nodes are called AddressSpace. Nodes are accessible by clients using
OPC UA services (interfaces and methods) [50].

Figure 10. Architecture of the OPC UA Server. Figure 10. Architecture of the OPC UA Server.

In the case of m number of requests from clients to the nodes in the OPC UA server, the overall
hardware end-to-end delay of the OPC UA client-server (dCS) communication over an Ethernet network,
when there are m requests from the client to the server, is presented as:

tH = dCS(t) =
m∑

j=1

(
dt, j

)
+

n∑
i=1

(
dl,i

)
+

n−1∑
i=1

(ds,i) (5)

By analyzing all the delays mentioned in the hardware, we admit that the end-to-end delay on
Ethernet network is deterministic, except the delay in the switch queue, which depends on the link
utilization. The packet queuing delay increases in a frequently used link.

By investigating the hardware delays for an OPC UA client/server communication in an Ethernet
network, we conclude that it is hard to define exactly the hardware delay on the account of the
queuing delay. In that case, when it comes to complex processes with real-time requirements, OPC
UA reaches its limits. There are different ways of defining this delay, for example QoS techniques
such as QFQ (weighted fair queuing) or strict priority [14]; however, there is always a certain delay
and jitter that limits real-time performance. Time sensitive networking (TSN) provides mechanisms
for the transmission of time-sensitive data over Ethernet networks. The adoption of OPC-UA over
TSN will also drive this paradigm in the world of deterministic and real-time machine to machine
communications. TSN provides mechanisms for the transmission of time-sensitive data over Ethernet

Sensors 2019, 19, 3316 14 of 27

networks. With Ethernet’s limitations in terms of traffic prioritization, the TSN working group has
developed the time-aware scheduler (TAS), defined in 802.1Qbv [51]. TAS is based on TDMA, which
solves the problem of synchronization and traffic priority in the Ethernet. By using this technique,
queuing delay can be completely eliminated, hence the end-to-end latency becomes deterministic.
Bruckner, et al. [52] adopted this method to evaluate OPC UA performance on TSN with the most
commonly used communication technologies.

4.4. UAV System Delay

There are several ways to introduce latency in a drone’s video compression and transmission
system. The end-to end delay in the system can be divided into seven categories (Figure 11): Tcap is the
capture time, Tenc the time required to encode, the resulting transmission delay is Ttx, Tnw is the delay
network when the drone is connected to the remote ground station via a network, Trx is due to the
ground station also being wirelessly connected to a network, Tdec is the decoding delay at the reception
station, and Tdisp is the display latency.

T = Tcap + Tenc + Ttx + Tnw + Trx + Tdec + Tdisp (6)

Sensors 2019, 19, x FOR PEER REVIEW 13 of 27

In the case of m number of requests from clients to the nodes in the OPC UA server, the overall
hardware end-to-end delay of the OPC UA client-server (dCS) communication over an Ethernet
network, when there are m requests from the client to the server, is presented as:

𝑡 = 𝑑 (𝑡) = 𝑑 , + 𝑑 , + 𝑑 , (5)

By analyzing all the delays mentioned in the hardware, we admit that the end-to-end delay
on Ethernet network is deterministic, except the delay in the switch queue, which depends on the
link utilization. The packet queuing delay increases in a frequently used link.

By investigating the hardware delays for an OPC UA client/server communication in an
Ethernet network, we conclude that it is hard to define exactly the hardware delay on the account
of the queuing delay. In that case, when it comes to complex processes with real-time requirements,
OPC UA reaches its limits. There are different ways of defining this delay, for example QoS
techniques such as QFQ (weighted fair queuing) or strict priority [14]; however, there is always a
certain delay and jitter that limits real-time performance. Time sensitive networking (TSN)
provides mechanisms for the transmission of time-sensitive data over Ethernet networks. The
adoption of OPC-UA over TSN will also drive this paradigm in the world of deterministic and real-
time machine to machine communications. TSN provides mechanisms for the transmission of time-
sensitive data over Ethernet networks. With Ethernet’s limitations in terms of traffic prioritization,
the TSN working group has developed the time-aware scheduler (TAS), defined in 802.1Qbv [51].
TAS is based on TDMA, which solves the problem of synchronization and traffic priority in the
Ethernet. By using this technique, queuing delay can be completely eliminated, hence the end-to-
end latency becomes deterministic. Bruckner, et al. [52] adopted this method to evaluate OPC UA
performance on TSN with the most commonly used communication technologies.

4.4. UAV System Delay

There are several ways to introduce latency in a drone’s video compression and transmission
system. The end-to end delay in the system can be divided into seven categories (Figure 11): Tcap is
the capture time, Tenc the time required to encode, the resulting transmission delay is Ttx, Tnw is the
delay network when the drone is connected to the remote ground station via a network, Trx is due
to the ground station also being wirelessly connected to a network, Tdec is the decoding delay at the
reception station, and Tdisp is the display latency. 𝑇 = 𝑇 + 𝑇 + 𝑇 + 𝑇 + 𝑇 + 𝑇 + 𝑇 (6)

Figure 11. Video transmission system delay sources.

Note that when the drone is communicating directly with the ground station, no network is
involved and there is only a single transmission delay (Tnw = 0 and Trx = 0). 𝑇 = 𝑇 + 𝑇 + 𝑇 + 𝑇 + 𝑇 (7)

In the H.264 system, each video frame is organized into slices which are in turn divided into
non-overlapping blocks and macro-blocks (two-dimensional unit of a video frame). Every slice is

Figure 11. Video transmission system delay sources.

Note that when the drone is communicating directly with the ground station, no network is
involved and there is only a single transmission delay (Tnw = 0 and Trx = 0).

T = Tcap + Tenc + Ttx + Tdec + Tdisp (7)

In the H.264 system, each video frame is organized into slices which are in turn divided into
non-overlapping blocks and macro-blocks (two-dimensional unit of a video frame). Every slice is
independently encoded and can decode itself without reference to another slice. The main advantage
of this system is that it is not required to wait for the entire frame to be captured before starting to
encode. As soon as one slice is captured, the encoding process can start, and slice transmission can
begin. This technique has a consistent effect on the overall latency as it influences all the system
latencies from encoding to display.

Theoretically, we define the overall latency by the number of slices N, although in practice this
may not be the case due to setting up and processing individual slices.

T = Tcap + N.
(
Tenc + Ttx + Tdec + Tdisp

)
(8)

In order to efficiently transmit and minimize the bandwidth, it is important to use video
compression techniques, although the slice technique also has an effect on the compression ratio.
The higher the number of slices, the faster they can be encoded and transmitted, although as this number
increases, the number of bits used for a slice and the effective slice transmission time also increase.

Other types of delay also affect the overall delay. Some factors can be adjusted when a UAV
system is used. For example, Tcap depends on the frame rate of the UAV camera; the higher the frame

Sensors 2019, 19, 3316 15 of 27

rate, the shorter the capture time. Tx relies on the available data bandwidth of the transmission channel,
while Tdisp (video capture) is based on the refresh rate of the display.

5. Drone Mission and IBM WVR Results

The drone in the worksite (concrete mixing plant) is located in the base station, which is at a
distance from the conveyor belts and is always ready for new requests from the industrial control
system. Using the library described in Section 4, the drone is able to automatically take-off and follow a
predefined path around the conveyors belts to take the required photos (Figure 4). The drone’s mission
is accomplished in three steps (Figure 12). The drone carried out 10 test missions in three days in a real
concrete batching plant in Cartagena (Spain). The first step was to fly around 130 m to the beginning
of the conveyor belts. It then hovered over the belts, took photos and sent them to the IoT gateway.
In the last step the drone returned to the starting point (Figure 12).

Sensors 2019, 19, x FOR PEER REVIEW 14 of 27

independently encoded and can decode itself without reference to another slice. The main
advantage of this system is that it is not required to wait for the entire frame to be captured before
starting to encode. As soon as one slice is captured, the encoding process can start, and slice
transmission can begin. This technique has a consistent effect on the overall latency as it influences
all the system latencies from encoding to display.

Theoretically, we define the overall latency by the number of slices N, although in practice this
may not be the case due to setting up and processing individual slices. 𝑇 = 𝑇 + 𝑁. (𝑇 + 𝑇 + 𝑇 + 𝑇) (8)

In order to efficiently transmit and minimize the bandwidth, it is important to use video
compression techniques, although the slice technique also has an effect on the compression ratio.
The higher the number of slices, the faster they can be encoded and transmitted, although as this
number increases, the number of bits used for a slice and the effective slice transmission time also
increase.

Other types of delay also affect the overall delay. Some factors can be adjusted when a UAV
system is used. For example, Tcap depends on the frame rate of the UAV camera; the higher the
frame rate, the shorter the capture time. Tx relies on the available data bandwidth of the
transmission channel, while Tdisp (video capture) is based on the refresh rate of the display.

