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Abstract: With photoplethysmograph (PPG) sensors showing increasing potential in wearable health
monitoring, the challenging problem of motion artifact (MA) removal during intensive exercise
has become a popular research topic. In this study, a novel method that combines heart rate
frequency (HRF) estimation and notch filtering is proposed. The proposed method applies a cascaded
adaptive noise cancellation (ANC) based on the least mean squares (LMS)-Newton algorithm for
preliminary motion artifacts reduction, and further adopts special heart rate frequency tracking and
correction schemes for accurate HRF estimation. Finally, notch filters are employed to restore the
PPG signal with estimated HRF based on its quasi-periodicity. On an open source data set that
features intensive running exercise, the proposed method achieves a competitive mean average
absolute error (AAE) result of 0.92 bpm for HR estimation. The practical experiments are carried out
with the PPG evaluation platform developed by ourselves. Under three different intensive motion
patterns, a 0.89 bpm average AAE result is achieved with the average correlation coefficient between
recovered PPG signal and reference PPG signal reaching 0.86. The experimental results demonstrate
the effectiveness of the proposed method for accurate HR estimation and robust MA removal in PPG
during intensive exercise.

Keywords: adaptive noise cancellation (ANC); heart rate estimation; motion artifact removal; notch
filtering; photoplethysmography (PPG)

1. Introduction

Photoplethysmography (PPG) has proven effective in monitoring cardiovascular-related
physiological signs, especially heart rate (HR), oxygen saturation (SpO2) and blood pressure (BP) [1].
Due to the advantages of low cost and convenience, PPG sensors are widely applied in wearable
healthcare. Though having a great potential for wearable healthcare, the accuracy of PPG sensors
during motion such as exercise by the user is still unsatisfactory due to motion artifacts (MA) [2].
The MA is typically caused by the change of blood flow velocity induced by the motion [3] or the
relative movement between PPG sensors and human skin [4]. The wide frequency range of MA with
time-varying nature makes it difficult to use traditional filtering techniques for the removal of motion
artifacts [5]. Thus, to improve the reliability and accuracy of health monitors based on PPG sensors,
the removal of MA continues to be a technical challenge that needs to be tackled.
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Early studies attempted to reconstruct PPG signal from MA-corrupted signals with traditional
signal processing methods. Independent component analysis (ICA) is a common method [6], which can
separate motion artifacts and clean PPG signal from multi-channel corrupted PPG signals. However,
if the statistical independence between motion artifacts and clean PPG signals is not well satisfied, the
method could hardly be effective [7]. Researchers have also adopted wavelet transform for PPG MA
removal [8]. Nevertheless, this method needs users to empirically set the threshold values for wavelet
de-noising, which limits its usage. The empirical mode decomposition (EMD) was also proposed for
removing motion artifacts [9], but the performance of EMD may be affected by intermittency signals
and noise, known as the mode-mixing problem. Later, more researchers tried to combine different
techniques to achieve better results. In [10], researchers proposed a method that combines Fourier
series reconstruction and frequency-domain independent component analysis (FD-ICA) to reduce
PPG motion artifacts in a step-by-step manner. Another method proposed in [11] combines multiple
signal processing techniques and adaptive noise cancellation (ANC), which uses fast Fourier transform
(FFT), singular value decomposition (SVD) and ICA to extract the noise reference from corrupted
PPG signal. However, these methods are still not effective for restoring the PPG signal from a heavily
corrupted signal.

Recently, some application-oriented studies tried to skip exact PPG signal recovery and directly
estimated the physiological signs from preliminary de-noised PPG signal during intensive exercise,
especially in the application of HR monitoring [12]. In [13], researchers combine sparse signal
reconstruction (SSR) and a special HR tracking scheme to accurately estimate HR from de-noised
PPG signal. The method proposed in [14] applies an empirical and complex tracking scheme that
incorporates the ensemble empirical mode decomposition (EEMD) algorithm to estimate HR. Another
method proposed in [15] combines the phase vocoder technique, a HR tracking and a smoothing stage
for HR estimation from de-noised PPG signal. There are also many other methods which follow a
similar routine as the ones mentioned above. Although such methods may be able to estimate HR from
MA-corrupted PPG signal accurately, it could not be applicable to other physiological signs estimation,
such as BP monitoring, because these signs need to extract more comprehensive information from PPG
signal, which has stricter requirements for signal quality.

However, because the useful part of PPG signal is mainly constructed by spectral components
around its fundamental frequency and harmonic frequencies [16], the accurate estimation of HR can
be a key for restoring PPG signal due to the high correlation between heart rate frequency (HRF)
and fundamental frequency of PPG. In this paper, a robust method is proposed for removing motion
artifacts in PPG signals during intensive exercise. The method combines accurate HRF estimation
with notch filtering. It first reduces the motion artifacts through a cascaded ANC stage that filters the
corrupted PPG signal using three-axis acceleration signals. Then a simple heart rate frequency tracking
(HRFT) scheme and a specially-designed heart rate frequency correction (HRFC) stage are applied for
HRF estimation. After that, two tunable notch filters are constructed using the HRF and its second
harmonic frequency to restore the PPG signal. Finally, the estimated HR value and the restored PPG
signal are obtained by the proposed method.

2. Proposed Method

Shown in Figure 1 is the overall signal flow of the proposed method. The method requires PPG
signal(s) and three-axis acceleration signal(s) as its inputs. The 4th order 0.4 Hz–4.0 Hz Butterworth
band-pass filters (BPF) are firstly employed to remove the out-of-band noise of the input PPG and
acceleration signals. Then a cascaded ANC stage is adopted to adaptively cancel the motion artifacts
in the PPG signals using respectively x, y and z-axis acceleration signals as reference noise. After that,
a simple HRFT scheme is applied to give a preliminary estimation for the HRF from the spectrum
of the ANC-de-noised PPG signal. Then a novel HRFC stage is used to correct possibly wrong HRF
estimation and give the final estimated HRF value. The HRF and its second harmonics frequency are
used as notch frequencies to construct two notch filters. The notch filters remove the PPG components
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from the ANC-de-noised PPG signal and extract the motion artifacts. And the MA-removed PPG
signal is finally obtained through subtracting the motion artifacts from the ANC-de-noised PPG signal.
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A widely-utilized open source data set provided for the 2015 IEEE Signal Processing Cup [12] is
used for preliminary evaluation of different stages in the proposed method. The data set contains signals
collected from 12 subjects (11 males and one female). For each subject, two channels of PPG signals and
three-axis acceleration signals are recorded from one wrist, with one channel electrocardiograph (ECG)
signal recorded simultaneously for about 5 min with a sampling rate of 125 Hz. As the ECG signal
is barely influenced by MA, it is used for calculating the reference HR. During the 5 min recording,
the subjects exercise on a treadmill in the following pattern: 1–2 km/h walking for 30 s, 6–8 km/h
running for 60 s, 12–15 km/h running for 60 s, 6–8 km/h running for 60 s, 12–15 km/h running for
60 s and 1–2 km/h walking for 30 s. For the first 30 s, subjects are in a relatively static initialization
stage. Average Absolute Error (AAE) between reference HR and estimated HR from the proposed
method [12] is used for evaluating performance of the proposed method, which denoted as HRAAE.
The HRAAE for each subject is calculated using Equation (1). HREST(i) and HRTRUE(i) are respectively
the i-th HR estimation results and reference HR value. N is the number of total estimations for a subject.

HRAAE =
1
N

N∑
i=1

∣∣∣HREST(i) −HRTRUE(i)
∣∣∣. (1)

2.1. Cascaded Adaptive Noise Cancellation

Adaptive noise cancellation is an effective technique to de-noise a noise-corrupted signal given
a reference signal that is highly correlated with the noise [17]. Figure 2 shows the signal flow of
typical ANC. In the proposed method, the least mean squares-Newton (LMS-Newton) algorithm [18] is
applied for adaptive filtering, which features a faster convergence speed than conventional LMS-based
algorithms. The LMS-Newton algorithm is given in Equations (2) and (3). The parameter x(k) is
the reference signal of MA, which is the acceleration signal. W(k) is the weight vector of the finite
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impulse response (FIR) filter, and e(k) is the output for de-noised PPG signal. The parameter α and µ in
Equation (3) determine the speed of convergence.