5. Drone Mission and IBM WVR Results

The drone in the worksite (concrete mixing plant) is located in the base station, which is at a
distance from the conveyor belts and is always ready for new requests from the industrial control
system. Using the library described in Section 4, the drone is able to automatically take-off and
follow a predefined path around the conveyors belts to take the required photos (Figure 4). The
drone’s mission is accomplished in three steps (Figure 12). The drone carried out 10 test missions
in three days in a real concrete batching plant in Cartagena (Spain). The first step was to fly around
130 m to the beginning of the conveyor belts. It then hovered over the belts, took photos and sent
them to the IoT gateway. In the last step the drone returned to the starting point (Figure 12).

Figure 12. Path used by the drone to execute the mission in a concrete plant.

5.1. IBM Watson Image Recognition Training

Off-board image processing techniques were selected due to the asset of the cloud services.
MATLAB, OpenCV or TensorFlow could also have been used as the control system; however, the
cloud completes the computing activities and provides an efficient time and cost optimization.
IBM’s Watson visual recognition (WVR) service analyzes the content of images from the drone

Figure 12. Path used by the drone to execute the mission in a concrete plant.

5.1. IBM Watson Image Recognition Training

Off-board image processing techniques were selected due to the asset of the cloud services.
MATLAB, OpenCV or TensorFlow could also have been used as the control system; however, the cloud
completes the computing activities and provides an efficient time and cost optimization. IBM’s Watson
visual recognition (WVR) service analyzes the content of images from the drone camera transmitted
through the IoT gateway (see Figure 1). This service can classify and train visual content using machine
learning techniques.

The WVR service enables us to create our own custom classifier model for visual recognition.
Each sample file is trained against the other files, and positive examples are stored as classes. These
classes are grouped to define a single model and return their own scores. There is also a default
negative class to train the model with images that do not depict the visual subject of any of the other
positive classes. Negatives example files are deployed to improve the results and are not stored as
positives classes.

WVR is based in part on the technology developed for the IBM multimedia analysis and retrieval
system (IMARS) [53], supplemented by “deep features” that are extracted on Caffe software [54].
The WVR service extracts feature vectors from a particular layer of a Caffe network for all the supplied
examples and uses them to train a one-versus-all support vector machine (SVM) model for each class.
The feature extraction process is therefore equivalent to “inferencing” with the neural network, but the
SVM learning process is less CPU intensive than inferencing [55].

The Watson service generally accepts a maximum of 10,000 images or 100 MB per .zip file and
a minimum of 10 images per .zip file, with different angles and scenarios to obtain the maximum

Sensors 2019, 19, 3316 16 of 27

precision. The service recommends that the images be at least 224 × 224 pixels and contain at least 30%
of the subject matter.

In order to train the custom model, we used a dataset of the images captured by the UAV camera
from the field of practice in different positions. In addition, we roughly divided the use case into two
parts: a mixed material set and a normal material set (Figure 13).

Sensors 2019, 19, x FOR PEER REVIEW 15 of 27

camera transmitted through the IoT gateway (see Figure 1). This service can classify and train visual
content using machine learning techniques.

The WVR service enables us to create our own custom classifier model for visual recognition.
Each sample file is trained against the other files, and positive examples are stored as classes. These
classes are grouped to define a single model and return their own scores. There is also a default
negative class to train the model with images that do not depict the visual subject of any of the
other positive classes. Negatives example files are deployed to improve the results and are not
stored as positives classes.

WVR is based in part on the technology developed for the IBM multimedia analysis and
retrieval system (IMARS) [53], supplemented by “deep features” that are extracted on Caffe
software [54]. The WVR service extracts feature vectors from a particular layer of a Caffe network
for all the supplied examples and uses them to train a one-versus-all support vector machine (SVM)
model for each class. The feature extraction process is therefore equivalent to “inferencing” with
the neural network, but the SVM learning process is less CPU intensive than inferencing [55].

The Watson service generally accepts a maximum of 10,000 images or 100 MB per .zip file and
a minimum of 10 images per .zip file, with different angles and scenarios to obtain the maximum
precision. The service recommends that the images be at least 224 × 224 pixels and contain at least
30% of the subject matter.

In order to train the custom model, we used a dataset of the images captured by the UAV
camera from the field of practice in different positions. In addition, we roughly divided the use
case into two parts: a mixed material set and a normal material set (Figure 13).

(a) (b)

Figure 13. Dataset used to train the custom model in WVR service: (a) Shows images used to train
the Mixed class; (b) Shows Images used to train the Normal class.

The classification is divided into two stages, the training stage and the testing and validation
stage, and the images used in the second stage are not used in the first.

In the training stage we used the dataset images to create two new classes, a Normal class, and
a Mixed class. These classes were grouped to define a single custom model. In the testing stage, the
results of the Watson tests are shown as a confidence score for the image in the range of 0 to 1. A
higher score indicates that the class is more likely to be depicted in the image. The scores are
considered as a threshold for action, and the confidence score are based on training images,
evaluation images, and the types of criteria of the desired classification. Figure 14 shows the test of
three different new images and the results of each class score. WVR recognized the difference
between the images according to the density of the normal material on the conveyors. For instance,
the confidence score for the test-3 .jpg image is 0.92 for the normal class, indicating the greater
likelihood of this class being in the image.

Figure 13. Dataset used to train the custom model in WVR service: (a) Shows images used to train the
Mixed class; (b) Shows Images used to train the Normal class.

The classification is divided into two stages, the training stage and the testing and validation
stage, and the images used in the second stage are not used in the first.

In the training stage we used the dataset images to create two new classes, a Normal class, and
a Mixed class. These classes were grouped to define a single custom model. In the testing stage,
the results of the Watson tests are shown as a confidence score for the image in the range of 0 to
1. A higher score indicates that the class is more likely to be depicted in the image. The scores are
considered as a threshold for action, and the confidence score are based on training images, evaluation
images, and the types of criteria of the desired classification. Figure 14 shows the test of three different
new images and the results of each class score. WVR recognized the difference between the images
according to the density of the normal material on the conveyors. For instance, the confidence score for
the test-3 .jpg image is 0.92 for the normal class, indicating the greater likelihood of this class being in
the image.Sensors 2019, 19, x FOR PEER REVIEW 16 of 27

Figure 14. Watson visual recognition test of new images not used in the training phase.

5.2. WVR Performance Evaluation

To evaluate the performance of the WVR, we used a formula to calculate the accuracy as
defined by Equation (9). To validate the WVR performance in this case, we tested a dataset of more
than 100 photos and achieved a final detection accuracy of 87.28%. The misclassified cases are listed
in Table 1, which represents the confusion matrix. Based on a large number of tests with new
images not used in the training phase, we were able to define the threshold of each score class,
make a decision, and then send the order to the industrial control system to adjust the material
quantities on the conveyor belts. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (9)

where FP represents the number of negatives samples that are judged to be positive, TP is the
number of positive samples judged to be positive, TN the number of negative samples judged
negative and FN is the number of positive samples judged to be negative.

Table 1. Confusion matrix.

 Predictive Positive Predictive Negative
True Positive 58 (TP) 6 (FN)
True Negative 9 (FP) 45 (TN)

5.3. IBM Watson Image Recognition Results

The novelty of the proposed IoT control system is that it provides real-time interaction
between an industrial control system, UAVs and the cloud. Based on the input information from
the concrete plant, the UAV can interact and execute the mission automatically and provide the
necessary photos to the cloud to compute and analyze the data by deep learning methods and send
the result back to the control system for decision-making.

After training the WVR model in the cloud, Node-RED can send new photos stored in the IoT
gateway to the cloud service using the WVR recognition node and the get-file node (Figure 15). The
cloud service classifies the new photos and sends back the results to the WVR node to be analyzed
and sent to the PLC via the OPC UA protocol. Figure 15 shows the results obtained from the WVR
node in Node-RED. The service classifies the image and produces two scores for each class.

Figure 14. Watson visual recognition test of new images not used in the training phase.

5.2. WVR Performance Evaluation

To evaluate the performance of the WVR, we used a formula to calculate the accuracy as defined
by Equation (9). To validate the WVR performance in this case, we tested a dataset of more than 100

Sensors 2019, 19, 3316 17 of 27

photos and achieved a final detection accuracy of 87.28%. The misclassified cases are listed in Table 1,
which represents the confusion matrix. Based on a large number of tests with new images not used in
the training phase, we were able to define the threshold of each score class, make a decision, and then
send the order to the industrial control system to adjust the material quantities on the conveyor belts.

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

where FP represents the number of negatives samples that are judged to be positive, TP is the number
of positive samples judged to be positive, TN the number of negative samples judged negative and FN
is the number of positive samples judged to be negative.

Table 1. Confusion matrix.