R−1(k) =
1

1− α

R−1(k− 1) −
R−1(k− 1)X(k)XT(k)R−1(k− 1)

1−α
α + XT(k)R−1(k− 1)X(k)

 (2)

W(k + 1) = W(k) + 2µe(k)R−1(k)X(k) (3)
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Because MA can be decomposed into motions in different directions, a cascaded topology of ANC
is used here to reduce the motion artifacts better, as is illustrated in Figure 1. The cascaded adaptive
noise cancellers use respectively x, y and z-axis acceleration signals as their MA reference inputs.
Band-pass filtered PPG and acceleration signals are streamed into this step at a specified time interval
ltv. In order to avoid an unmatched scale between the PPG signal and the acceleration signal, Z-score
standardization is adopted to normalize the inputs of each adaptive noise canceller. Especially, if there
are multiple PPG signals at the input end of the cascaded ANC, the PPG signals will be averaged into
a single PPG signal before the first adaptive noise canceller.

Shown in Table 1 is the experimental results of HRAAE before and after applying the cascaded
ANC stage of the proposed method. When only BPF is applied to the MA-corrupted signals, the
estimation errors for HR values are very large, reaching an average HRAAE of 11.47 bpm over the
12 subjects, which indicates that the MA frequencies are strongly deviated from the HRFs and the
spectral magnitudes of MA are larger. After applying the cascade ANC stage for MA reduction, the
HR estimation errors significantly decreased.

Table 1. Results of HRAAE with and without the cascaded adaptive noise cancellation (ANC) stage.

Subject 1 2 3 4 5 6 7 8 9 10 11 12 Mean

BPF only 8.80 26.12 17.27 6.23 1.28 4.61 2.06 2.95 0.36 40.99 13.49 13.44 11.47
BPF + ANC 4.18 1.51 1.24 0.89 0.67 1.22 2.20 0.49 0.34 4.68 0.85 0.81 1.59

2.2. Heart Rate Frequency Tracking

After the cascaded ANC stage, the de-noised PPG signal SPPG is used for a preliminary estimation
of current HRF. FFT is first applied to acquire the spectrum of SPPG, where only the magnitude
information is considered. A relatively large number of points for FFT LFFT is used to increase
frequency resolution. Then a simple HRFT scheme from [15] is used for preliminary HRF estimation.

Flowchart of the HRFT scheme is shown in Figure 3. The variable i corresponds to the i-th PPG
signal sequence being processed by the proposed algorithm since it starts. fHRlow and fHRhigh are the
low and high boundaries of typical human HRF. The partameter fPHR denotes the value of preliminary
HRF estimation result and fHR is the final estimated HRF value. For the first signal sequence, fPHR
is directly selected to be the frequency that corresponds to the largest spectral magnitude of SPPG
within the human HRF range. Starting from the second signal sequence, fPHR is tracked from a range
of ±∆f around fHR of the previous sequence. When i is smaller or equivalent to Ninit, ∆f is set to be



Sensors 2019, 19, 3312 5 of 14

an initial constant ∆f0. Ninit corresponds to the initialization stage of the proposed algorithm that
typically takes 30 s to 1 min, where the users are required to stay motionless. If the initialization stage
has finished, ∆f is updated according to be the sum of the largest absolute difference of previous
consecutive HRF estimation results and a bias b. Then, fPHR is selected to be corresponding to the
largest spectral magnitude within a range of ±∆f around previous fHR and also within human HRF
range. The calculated HRAAE results after applying the HRFT stage have been improved, as shown in
Table 2.
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Table 2. Results of HRAAE before and after applying the heart rate frequency tracking (HRFT) stage.

Subject 1 2 3 4 5 6 7 8 9 10 11 12 Mean

BPF +ANC 4.18 1.51 1.24 0.89 0.67 1.22 2.20 0.49 0.34 4.68 0.85 0.81 1.59
BPF +ANC+HRFT 1.46 1.17 1.12 0.89 0.67 1.22 0.90 0.49 0.34 2.24 0.85 0.81 1.01

2.3. Heart Rate Frequency Correction

After the preliminary HRF estimation, a heuristic HRF correction scheme is further designed
to correct possibly wrong fPHR results and give the final HRF estimation result fHR. The flow of this
scheme is illustrated in Figure 4. The value of fHR is initialized as fPHR. For a relatively small time
interval, the change in human HRF is not expected to be very large. So if the difference between
current fHR and HRF estimation result of the previous PPG signal sequence fHR,pre becomes larger than
a threshold Th0, it is highly possible that either fHR or fHR;pre is a wrong estimation result. Under that
circumstance, the HRFC scheme tries to judge whether fHR is estimated to be wrong and will correct it
if so (As the proposed method targets real-time online application, fHR,pre should not be corrected).