Predictive Positive Predictive Negative

True Positive 58 (TP) 6 (FN)
True Negative 9 (FP) 45 (TN)

5.3. IBM Watson Image Recognition Results

The novelty of the proposed IoT control system is that it provides real-time interaction between
an industrial control system, UAVs and the cloud. Based on the input information from the concrete
plant, the UAV can interact and execute the mission automatically and provide the necessary photos to
the cloud to compute and analyze the data by deep learning methods and send the result back to the
control system for decision-making.

After training the WVR model in the cloud, Node-RED can send new photos stored in the IoT
gateway to the cloud service using the WVR recognition node and the get-file node (Figure 15).
The cloud service classifies the new photos and sends back the results to the WVR node to be analyzed
and sent to the PLC via the OPC UA protocol. Figure 15 shows the results obtained from the WVR
node in Node-RED. The service classifies the image and produces two scores for each class.Sensors 2019, 19, x FOR PEER REVIEW 17 of 27

Figure 15. Node-RED flow and WVR results of a UAV photo.

6. System Performance

This section provides the RTD time measurements of the IoT gateway connections in its
conditions of use and underlines the crucial role of the IoT gateway in terms of latency. In this
application, the IoT gateway is connected to different systems with different transmitted data. Each
IoT gateway has its own software and hardware components to process the data with different
processing times. Below, we evaluate this difference by using three gateways with different
performances. Table 2 shows the specification of each of the three selected platforms.

Table 2. Specification of each machine environment.

 Siemens Gateway
IOT2040

Raspberry Pi 3
Model B

Toshiba SATELLITE
C870

Ethernet 2 × 10/100 Ethernet RJ45 10/100 BaseT
Ethernet socket

10/100 BaseT Ethernet
RJ-45

Processor Intel Quark ×1020
400 MHz

1.2 GHz Quad-Core
ARMv7

Intel Core i3 2348-M
CPU 2.3 GHz

Operation
System

Linux Kernel 4-4-18
Yocto Standard

Linux Raspbian
4.14.79-v7+ Windows 7 Professional

RAM 1GB 1GB 8GB
Disk Memory 32GB B

6.1. OPC Experimental Method and Results

A case study was used to define the latency of the OPC UA client-server architecture. The
experimental set-up was based on an industrial plant and software in addition to three different
IoT-based platforms. The industrial control system deployed as an OPC UA server uses a Siemens
S7-1512 with embedded OPC UA communication stack. The OPC UA client is implemented using
Node-RED OPC UA client node in the three different devices, the IoT gateway IOT2040 from
Siemens (S-G), a Raspberry Pi 3 Model B (RPI-G) and a PC computer Toshiba SATELLITE (PC-G)
(Figure 16). In the first step of the latency study we compared the RTD with the three different
devices considered as OPC UA client attached to the same Siemens S7-1512 OPC UA server
network.

Figure 15. Node-RED flow and WVR results of a UAV photo.

6. System Performance

This section provides the RTD time measurements of the IoT gateway connections in its conditions
of use and underlines the crucial role of the IoT gateway in terms of latency. In this application, the IoT
gateway is connected to different systems with different transmitted data. Each IoT gateway has its
own software and hardware components to process the data with different processing times. Below,
we evaluate this difference by using three gateways with different performances. Table 2 shows the
specification of each of the three selected platforms.

Sensors 2019, 19, 3316 18 of 27

Table 2. Specification of each machine environment.

Siemens Gateway IOT2040 Raspberry Pi 3 Model B Toshiba SATELLITE C870

Ethernet 2 × 10/100 Ethernet RJ45 10/100 BaseT Ethernet socket 10/100 BaseT Ethernet RJ-45

Processor Intel Quark ×1020
400 MHz 1.2 GHz Quad-Core ARMv7 Intel Core i3 2348-M CPU 2.3 GHz

Operation System Linux Kernel 4-4-18 Yocto Standard Linux Raspbian 4.14.79-v7+ Windows 7 Professional
RAM 1 GB 1 GB 8 GB

Disk Memory 32 GB B

6.1. OPC Experimental Method and Results

A case study was used to define the latency of the OPC UA client-server architecture.
The experimental set-up was based on an industrial plant and software in addition to three different
IoT-based platforms. The industrial control system deployed as an OPC UA server uses a Siemens
S7-1512 with embedded OPC UA communication stack. The OPC UA client is implemented using
Node-RED OPC UA client node in the three different devices, the IoT gateway IOT2040 from Siemens
(S-G), a Raspberry Pi 3 Model B (RPI-G) and a PC computer Toshiba SATELLITE (PC-G) (Figure 16).
In the first step of the latency study we compared the RTD with the three different devices considered
as OPC UA client attached to the same Siemens S7-1512 OPC UA server network.Sensors 2019, 19, x FOR PEER REVIEW 18 of 27

Figure 16. OPC UA delay in OPC UA client server in an Ethernet network.

The proposed application is deployed in a local network and is based on a simple use case that
consists of reading one bit from the OPC UA server. All the RTD measurements were conducted
on the same network. In these conditions we consider that RTD delay is derived mainly from the
Tx software latency of the software stack of device x (Equation (1)), assuming insignificant
hardware TH latency of the wires and switch.

A machine MX is defined as well as a pair of hardware setup HW and a software setup SW: 𝑀 = (𝐻𝑊, 𝑆𝑊). (10)

The software setup SW is defined as the set of all software elements in this machine and the
hardware setup HW is defined as the set of all hardware elements [56]. 𝐻𝑊 = 𝑀𝑒𝑚𝑜𝑟𝑦, 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟, 𝑁𝐼𝐶. . . (11) 𝑆𝑊 = 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑂𝑆, 𝐷𝑟𝑖𝑣𝑒𝑟𝑠. . . (12)

A timestamp contained in an inject node in Node-RED was used to measure latency (Figure
17). In every request, the timestamp request is saved by a function node. We define latency L as the
difference between the timestamp of response from the server and the timestamp request of the
client saved in the first function. Thus, latency L is measured as: 𝐿 = 𝑇 − 𝑇 = 𝑅𝑇𝐷 (13)

The latency results are summarized in Table 3, showing the RTD average, standard deviation,
minimal and maximal values calculated for each fog computing machine. All the samples were
thoroughly checked for the same architecture on different days in an experimental campaign with
more than 5000 valid samples. The OPC UA requests were repeated each second to read the one
bit value in the OPC UA server (Figure 17). S-G gateway latency is higher than in the RPI-G and
PC-G gatways, approximately three times that of the RPI-G and seven times that of the S-G. This
difference is evident in the probability density function as shown in Figure 18. The shapes of the
RPI-G and the PC-G are almost the same with a single peak, while the S-G shape is narrower and
scattered over a large time area.

Figure 17. Node-RED flow used to calculate round trip latency (OPC UA Client to the OPC UA
Server).

Figure 16. OPC UA delay in OPC UA client server in an Ethernet network.

The proposed application is deployed in a local network and is based on a simple use case that
consists of reading one bit from the OPC UA server. All the RTD measurements were conducted on the
same network. In these conditions we consider that RTD delay is derived mainly from the Tx software
latency of the software stack of device x (Equation (1)), assuming insignificant hardware TH latency of
the wires and switch.

A machine MX is defined as well as a pair of hardware setup HW and a software setup SW:

Mx = (HW, SW). (10)

The software setup SW is defined as the set of all software elements in this machine and the
hardware setup HW is defined as the set of all hardware elements [56].

HW =
{
Memory, Processor, NIC . . .

}
(11)

SW =
{
Application, OS, Drivers . . .

}
(12)

A timestamp contained in an inject node in Node-RED was used to measure latency (Figure 17).
In every request, the timestamp request is saved by a function node. We define latency L as the
difference between the timestamp of response from the server and the timestamp request of the client
saved in the first function. Thus, latency L is measured as:

L = Trequest − Tresponse = RTD (13)

Sensors 2019, 19, 3316 19 of 27

Sensors 2019, 19, x FOR PEER REVIEW 18 of 27

Figure 16. OPC UA delay in OPC UA client server in an Ethernet network.

The proposed application is deployed in a local network and is based on a simple use case that
consists of reading one bit from the OPC UA server. All the RTD measurements were conducted
on the same network. In these conditions we consider that RTD delay is derived mainly from the
Tx software latency of the software stack of device x (Equation (1)), assuming insignificant
hardware TH latency of the wires and switch.

A machine MX is defined as well as a pair of hardware setup HW and a software setup SW: 𝑀 = (𝐻𝑊, 𝑆𝑊). (10)

The software setup SW is defined as the set of all software elements in this machine and the
hardware setup HW is defined as the set of all hardware elements [56]. 𝐻𝑊 = 𝑀𝑒𝑚𝑜𝑟𝑦, 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟, 𝑁𝐼𝐶. . . (11) 𝑆𝑊 = 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑂𝑆, 𝐷𝑟𝑖𝑣𝑒𝑟𝑠. . . (12)

A timestamp contained in an inject node in Node-RED was used to measure latency (Figure
17). In every request, the timestamp request is saved by a function node. We define latency L as the
difference between the timestamp of response from the server and the timestamp request of the
client saved in the first function. Thus, latency L is measured as: 𝐿 = 𝑇 − 𝑇 = 𝑅𝑇𝐷 (13)

The latency results are summarized in Table 3, showing the RTD average, standard deviation,
minimal and maximal values calculated for each fog computing machine. All the samples were
thoroughly checked for the same architecture on different days in an experimental campaign with
more than 5000 valid samples. The OPC UA requests were repeated each second to read the one
bit value in the OPC UA server (Figure 17). S-G gateway latency is higher than in the RPI-G and
PC-G gatways, approximately three times that of the RPI-G and seven times that of the S-G. This
difference is evident in the probability density function as shown in Figure 18. The shapes of the
RPI-G and the PC-G are almost the same with a single peak, while the S-G shape is narrower and
scattered over a large time area.

Figure 17. Node-RED flow used to calculate round trip latency (OPC UA Client to the OPC UA
Server).

Figure 17. Node-RED flow used to calculate round trip latency (OPC UA Client to the OPC UA Server).

The latency results are summarized in Table 3, showing the RTD average, standard deviation,
minimal and maximal values calculated for each fog computing machine. All the samples were
thoroughly checked for the same architecture on different days in an experimental campaign with
more than 5000 valid samples. The OPC UA requests were repeated each second to read the one bit
value in the OPC UA server (Figure 17). S-G gateway latency is higher than in the RPI-G and PC-G
gatways, approximately three times that of the RPI-G and seven times that of the S-G. This difference is
evident in the probability density function as shown in Figure 18. The shapes of the RPI-G and the
PC-G are almost the same with a single peak, while the S-G shape is narrower and scattered over a
large time area.

Table 3. RTD test of 5200 samples from the OPC UA client to the OPC UA server (PLC) over different
clients through different machines.

Client Test
Environment Data Type Average Standard

Deviation
Minimum

Latency
Maximum

Latency

S-G BOOL (1 bit) 23.160 ms 23.56 ms 19 ms 878 ms
RPI-G BOOL (1 bit) 8.22 ms 3.48 ms 5 ms 76 ms
PC-G BOOL (1 bit) 3.288 ms 2.65 ms 0 ms 32 ms

Sensors 2019, 19, x FOR PEER REVIEW 19 of 27

Table 3. RTD test of 5200 samples from the OPC UA client to the OPC UA server (PLC) over
different clients through different machines.

Client Test
Environment

Data Type Average Standard
Deviation

Minimum
Latency

Maximum
Latency

S-G BOOL (1 bit) 23.160
ms

23.56 ms 19 ms 878 ms

RPI-G BOOL (1 bit) 8.22 ms 3.48 ms 5 ms 76 ms
PC-G BOOL (1 bit) 3.288 ms 2.65 ms 0 ms 32 ms

Figure 18. OPC UA client-server RTD to read one bit through different machines.

In order to analyze this large difference in the recorded RTD between S-G and RPI-G, we
continuously monitored the CPU load for 5 min during the OPC UA channel’s RTD. The S-G and
RPI-G gateways were tested separately in the same network conditions and running only Node-
RED, which runs the OPC UA client. The computed CPU usage was calculated as the average of
all the cores in the S-G and RPI-G gateways (see Figure 19).

Given the analogy of a similar situation [57], which assumes that the larger the RTD pattern
peaks the higher the probability they are due to the higher CPU load, although the recorded CPU
load patterns are not only due to the OPC UA client implemented in Node-RED. Nonetheless, we
compared the impact of CPU usage in the RTD as regards the same conditions in the two gateways.
It should be noted that the impact of Node.js can be estimated to be around 10% of the processing
power of the gateway used in the demonstration case, and the number of devices connected to the
gateway linearly increases CPU and memory usage [15].

There is always intense use of CPU in the S-G RTD when high latency is detected. The S-G
peaks sometimes exceed 400 ms (Figure 19 and Table 3) while in the RPI-G they do not exceed 80
ms. Furthermore, the average CPU load of the RPI-G is much lower than that of the S-G. The
average value of the CPU load in the RPI-G is around 1.7%, while in the S-G it is around 8% and
the number of devices connected to the gateway linearly increases the CPU load.

Figure 18. OPC UA client-server RTD to read one bit through different machines.

In order to analyze this large difference in the recorded RTD between S-G and RPI-G,
we continuously monitored the CPU load for 5 min during the OPC UA channel’s RTD. The S-G and
RPI-G gateways were tested separately in the same network conditions and running only Node-RED,
which runs the OPC UA client. The computed CPU usage was calculated as the average of all the cores
in the S-G and RPI-G gateways (see Figure 19).

Sensors 2019, 19, 3316 20 of 27

Sensors 2019, 19, x FOR PEER REVIEW 20 of 27

(a) (b)

Figure 19. (a) Simulation results of CPU load (%) versus OPC UA RTD (ms) in the S-G; (b)
Simulation results of CPU load (%) versus OPC UA RTD (ms) in the RPI-G.

6.2. Watson Experimental Method

The IBM Watson visual recognition service is currently operated in a datacenter in Dallas
(USA). Internally, the service uses deep neural networks to analyze images. More than one server
is used to provide high throughput and reliability. Node-RED provides a node to connect to the
WVR service that takes an image as input and produces a set of image labels as output.

The experiments carried out were based on Equation (13) and used the Node-RED flow. The
latency results are summarized in Table 4, the RTD average, standard deviation, minimal and
maximal values calculated for each fog computing machine. All the samples were carefully and
thoroughly checked for the same architecture on the same day. The experiment was repeated for
one sample field case image less than a data block size of 154,076 bytes. Each experimental
campaign had around 100 valid samples for each machine. Between each 100 requests, the next
request is triggered at the time of receiving the results of the previous request from the WVR.

Table 4. RTD test of 100 samples from the IoT gateway to IBM Watson over different machines.

Client Test
Environment Average

Standard
Deviation

Minimum
Latency

Maximum
Latency

S-G 1913.18 ms 522.17 ms 1454 ms 5594 ms
RPI-G 1373.09 ms 453.64 ms 1080 ms 5151 ms
PC-G 1129.29 ms 181.97 ms 980 ms 2491 ms

The results reported in Table 4 display the differences between the different fog machines. The
average S-G score is higher than RPI-G and PC-G. However, RPI-G is faster than S-G and had a
larger standard deviation, while PC-G is faster than RSP-G with a low standard deviation.

The probability density function estimates of the WVR delay for the three gateway machines
are given in (Figure 20). In this case, the probability density of the RPI-G has almost the same
curvature as that of S-G, while the probability density of PC-G is larger.

Figure 19. (a) Simulation results of CPU load (%) versus OPC UA RTD (ms) in the S-G; (b) Simulation
results of CPU load (%) versus OPC UA RTD (ms) in the RPI-G.

Given the analogy of a similar situation [57], which assumes that the larger the RTD pattern
peaks the higher the probability they are due to the higher CPU load, although the recorded CPU load
patterns are not only due to the OPC UA client implemented in Node-RED. Nonetheless, we compared
the impact of CPU usage in the RTD as regards the same conditions in the two gateways. It should be
noted that the impact of Node.js can be estimated to be around 10% of the processing power of the
gateway used in the demonstration case, and the number of devices connected to the gateway linearly
increases CPU and memory usage [15].

There is always intense use of CPU in the S-G RTD when high latency is detected. The S-G
peaks sometimes exceed 400 ms (Figure 19 and Table 3) while in the RPI-G they do not exceed 80 ms.
Furthermore, the average CPU load of the RPI-G is much lower than that of the S-G. The average
value of the CPU load in the RPI-G is around 1.7%, while in the S-G it is around 8% and the number of
devices connected to the gateway linearly increases the CPU load.

6.2. Watson Experimental Method

The IBM Watson visual recognition service is currently operated in a datacenter in Dallas (USA).
Internally, the service uses deep neural networks to analyze images. More than one server is used to
provide high throughput and reliability. Node-RED provides a node to connect to the WVR service
that takes an image as input and produces a set of image labels as output.

The experiments carried out were based on Equation (13) and used the Node-RED flow. The latency
results are summarized in Table 4, the RTD average, standard deviation, minimal and maximal values
calculated for each fog computing machine. All the samples were carefully and thoroughly checked for
the same architecture on the same day. The experiment was repeated for one sample field case image
less than a data block size of 154,076 bytes. Each experimental campaign had around 100 valid samples
for each machine. Between each 100 requests, the next request is triggered at the time of receiving the
results of the previous request from the WVR.

Table 4. RTD test of 100 samples from the IoT gateway to IBM Watson over different machines.

Client Test Environment Average Standard Deviation Minimum Latency Maximum Latency

S-G 1913.18 ms 522.17 ms 1454 ms 5594 ms
RPI-G 1373.09 ms 453.64 ms 1080 ms 5151 ms
PC-G 1129.29 ms 181.97 ms 980 ms 2491 ms

The results reported in Table 4 display the differences between the different fog machines.
The average S-G score is higher than RPI-G and PC-G. However, RPI-G is faster than S-G and had a
larger standard deviation, while PC-G is faster than RSP-G with a low standard deviation.