To correct a possibly wrong fHR result, the HRFC stage first tries to find fN, which corresponds to
the largest current PPG spectral peak between fHR and fPHR. If fN is found, it is highly possible that fN
is the correct HRF estimation result for fHR. However, it need to further check its fidelity to make the
final decision. It first needs to check whether fACC is within a small range of ±∆ around fHR, where
fACC is the frequency of the largest spectral magnitude of SACC, and SACC is the magnitude spectrum of
acceleration signal calculated from the average of the three-axis acceleration sequences. If that is true,
fHR is highly possible to be a wrong result which actually corresponds to motion artifacts, and HRFC
further checks whether the spectral magnitude of fN is large enough when compared to the one of fHR
so that fN can be the correct estimation result of fHR.

If fACC is not found to be around fHR, HRFC cannot decide whether fHR is a wrong result, and it
further checks whether fN can be a faked HRF peak which is actually caused by motion artifacts. If fACC
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is found to be around fN and the spectral magnitude of fN is not large enough, HRFC keeps the value
of fHR unchanged. If HRFC is not able to make a decision after all those checks, it simply compares the
spectral magnitude of fN and fHR and set fHR to be fN if the magnitude of fN is large enough. For the
spectral magnitude comparisons between fN and fHR, the range of thresholds Th1, Th2 and Th3 is (0, 1).
After final estimation of HRF, the HR value (60 fHR bpm) for current PPG sequence is also calculated as
an output of the proposed method.
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As shown in Table 3, the final average HRAAE over the 12 subjects is 0.92 bpm for the complete
HRF estimation algorithm, with an average standard deviation (SD) of 1.50 bpm (SDs are calculated
within the estimation results of every subjects and then averaged over the 12 subjects).

Table 3. Results of HRAAE for the complete HRF estimation algorithm.

Subject 1 2 3 4 5 6 7 8 9 10 11 12 Mean

BPF +ANC+HRFT 1.46 1.17 1.12 0.89 0.67 1.22 0.90 0.49 0.34 2.24 0.85 0.81 1.01
Complete HR Estimation 1.09 0.87 1.20 0.81 0.67 1.15 0.73 0.49 0.34 2.06 0.87 0.78 0.92

2.4. Notch Filtering

Cascaded notch filters are used to restore the PPG signal based on the estimated HRF. As is
discussed above, the PPG signal can be treated as a quasi-periodic signal with spectral components
mainly distributed as peaks around its HRF and the harmonic frequencies of HRF. Thus notch filters
or comb filters can be used to eliminate unwanted components and keep only the PPG-related ones.
Shown in Equation (5) is the typical transfer function of a digital notch filter [19]. In Equation (4),
fn is the notch frequency and Fs is signal sampling rate. Shown in Figure 5 is the frequency domain
amplitude response of the notch filter, where the parameter r controls its bandwidth. It can be observed
from Figure 5 that notch filters actually suppress the signal around notch frequencies while keep the
components of other frequencies close to their original amplitudes.

ωn =
2π fn

Fs
(4)

H(z) =
r2
−

(
1 + r2

)
cos(ωn)z−1 + z−2

1− (1 + r2) cos(ωn)z−1 + r2z−2
. (5)



Sensors 2019, 19, 3312 7 of 14

Sensors 2019, 19, x FOR PEER REVIEW 7 of 14 

 

 

Figure 5. Frequency domain amplitude response of a notch filter. 

For every processing iteration (every Itv s), two notch filters are constructed using respectively 

current HRF estimation result fHR and the second harmonic frequency of fHR, because the main features 

of time domain PPG signal in one period are its main pulse and dicrotic pulse. For the first notch 

filter, notch frequency is set to be fHR directly, while for the second one, its notch frequency is set to 

be the one that corresponds to the largest spectral peak around 2 fHR due to the quasi-periodicity of 

PPG signals. The output of the cascaded ANC stage is filtered using the two notch filters, where the 

PPG components are removed while the MA is kept as it is. Through finally subtracting the notch 

filtering output from the ANC-de-noised PPG signal, the restored PPG signal are achieved. 