Sensors 2019, 19, 3316 21 of 27

The probability density function estimates of the WVR delay for the three gateway machines are
given in (Figure 20). In this case, the probability density of the RPI-G has almost the same curvature as
that of S-G, while the probability density of PC-G is larger.

Sensors 2019, 19, x FOR PEER REVIEW 21 of 27

Figure 20. Probability density function estimates IBM WVR latency to classify an image located in
the IoT gateway.

Since the WVR node in Node-RED relies on the HTTP protocol to send the images to the cloud,
we performed another test using SpeedTest to measure HTTP throughput between the web server
and client over the three gateways considered as clients (on the same day with the same network
conditions). The results obtained in Table 5 present similar outcomes in the download, while the S-
G upload is lower than the other gateways.

Table 5. SpeedTest over the 3 gateways.

Machine Ping Download Upload
S-G 169.4 ms 16.3 Mbps 9.5 Mbps

RPI-G 96.4 ms 17.6 Mbps 13.8 Mbps
PC-G 55.7 ms 17.5 Mbps 12.3 Mbps

6.3. UAV Experimental Results

The streaming quality of the proposed Node.js application was measured under certain
conditions of use to compare the response time on different IoT gateways in the same
configurations and conditions. The transmission channel, frame rates and compression techniques
were the same in all the tests on the recording of camera images and saving them to a folder in the
IoT gateway. The image frames were captured and registered in a buffer before being sent to the
gateway. Encoding was performed by FFMPEG codec, and the received frames were decoded in
the gateway before being saved on the gateway disk.

6.3.1. Codec Latency

The AR.Drone library [42] uses the basic H264 profile (MPEG4.10 AVC) for high quality
streaming and video recording. The Baseline profile was targeted at applications in which a
minimum of computational complexity and a maximum of error robustness are required.
H.264/MPEG4-AVC baseline supports two slice-coding types. The simplest is the I slice, in which
all macro-blocks are coded without referring to any other pictures in the video sequence. Previously
coded images are used to form a prediction signal for macro-blocks of the predictive-coded P [58].

Theoretically, based on Equation (8), UAV delay can be estimated by: 𝑇 = 𝑇 + 2. (𝑇 + 𝑇 + 𝑇 + 𝑇) (14)

Figure 20. Probability density function estimates IBM WVR latency to classify an image located in the
IoT gateway.

Since the WVR node in Node-RED relies on the HTTP protocol to send the images to the cloud,
we performed another test using SpeedTest to measure HTTP throughput between the web server
and client over the three gateways considered as clients (on the same day with the same network
conditions). The results obtained in Table 5 present similar outcomes in the download, while the S-G
upload is lower than the other gateways.

Table 5. SpeedTest over the 3 gateways.

Machine Ping Download Upload

S-G 169.4 ms 16.3 Mbps 9.5 Mbps
RPI-G 96.4 ms 17.6 Mbps 13.8 Mbps
PC-G 55.7 ms 17.5 Mbps 12.3 Mbps

6.3. UAV Experimental Results

The streaming quality of the proposed Node.js application was measured under certain conditions
of use to compare the response time on different IoT gateways in the same configurations and conditions.
The transmission channel, frame rates and compression techniques were the same in all the tests on
the recording of camera images and saving them to a folder in the IoT gateway. The image frames
were captured and registered in a buffer before being sent to the gateway. Encoding was performed
by FFMPEG codec, and the received frames were decoded in the gateway before being saved on the
gateway disk.

6.3.1. Codec Latency

The AR.Drone library [42] uses the basic H264 profile (MPEG4.10 AVC) for high quality streaming
and video recording. The Baseline profile was targeted at applications in which a minimum of
computational complexity and a maximum of error robustness are required. H.264/MPEG4-AVC
baseline supports two slice-coding types. The simplest is the I slice, in which all macro-blocks are

Sensors 2019, 19, 3316 22 of 27

coded without referring to any other pictures in the video sequence. Previously coded images are used
to form a prediction signal for macro-blocks of the predictive-coded P [58].

Theoretically, based on Equation (8), UAV delay can be estimated by:

T = Tcap + 2.
(
Tenc + Ttx + Tdec + Tdisp

)
(14)

6.3.2. Experimental Results

The experiments focus on the mission delay generated by taking pictures in a concrete production
plant. We measured the time needed for the drone to connect with the IoT gateway, take a picture and
save it in a file in the IoT gateway (WriteFile function from Node.js). Table 6 shows the results of an
AR.Drone 2.0 mission with around 200 images on the Node.js application, triggered from Node-RED.
The latencies in both machines are expressed in milliseconds and calculated in the Node.js application.

Table 6. RTD Test of 200 photos sent from the IoT gateway to the AR.drone 2.0.

Client Test
Environment

Connection
Established Average Standard

Deviation
Minimum

Latency
Maximum

Latency

S-G 11429 ms 1229.92 ms 365.71 ms 160 ms 2906 ms
RPI-G 5348 ms 317.76 ms 411.18 ms 12 ms 1706 ms
PC-G 4562 ms 132.72 ms 35.90 ms 4 ms 230 ms

Note that these tests were made with an image resolution of 640 × 360 px, frame rate of 5 fps and
a codec with H264 baseline.

The results provided in Table 6 show the large difference in terms of latency between RPI-G and
PC-G. The average RPI-G latency is almost three times that of PC-G, and RPI-G standard deviation is
much higher than in PC-G.

On the other hand, the S-G results are consistently different from those of PC-G and RPI-G;
the average S-G latency is very high, while the standard deviation is lower than RPI-G.

The probability density function estimates of the WVR delay for the RPI-G and the PC-G are
shown in Figure 21, while the probability density function estimates of the WVR delay for the S-G
are shown in Figure 22. Here, the distributions are clearly different, the data spreading of the PC-G
distribution covers a narrower range, with a larger spread in the RPI-G and S-G distributions.

Sensors 2019, 19, x FOR PEER REVIEW 22 of 27

6.3.2. Experimental Results

The experiments focus on the mission delay generated by taking pictures in a concrete
production plant. We measured the time needed for the drone to connect with the IoT gateway,
take a picture and save it in a file in the IoT gateway (WriteFile function from Node.js). Table 6
shows the results of an AR.Drone 2.0 mission with around 200 images on the Node.js application,
triggered from Node-RED. The latencies in both machines are expressed in milliseconds and
calculated in the Node.js application.

Table 6. RTD Test of 200 photos sent from the IoT gateway to the AR.drone 2.0.

Client Test
Environment

Connection
Established Average

Standard
Deviation

Minimum
Latency

Maximum
Latency

S-G 11429 ms 1229.92 ms 365.71 ms 160 ms 2906 ms
RPI-G 5348 ms 317.76 ms 411.18 ms 12 ms 1706 ms
PC-G 4562 ms 132.72 ms 35.90 ms 4 ms 230 ms

Note that these tests were made with an image resolution of 640 × 360 px, frame rate of 5 fps
and a codec with H264 baseline.

The results provided in Table 6 show the large difference in terms of latency between RPI-G
and PC-G. The average RPI-G latency is almost three times that of PC-G, and RPI-G standard
deviation is much higher than in PC-G.

On the other hand, the S-G results are consistently different from those of PC-G and RPI-G;
the average S-G latency is very high, while the standard deviation is lower than RPI-G.

The probability density function estimates of the WVR delay for the RPI-G and the PC-G are
shown in Figure 21, while the probability density function estimates of the WVR delay for the S-G
are shown in Figure 22. Here, the distributions are clearly different, the data spreading of the PC-
G distribution covers a narrower range, with a larger spread in the RPI-G and S-G distributions.

Figure 21. Probability density function of the delay of the drone connected to the gateway when
successive pictures from PC-G and RPI-G are taken.

Figure 21. Probability density function of the delay of the drone connected to the gateway when
successive pictures from PC-G and RPI-G are taken.

Sensors 2019, 19, 3316 23 of 27

Sensors 2019, 19, x FOR PEER REVIEW 23 of 27

Figure 22. Probability density function of the delay of the drone connected to the gateway when
successive pictures from S-G are taken.

Figures 23–25 compare the CPU load of the same program implemented in the IoT gateways.
The program continuously takes images from the drone and stores them in a file in the gateway.
The first period (red interval) in all three graphs shows the connection between the drone and the
gateways, while the rest of the period is the time of execution of the Node.js program in the
gateways.

Figure 23. CPU Load while taking successive photos and writing them in a folder in the PC-G.

Figure 24. CPU Load while taking successive photos and writing them in a folder in the RPI-G.

Figure 22. Probability density function of the delay of the drone connected to the gateway when
successive pictures from S-G are taken.