Figure 6 shows the performance of the proposed method to restore the PPG signal from MA-

corrupted signal. The PPG signal was seriously distorted during intensive exercise, and the 

amplitude of the PPG component in the frequency domain was not obvious. After the proposed 

method was applied, the waveform of the PPG signal was restored and only the fundamental and 

second harmonic frequency of the PPG signal were found in the frequency domain. Because there 

was no reference PPG signal in the open source data set, a preliminary judgment was made through 

ECG that the peak number and interval of the recovered PPG signal are consistent with that of ECG. 

 

(a) (b) 

Figure 6. The performance of the proposed method to restore photoplethysmography (PPG) signal: 

(a) comparison of PPG signals before and after the proposed algorithm in time domain, with 

electrocardiograph (ECG) signal as reference; (b) comparison of PPG signals before and after the 

proposed algorithm in frequency domain. 

Figure 5. Frequency domain amplitude response of a notch filter.

For every processing iteration (every Itv s), two notch filters are constructed using respectively
current HRF estimation result fHR and the second harmonic frequency of fHR, because the main features
of time domain PPG signal in one period are its main pulse and dicrotic pulse. For the first notch filter,
notch frequency is set to be fHR directly, while for the second one, its notch frequency is set to be the
one that corresponds to the largest spectral peak around 2 fHR due to the quasi-periodicity of PPG
signals. The output of the cascaded ANC stage is filtered using the two notch filters, where the PPG
components are removed while the MA is kept as it is. Through finally subtracting the notch filtering
output from the ANC-de-noised PPG signal, the restored PPG signal are achieved.

Figure 6 shows the performance of the proposed method to restore the PPG signal from
MA-corrupted signal. The PPG signal was seriously distorted during intensive exercise, and the
amplitude of the PPG component in the frequency domain was not obvious. After the proposed
method was applied, the waveform of the PPG signal was restored and only the fundamental and
second harmonic frequency of the PPG signal were found in the frequency domain. Because there was
no reference PPG signal in the open source data set, a preliminary judgment was made through ECG
that the peak number and interval of the recovered PPG signal are consistent with that of ECG.
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Figure 6. The performance of the proposed method to restore photoplethysmography (PPG) signal:
(a) comparison of PPG signals before and after the proposed algorithm in time domain, with
electrocardiograph (ECG) signal as reference; (b) comparison of PPG signals before and after the
proposed algorithm in frequency domain.
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3. Experimental Results

3.1. Preliminary Evaluation of HR Estimation Based on Open Source Data Set

For comparison with other published works, the data set and rules from 2015 IEEE Signal
Processing Cup were used. The parameters for the open source data set are set as the following: Lp

(prefix signal window length) = 990; δ (positive constant used to initialize ANC filter) = 400, M (ANC
filter order) = 33, α = 2 × 10−4 and µ = 9 × 10−5; LFFT = 65536, ∆f0 = 0.42 Hz (25 bpm), Ninit = 30
(60 s) and b = 0.08 Hz (5 bpm); Th0 = 0.08 Hz (5 bpm), ∆ = 0.07 Hz (4 bpm), Th1 = 0.4, Th2 = 0.9 and
Th3 = 0.85.

Shown in Table 4 is the HRAAE experimental results of the proposed method, with comparison
to other published state-of-art methods from 2016 to 2018 that use the same data set for evaluation.
And the proposed method achieves the lowest error, which shows the strength of the proposed method
for accurate HR estimation during intensive exercise.

Table 4. Comparison of the results of HRAAE for the open source data set.

Subject IEEE Access’16
[20]

IEEE TMBE’16
[14]

MUARD
[21] WFPV [15] HSUM [22] This Work

1 1.16 1.70 1.17 1.25 0.76 1.09
2 1.07 0.84 0.93 1.41 0.92 0.87
3 0.80 0.56 0.70 0.71 0.95 1.20
4 1.13 1.15 0.82 0.97 1.19 0.81
5 0.98 0.77 0.88 0.75 0.70 0.67
6 1.29 1.06 0.97 0.92 0.61 1.15
7 0.88 0.63 0.67 0.65 0.87 0.73
8 0.81 0.53 0.74 0.97 0.59 0.49
9 0.55 0.52 0.49 0.55 0.53 0.34

10 3.18 2.56 2.69 2.06 0.75 2.06
11 0.79 1.05 0.81 1.03 1.50 0.87
12 0.72 0.91 0.77 0.99 2.47 0.78