Figures 23–25 compare the CPU load of the same program implemented in the IoT gateways.
The program continuously takes images from the drone and stores them in a file in the gateway.
The first period (red interval) in all three graphs shows the connection between the drone and the
gateways, while the rest of the period is the time of execution of the Node.js program in the gateways.

Sensors 2019, 19, x FOR PEER REVIEW 23 of 27

Figure 22. Probability density function of the delay of the drone connected to the gateway when
successive pictures from S-G are taken.

Figures 23–25 compare the CPU load of the same program implemented in the IoT gateways.
The program continuously takes images from the drone and stores them in a file in the gateway.
The first period (red interval) in all three graphs shows the connection between the drone and the
gateways, while the rest of the period is the time of execution of the Node.js program in the
gateways.

Figure 23. CPU Load while taking successive photos and writing them in a folder in the PC-G.

Figure 24. CPU Load while taking successive photos and writing them in a folder in the RPI-G.

Figure 23. CPU Load while taking successive photos and writing them in a folder in the PC-G.

Sensors 2019, 19, x FOR PEER REVIEW 23 of 27

Figure 22. Probability density function of the delay of the drone connected to the gateway when
successive pictures from S-G are taken.

Figures 23–25 compare the CPU load of the same program implemented in the IoT gateways.
The program continuously takes images from the drone and stores them in a file in the gateway.
The first period (red interval) in all three graphs shows the connection between the drone and the
gateways, while the rest of the period is the time of execution of the Node.js program in the
gateways.

Figure 23. CPU Load while taking successive photos and writing them in a folder in the PC-G.

Figure 24. CPU Load while taking successive photos and writing them in a folder in the RPI-G.
Figure 24. CPU Load while taking successive photos and writing them in a folder in the RPI-G.

Sensors 2019, 19, 3316 24 of 27

Sensors 2019, 19, x FOR PEER REVIEW 24 of 27

Figure 25. CPU Load while taking successive photos and writing them in a folder in the S-G.

The three IoT gateways have different environmental specifications. Figures 23–25 show these
differences in terms of CPU usage in the three gateways while executing the mission. In RPI-G, the
CPU load increases from 2% to 60%, while in S-G, it increases from 3 to 100%. In the PC-G gateway
the average CPU load while executing the mission was around 20%. This difference is justified
mainly by the numbers of cores implemented in each gateway processor. RPI-G used a 1.2 GHz
Quad-Core ARMv7 processor with four cores, while S-G used a 400 MHz Intel Quark ×1020
processor with a single core. Furthermore, RPI-G and PC-G both support the Graphics Processing
Unit (GPU), while S-G does not.

7. Conclusions

This paper introduces a model designed to monitor the smart industrial Internet of things
based on an unmanned aerial vehicle, leveraging cloud computing services and using fog
computing as a bridge between the different IIoT layers. The proposed model is able to monitor the
condition of a concrete plant production line and the condition of the materials transported on
conveyor belts to control the process. The results reveal the effectiveness of integrating drones with
deep learning cloud services for processing and analyzing photos acquired in real-time. We
demonstrate how to overcome the challenge of interoperability using fog and Node-RED
computation on the IoT gateway. Node-RED interacts simultaneously with the different systems
involved through different protocols. Drones now show great potential for many construction
applications by reducing costs and improving production processes. Cloud services can handle
many cases efficiently, although latency presents a major challenge due to the interaction between
the different systems. The period of time available to the control system to decide and adjust the
formula is estimated at between 38 and 60 s, depending on the quantity ordered by the customer
and the composition of the formula. Given these points, the 3 s latency of the proposed solution is
acceptable for plant control decisions.

The Siemens IoT gateway S-G is expected to provide better performance in an industrial
setting, although it has less capacity than RPI-G. The RTD differences between S-G and RPI-G were
caused by the CPU load in each machine, which reached 100% of S-G by connecting to the UAV.
The IoT gateway provides an efficient solution for data communication, although the
environmental specification of each IoT gateway is crucial when it comes to applications that
require good computing performance.

Author Contributions: M.S. carried out this research as part of his Ph.D. thesis, under the supervision of A.G.-
G., M.A., F.J.O. and A.E.O; Funding acquisition and resources, validation, C.L.T. The study was a joint research
project between the Université Abdelmalek Essaadi (Morocco) and the Universidad Politécnica de Cartagena
(Spain) within the Erasmus+ program.

Funding: This work was partially supported by FRUMECAR S.L and Seneca Foundation’s “Murcia Regional
Scientific Excellence Research Program” (Murcia Science and Technology Agency—19895/GERM/15).

Figure 25. CPU Load while taking successive photos and writing them in a folder in the S-G.

The three IoT gateways have different environmental specifications. Figures 23–25 show these
differences in terms of CPU usage in the three gateways while executing the mission. In RPI-G, the CPU
load increases from 2% to 60%, while in S-G, it increases from 3 to 100%. In the PC-G gateway the
average CPU load while executing the mission was around 20%. This difference is justified mainly
by the numbers of cores implemented in each gateway processor. RPI-G used a 1.2 GHz Quad-Core
ARMv7 processor with four cores, while S-G used a 400 MHz Intel Quark ×1020 processor with a
single core. Furthermore, RPI-G and PC-G both support the Graphics Processing Unit (GPU), while
S-G does not.

7. Conclusions

This paper introduces a model designed to monitor the smart industrial Internet of things based
on an unmanned aerial vehicle, leveraging cloud computing services and using fog computing as
a bridge between the different IIoT layers. The proposed model is able to monitor the condition of
a concrete plant production line and the condition of the materials transported on conveyor belts
to control the process. The results reveal the effectiveness of integrating drones with deep learning
cloud services for processing and analyzing photos acquired in real-time. We demonstrate how to
overcome the challenge of interoperability using fog and Node-RED computation on the IoT gateway.
Node-RED interacts simultaneously with the different systems involved through different protocols.
Drones now show great potential for many construction applications by reducing costs and improving
production processes. Cloud services can handle many cases efficiently, although latency presents a
major challenge due to the interaction between the different systems. The period of time available to
the control system to decide and adjust the formula is estimated at between 38 and 60 s, depending on
the quantity ordered by the customer and the composition of the formula. Given these points, the 3 s
latency of the proposed solution is acceptable for plant control decisions.

The Siemens IoT gateway S-G is expected to provide better performance in an industrial setting,
although it has less capacity than RPI-G. The RTD differences between S-G and RPI-G were caused by
the CPU load in each machine, which reached 100% of S-G by connecting to the UAV. The IoT gateway
provides an efficient solution for data communication, although the environmental specification of
each IoT gateway is crucial when it comes to applications that require good computing performance.

Author Contributions: M.S. carried out this research as part of his Ph.D. thesis, under the supervision of A.G.-G.,
M.A., F.J.O. and A.E.O; Funding acquisition and resources, validation, C.L.T. The study was a joint research project
between the Université Abdelmalek Essaadi (Morocco) and the Universidad Politécnica de Cartagena (Spain)
within the Erasmus+ program.

Funding: This work was partially supported by FRUMECAR S.L. and Seneca Foundation’s “Murcia Regional
Scientific Excellence Research Program” (Murcia Science and Technology Agency—19895/GERM/15).

Acknowledgments: The authors would like to thank the Seneca Foundation as also FRUMECAR S.L., for their
support and the opportunity to implement and test the proposed approach on their facilities.

Sensors 2019, 19, 3316 25 of 27

Conflicts of Interest: The authors have no conflict of interest to declare.

References

1. Tatum, M.C.; Liu, J. Unmanned Aerial Vehicles in the Construction Industry. In Proceedings of the Unmanned
Aircraft System Applications in Construction, Creative Construction Conference, Primosten, Croatia, 19–22
June 2017.

2. Aazam, M.; Zeadally, S.; Harras, K.A. Deploying Fog Computing in Industrial Internet of Things and Industry
4.0. IEEE Trans. Ind. Inform. 2018. [CrossRef]

3. Sisinni, E.; Saifullah, A.; Han, S.; Jennehag, U.; Gidlund, M. Industrial Internet of Things: Challenges,
Opportunities, and Directions. IEEE Trans. Ind. Inform. 2018, 14, 4724–4734. [CrossRef]

4. Shakhatreh, H.; Sawalmeh, A.; Al-Fuqaha, A.; Dou, Z.; Almaita, E.; Khalil, I.; Othman, N.S.; Khreishah, A.;
Guizani, M. Unmanned Aerial Vehicles: A Survey on Civil Applications and Key Research Challenges. arXiv
2018, arXiv:1805.00881. [CrossRef]

5. Soria, P.R.; Bevec, R.; Arrue, B.C.; Ude, A.; Ollero, A. Extracting Objects for Aerial Manipulation on UAVs
Using Low Cost Stereo Sensors. Sensors 2016, 16, 700. [CrossRef] [PubMed]

6. Lagkas, T.; Argyriou, V.; Bibi, S.; Sarigiannidis, P. UAV IoT Framework Views and Challenges: Towards
Protecting Drones as “Things”. Sensors 2018, 18, 4015. [CrossRef] [PubMed]

7. Itkin, M.; Kim, M.H.; Park, Y. Development of Cloud-Based UAV Monitoring and Management System.
Sensors 2016, 16, 1913. [CrossRef] [PubMed]

8. Preden, J.; Kaugerand, J.; Suurjaak, E.; Astapov, S.; Motus, L.; Pahtma, R. Data to decision: Pushing situational
information needs to the edge of the network. In Proceedings of the IEEE International Multi-Disciplinary
Conference on Cognitive Methods in Situation Awareness and Decision, Orlando, FL, USA, 9–11 March 2015;
pp. 158–164.

9. Moller, D.P.F. Guide to Computing Fundamentals in Cyber-Physical Systems: Computer Communications and
Networks; Chapter: Digital Manufacturing/Industry 4.0; Springer: Cham, Switzerland, 2016.

10. Gilchrist, A. Introducing Industry 4.0; Springer, Apress: Berkeley, CA, USA, 2016; pp. 195–215. [CrossRef]
11. Chen, S.; Xu, H.; Liu, D.; Hu, B.; Wang, H. A Vision of IoT: Applications, Challenges, and Opportunities with

China Perspective. IEEE Internet Things J. 2014, 1. [CrossRef]
12. Suárez-Albela, M.; Fernández-Caramés, T.M.; Fraga-Lamas, P.; Castedo, L. A Practical Evaluation of a

High-Security Energy-Efficient Gateway for IoT Fog Computing Applications. Sensors 2017, 17, 1978.
[CrossRef]

13. Ferrández-Pastor, F.J.; García-Chamizo, J.M.; Nieto-Hidalgo, M.; Mora-Pascual, J.; Mora-Martínez, J.
Developing Ubiquitous Sensor Network Platform Using Internet of Things: Application in Precision
Agriculture. Sensors 2016, 1141. [CrossRef]

14. Gutiérrez, C.S.V.; Juan, L.U.S.; Ugarte, I.Z.; Vilches, V.M. Time-Sensitive networking for robotics. arXiv 2018,
arXiv:1804.07643v2.

15. Ferrari, P.; Flammini, A.; Rinaldi, S.; Sisinni, E.; Malara, D.M.M. Impact of Quality of Service on Cloud Based
Industrial IoT Applications with OPC UA. Electronics 2018, 7, 109. [CrossRef]

16. Forsstrom, S.; Jennehag, U. A performance and cost evaluation of combining OPC-UA and Microsoft Azure
IoT Hub into an industrial Internet-of-Things system. In the Proceedings of the 2017 Global Internet of
Things Summit (GIoTS), Geneva, Switzerland, 6–9 June 2017; pp. 1–6.

17. OPC Foundation. Available online: https://opcfoundation.org/about/opc-technologies/opc-ua/ (accessed on
14 September 2018).

18. Girbea, A.; Suciu, C.; Nechifor, S.; Sisak, F. Design and implementation of a service-oriented architecture for
the optimization of industrial applications. IEEE Trans. Ind. Inform. 2014, 10, 185–196. [CrossRef]

19. Chen, B.; Wan, J.; Shu, L.; Li, P.; Mukherjee, M.; Yin, B. Smart Factory of Industry 4.0: Key Technologies,
Application Case, and Challenges. IEEE Access 2017, 6, 6505–6519. [CrossRef]

20. Corotinschi, G.; Gitan, V.G. Enabling IoT connectivity for Modbus networks by using IoT edge gateways.
In Proceedings of the IEEE International Conference on Development and Application Systems, Suceava,
Romania, 24–26 May 2018. [CrossRef]

21. Jaloudi, S. Communication Protocols of an Industrial Internet of Things Environment: A Comparative Study.
Futur. Internet 2019, 11, 66. [CrossRef]

http://dx.doi.org/10.1109/TII.2018.2855198
http://dx.doi.org/10.1109/TII.2018.2852491
http://dx.doi.org/10.1109/ACCESS.2019.2909530
http://dx.doi.org/10.3390/s16050700
http://www.ncbi.nlm.nih.gov/pubmed/27187413
http://dx.doi.org/10.3390/s18114015
http://www.ncbi.nlm.nih.gov/pubmed/30453646
http://dx.doi.org/10.3390/s16111913
http://www.ncbi.nlm.nih.gov/pubmed/27854267
http://dx.doi.org/10.1007/978-1-4842-2047-4_13
http://dx.doi.org/10.1109/JIOT.2014.2337336
http://dx.doi.org/10.3390/s17091978
http://dx.doi.org/10.3390/s16071141
http://dx.doi.org/10.3390/electronics7070109
https://opcfoundation.org/about/opc-technologies/opc-ua/
http://dx.doi.org/10.1109/TII.2013.2253112
http://dx.doi.org/10.1109/ACCESS.2017.2783682
http://dx.doi.org/10.1109/DAAS.2018.8396092
http://dx.doi.org/10.3390/fi11030066

Sensors 2019, 19, 3316 26 of 27

22. Trancă, D.-C.; Pălăcean, A.V.; Mihu, A.C.; Rosner, D. ZigBee based wireless modbus aggregator for intelligent
industrial facilities. In Proceedings of the IEEE 25th Telecommunication Forum, Belgrade, Serbia, 21–22
November 2017. [CrossRef]

23. Ferrari, P.; Sisinni, E.; Brandao, D. Evaluation of communication latency in industrial IoT applications.
In Proceedings of the Conference: 2017 IEEE International Workshop on Measurements & Networking
(M&N), Naples, Italy, 27–29 September 2017. [CrossRef]

24. Fernández-Caramés, T.M.; Fraga-Lamas, P. A Review on Human-Centered IoT-Connected Smart Labels for
the Industry 4.0. IEEE Access 2017, 6, 25939–25957. [CrossRef]

25. Wan, J.; Tang, S.; Yan, H.; Li, D.; Wang, S.; Vasilakos, A.V. Cloud Robotics: Current Status and Open Issues.
IEEE Access 2016, 4, 2797–2807. [CrossRef]

26. Robla-Gömez, S.; Becerra, V.M.; Llata, J.R.; González-Sarabia, E.; Ferrero, C.T.; Pérez-Oria, J. ‘Working
together: A review on safe human-robot collaboration in industrial environments. IEEE Access 2017, 5,
26754–26773. [CrossRef]

27. Koch, P.J.; van Amstel, M.; Dębska, P.; Thormann, M.A.; Tetzlaff, A.J.; Bøgh, S.; Chrysostomou, D. A Skill-based
Robot Co-worker for Industrial Maintenance Tasks. In Proceedings of the 27th International Conference on
Flexible Automation and Intelligent Manufacturing (FAIM 2017), Modena, Italy, 27–30 June 2017. [CrossRef]

28. Andreasson, H.; Bouguerra, A.; Cirillo, M.; Dimitrov, D.N.; Driankov, D.; Karlsson, L.; Lilienthal, A.J.;
Pecora, F.; Saarinen, J.P.; Sherikov, A.; et al. Autonomous transport vehicles: Where we are and what is
missing. IEEE Robot. Autom. Mag. 2015, 22, 64–75. [CrossRef]

29. Alsamhi, S.H.; Ma, O.; Ansari, M.S.; Gupta, S.K. Collaboration of Drone and Internet of Public Safety Things
in Smart Cities: An Overview of QoS and Network Performance Optimization. Drones 2019, 3, 13. [CrossRef]

30. Soorki, M.N.; Mozaffari, M.; Saad, W.; Manshaei, M.H.; Saidi, H. Resource Allocation for Machine-to-Machine
Communications with Unmanned Aerial Vehicles. In Proceedings of the 2016 IEEE Globecom Workshops
(GC Wkshps), Washington, DC, USA, 4–8 December 2016; pp. 1–6.

31. Larrauri, J.I.; Sorrosal, G.; Gonzalez, M. Automatic system for overhead power line inspection using an
unmanned aerial vehicle RELIFO project. In Proceedings of the International Conference on Unmanned
Aircraft Systems (ICUAS), Atlanta, GA, USA, 28–31 May 2013; pp. 244–252. [CrossRef]

32. Industrial Skyworks. Drone Inspections Services. Available online: https://industrialskyworks.com/drone-
inspections-services (accessed on 21 April 2019).

33. Kim, H.; Lee, J.; Ahn, E.; Cho, S.; Shin, M.; Sim, S.-H. Concrete Crack Identification Using a UAV Incorporating
Hybrid Image Processing. Sensors 2017, 17, 2052. [CrossRef]

34. Arroyo, J.A.; Gomez-Castaneda, C.; Ruiz, E.; de Cote, E.M.; Gavi, F.; Sucar, L.E. UAV Technology and Machine
Learning Techniques applied to the Yield Improvement in Precision Agriculture. In Proceedings of the IEEE
Mexican Humanitarian Technology Conference (MHTC), Puebla, Mexico, 29–31 March 2017. [CrossRef]

35. Singh, A.; Patil, D.; Omkar, S.N. Eye in the Sky: Real-time Drone Surveillance System (DSS) for Violent
Individuals Identification using ScatterNet Hybrid Deep Learning Network. In Proceedings of the IEEE
Computer Vision and Pattern Recognition (CVPR) Workshops, Salt Lake City, UT, USA, 18–22 June 2018.