Mean 1.11 1.02 0.97 1.02 0.99 0.92

Figure 7a shows the Pearson correlation plot for all the HR estimation results. The Pearson
correlation coefficient reached 0.997, showing that the estimated HR values were highly correlated with
the reference HR values. Figure 7b shows the Bland-Altman plot [23] of all the HR estimation results
for the proposed method, which illustrates the relationship between HR estimation errors and the
mean of estimated HR and reference HR. It can be shown that though the largest HR estimation error
reaches around 25 bpm, 95% of the errors are within the range of [–4 bpm, 4 bpm], which indicated a
high agreement between the estimated HR values and reference HR values.Sensors 2019, 19, x FOR PEER REVIEW 9 of 14 
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3.2. Evaluation Under Practical Experiment

Due to the lack of reference PPG signals in open source data set, we cannot evaluate the results of
signal recovery well. To further verify the performance of the proposed method, a PPG evaluation
platform is developed to set up the self-built data set including reference PPG signals, and then
demonstrate the effectiveness of the proposed algorithm under practical environment.

3.2.1. Implementation of Evaluation Hardware and Software

Figure 8 shows the developed PPG evaluation platform, which consists of two signal acquisition
finger-bands and a mobile software application. The finger-bands can simultaneously record one
channel PPG signal and three-axis acceleration signals with 25 Hz sampling rate, in which the PPG
sensor (SEN0203, DFRobot, China) was used to obtain PPG signal with green LEDs and the main
control panel (CurieNano, Intel, USA) integrates the functions of 32-bit MCU, 12-bit ADC, six-axis
motion sensor and Bluetooth Low Energy (BLE). The Figure 8a shows the signal acquisition finger-band.
The software application developed with JAVA was installed on the android smartphone equipped
with Octa-core (4 × 2.4 GHz Cortex-A73 and 4 × 1.8 GHz Cortex-A53), which was used to receive
data from the two finger-bands and run the proposed algorithm. The restored PPG signals and
estimated HR values were displayed on the mobile phone. After testing, the average running time
of the proposed algorithm in the developed platform is 83 ms (the average result of 60 runs of the
algorithm), which shows a great real-time performance. The parameters of the algorithm realized in the
software application are set as the following: Lp =203; δ = 400, M = 8, α= 1.0 × 10−4 and µ = 4.5 × 10−5;
LFFT = 4096, ∆f0 = 0.42 Hz (25 bpm), Ninit = 30 (60 s) and b = 0.08 Hz (5 bpm); Th0 = 0.08 Hz (5 bpm),
∆ = 0.07 Hz (4 bpm), Th1 = 0.4, Th2 = 0.9 and Th3 = 0.85.
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Figure 8. The developed PPG evaluation platform: (a) the signal acquisition finger-band system
consisting of the PPG sensor and main control panel; (b) demonstration of the developed platform: the
subject will wear the finger-band on both hands of them, with the left hand stationary and the right
hand moving.

3.2.2. Experimental Process

During experiment, the subject will wear two finger-bands with each of them on one thumb,
as shown in Figure 8b. The left hand and arm are kept motionless, where only one channel PPG
signal is recorded as the reference PPG signal with no motion artifacts. The right hand and arm
performed certain movements, where one channel MA-corrupted PPG signal and corresponding
three-axis acceleration signals were recorded. As left and right hands and arms were symmetric, the
pure PPG signals collected from them should be highly similar. Thus the PPG signal collected from
motionless left hand can be used as a reference PPG signal, which can indicate the effectiveness of our
proposed method.
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All the raw data mentioned above and processed results of estimated HR values and restored
PPG signals are displayed on the mobile phone in real time and saved as self-built data set. A total of
20 subsets of data from 13 male subjects aging from 20 to 23 are collected, with their duration time and
motion patterns shown in Table 5. The first subset is a control group where the subject stays motionless
for 120 s. The second motion pattern featured relatively regular large-joint movements, while the third
pattern was mainly composed of random small-joint movements.

Table 5. Detailed description for the motion patterns of the practical experiment.