36. Manohar, A.; Sneha, D.; Sakhuja, K.; Dwivedii, T.R.; Gururaj, C. Drone based image processing through feature
extraction. In Proceedings of the 2017 2nd IEEE International Conference on Recent Trends in Electronics
Information & Communication Technology (RTEICT), Bangalore, India, 19–20 May 2017. [CrossRef]

37. Junaid, A.B.; Konoiko, A.; Zweiri, Y.; Sahinkaya, M.N.; Seneviratne, L. Autonomous Wireless Self-Charging
forMulti-Rotor Unmanned Aerial Vehicles. Energies 2017, 10, 803. [CrossRef]

38. Lee, J.; Wang, J.; Crandall, D.; Sabanovic, S.; Fox, G. Real-Time Object Detection for Unmanned Aerial Vehicles
based on Cloud-based Convolutional Neural Networks. In Proceedings of the First IEEE International
Conference on Robotic Computing, Taichung, Taiwan, 10–12 April 2017. [CrossRef]

39. Sensefly Parrot Group. Available online: https://www.sensefly.com/ (accessed on 14 September 2018).
40. Skycatch. Available online: https://www.skycatch.com/ (accessed on 14 September 2018).
41. Dronedeploy. Available online: https://www.dronedeploy.com/ (accessed on 14 September 2018).
42. Github. Available online: https://github.com/felixge/node-ar-drone (accessed on 14 September 2018).
43. McCune, R.R. Node js Paradigms and Benchmarks; Striegel, Grad OS. 2011. Available online: https:

//pdfs.semanticscholar.org/301b/45bb8e795f83774c920b942c0dba7e290b53.pdf (accessed on 28 July 2019).

http://dx.doi.org/10.1109/TELFOR.2017.8249409
http://dx.doi.org/10.1109/IWMN.2017.8078359
http://dx.doi.org/10.1109/ACCESS.2018.2833501
http://dx.doi.org/10.1109/ACCESS.2016.2574979
http://dx.doi.org/10.1109/ACCESS.2017.2773127
http://dx.doi.org/10.1016/j.promfg.2017.07.14
http://dx.doi.org/10.1109/MRA.2014.2381357
http://dx.doi.org/10.3390/drones3010013
http://dx.doi.org/10.1109/ICUAS.2013.6564696
https: //industrialskyworks.com/drone-inspections-services
https: //industrialskyworks.com/drone-inspections-services
http://dx.doi.org/10.3390/s17092052
http://dx.doi.org/10.1109/MHTC.2017.8006410
http://dx.doi.org/10.1109/RTEICT.2017.8256577
http://dx.doi.org/10.3390/en10060803
http://dx.doi.org/10.1109/IRC.2017.77
https://www.sensefly.com/
https://www.skycatch.com/
https://www.dronedeploy.com/
https://github.com/felixge/node-ar-drone
https://pdfs.semanticscholar.org/301b/45bb8e795f83774c920b942c0dba7e290b53.pdf
https://pdfs.semanticscholar.org/301b/45bb8e795f83774c920b942c0dba7e290b53.pdf

Sensors 2019, 19, 3316 27 of 27

44. Rose, J.D.; Survesh, V.R.L. A Case Analysis of Node.js I/O Performance under Linux Environment in
Various Storage Media. In Proceedings of the 2017 International Conference on Advances in Computing,
Communications and Informatics (ICACCI), Udupi, India, 13–16 September 2017.

45. Github. Available online: https://github.com/eschnou/ardrone-autonomy (accessed on 14 September 2018).
46. Engel, J.; Sturm, J.; Cremers, D. Accurate Figure Flying with a Quadrocopter Using Onboard Visual and

Inertial Sensing. In Proceedings of the International Conference on Intelligent Robot Systems (IROS), Algarve,
Portugal, 7–12 October 2012; p. 240.

47. Svorobej, S.; Endo, P.T.; Bendechache, M.; Filelis-Papadopoulos, C.; Giannoutakis, K.M.; Gravvanis, G.A.;
Tzovaras, D.; Byrne, J.; Lynn, T. Simulating Fog and Edge Computing Scenarios: An Overview and Research
Challenges. Future Internet 2019, 11, 55. [CrossRef]

48. Kurose, J.F.; Ross, K.W. Computer Networking: A Top-Down Approach, 6th ed.; Pearson: London, UK, 2012.
49. Thangamuthu, S.; Concer, N.; Cuijpers, P.J.L.; Lukkien, J.J. Analysis of ethernet-switch traffic shapers

for in-vehicle networking applications. In Proceedings of the 2015 Design, Automation Test in Europe
Conference Exhibition (DATE), Grenoble, France, 9–13 March 2015; pp. 55–60. [CrossRef]

50. Cavalieri, S.; Chiacchio, F. Analysis of OPC UA performances. Comput. Stand. Interfaces 2013, 36, 165–177.
[CrossRef]

51. IEEE standard for local and metropolitan area networks—Bridges and bridged networks-amendment 25:
Enhancements for scheduled traffic. In IEEE Std 802.1Qbv-2015 (Amendment to IEEE Std 802.1Q-2014 as
amended by IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd-2015, and IEEE Std 802.1Q-2014/ Cor 1-2015); IEEE:
New York, NY, USA, 2016; pp. 1–57.

52. Bruckner, D.; Blair, R. OPC, UA, TSN: A New Solution for Industrial Communication. 2018. Available online:
https://www.automationworld.com/sites/default/files/opc_ua_tsn_whitepaper_1.pdf (accessed on 13 May
2019).

53. Smith, J.R.; Cao, L.; Codella, N.C.F.; Hill, M.L.; Merler, M.; Nguyen, Q.-B.; Pring, E.; Uceda-Sosa, R.A.
Massive-scalelearning of image and video semantic concepts. IBM J. Res. Dev. 2015, 59, 7-1–7-13. [CrossRef]

54. Caffe. Available online: http://caffe.berkeleyvision.org (accessed on 14 September 2018).
55. Bhattacharjee, B.; Hill, M.L.; Wu, H.; Chandakkar, P.S.; Smith, J.R.; Wegman, M.N. Distributed learning of

deep feature embeddings for visual recognition tasks. IBM J. Res. Dev. 2017, 61, 4-1. [CrossRef]
56. Puttnies, H.; Konieczek, B.; Heller, J.; Timmermann, D.; Danielis, P. Algorithmic approach to estimate variant

software latencies for latency-sensitive networking. In Proceedings of the 2016 IEEE 7th Annual Information
Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, Canada, 13–15
October 2016; pp. 1–7.

57. Nakutis, Z.; Deksnys, V.; Jarusevicius, I.; Dambrauskas, V.; Cincikas, G.; Kriauceliunas, A. Round-Trip
Delay Estimation in OPC UA Server-Client Communication Channel. Elektron Elektrotechnika 2016, 22, 80–84.
[CrossRef]

58. Marpe, D.; Wiegand, T.; Heinrich Hertz Institute (HHI); Sullivan, G.J. The H.264/MPEG4 Advanced Video
Coding Standard and its Applications. IEEE Commun. Mag. 2006, 8, 134–143. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://github.com/eschnou/ardrone-autonomy
http://dx.doi.org/10.3390/fi11030055
http://dx.doi.org/10.7873/DATE.2015.0045
http://dx.doi.org/10.1016/j.csi.2013.06.004
https://www.automationworld.com/sites/default/files/opc_ua_tsn_whitepaper_1.pdf
http://dx.doi.org/10.1147/JRD.2015.2398590
http://caffe.berkeleyvision.org
http://dx.doi.org/10.1147/JRD.2017.2706118
http://dx.doi.org/10.5755/j01.eie.22.6.17229
http://dx.doi.org/10.1109/MCOM.2006.1678121
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Industrial IoT Monitoring and Control Platform
	Proposed Platform/Architecture
	IoT Gateway Capabilities
	The UAV-IIoT Architecture Development
	UAV Mission Planning
	Case Study

	Delay Assessment in the Proposed Platform
	Industrial Control System Architecture
	Latency between Two Terminals
	Latency in OPC UA Network
	UAV System Delay

	Drone Mission and IBM WVR Results
	IBM Watson Image Recognition Training
	WVR Performance Evaluation
	IBM Watson Image Recognition Results

	System Performance
	OPC Experimental Method and Results
	Watson Experimental Method
	UAV Experimental Results
	Codec Latency
	Experimental Results

	Conclusions
	References