Subset Number of
Subjects Motion Pattern

1 1 Motionless (120 s)

2–10 9

Motionless (20 s)→ Long-range Full-arm Swinging at 1 Hz (20 s)→
Middle-range Full-arm Swinging at 1.5 Hz (20 s)→ Long-range

Full-arm Swinging at 1 Hz (20 s)→Middle-range Full-arm Swinging at
1.5 Hz (20 s)→Motionless (20 s)

11–16 6
Motionless (20 s)→ Random Keyboard Hitting (20 s)→ Left-right Wrist

Swinging (20 s)→ Left-right Forearm Swinging (20 s)→ Up-down
Forearm Swinging (20 s)→Motionless (20 s)

17–20 1 Motionless (20 s)→Walking on a treadmill at 3–6 km/h (80–100 s)
→Motionless (20 s)

3.2.3. Experiment Results

The correlation coefficient between MA-removed PPG and reference PPG signal [24] was adopted
for evaluating the performance of the proposed method to restore the PPG signal. The correlation
between two PPG signal sequences S1 and S2 can be calculated using Equation (6), where L is the
length of the output PPG sequence. µ1 and µ2 are the averages of S1 and S2. σ1 and σ2 are the standard
deviations. The typical range of correlation coefficient was [–1, 1]. A higher value of the absolute
correlation means a higher similarity in two signal sequences. In this study, we denote the correlation
between MA-removed PPG and reference PPG as CORRaMAR. Denoted as CORRbMAR, the correlation
coefficient between MA-corrupted PPG signal and reference PPG signal is also used for showing the
improvement in PPG signal purity.

Corr(S1, S2) =

∑L
i=1(S1(i) − µ1)(S2(i) − µ2)

Lσ1σ2
(6)

Table 6 shows the experimental results for the 20 data subsets of self-built data set. The reference
PPG signal or MA-corrupted PPG signal are first filtered using the BPF in Figure 1 to avoid the influence
of out-of-band noise to the experimental results. In the respect of PPG signal recovery, the result
of control group (subset 1) shows the correlation between the PPG signals from left hand and right
hand is quite good, which means the left-hand signal can be treated as a reference for the right-hand
indeed. The average CORRbMAR over the 20 subsets was 0.57, which is significantly lower than unity,
showing that right-hand PPG signals were strongly corrupted by motion artifacts and the waveforms
are distorted. After applying the proposed MA-removal method, the average correlation is increased
to 0.86, which is close to the value of control group, indicating that PPG signal waveforms have been
recovered well. In respect of HR estimation, the reference HR values were directly calculated from
the magnitude spectrums of reference PPG signals. With the complete proposed method, the overall
average HRAAE is 0.89 bpm, which shows the robustness of the proposed method for accurate HR
estimation during different types of intensive exercise.

To illustrate the performance of the proposed method more clearly, the subset 19 (the best case) and
the subset 8 (the worst case) were taken for examples to further analysis, as shown in Figures 9 and 10.
For the best case, Figure 9a shows the estimated HR stays close to the reference HR and is able to follow
the instantaneous changes in reference HR. Figure 9b shows the two correlation values against time
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for subset 19. For the first 20 s where both hands/arms were motionless, the correlation values were
both high and close to unity. After motion began (walking on the treadmill for subset 19), CORRbMAR
dropped significantly to the range between 0.5 and 0.6. While CORRaMAR also dropped at the transition,
it recovered quickly and always stayed around 0.9 during the intensive exercise. For the worst case, the
estimated HR still stayed close to the reference most of the time, as shown in the Figure 10a. The wide
differences at some time are caused by the sudden change of HR. Because of the excessive movement
of right arm during the data acquisition, the left arm cannot be motionless completely, which results in
the corrupted PPG reference signal.

Table 6. Experimental results for the 20 data subsets of the self-built data set.

Subset HRAAE Average CORRbMAR Average CORRaMAR

1 0.18 0.98 0.90
2 1.02 0.58 0.90
3 0.94 0.64 0.84
4 0.87 0.31 0.86
5 0.53 0.67 0.89
6 0.59 0.73 0.90
7 1.33 0.61 0.78
8 1.81 0.55 0.84
9 0.79 0.65 0.90
10 0.77 0.54 0.83

Mean(2–10) 0.96 0.59 0.86

11 0.49 0.58 0.89
12 1.12 0.54 0.80
13 1.29 0.44 0.75
14 1.05 0.34 0.74
15 1.41 0.60 0.80
16 0.53 0.77 0.92

Mean(11–16) 0.98 0.55 0.81

17 1.06 0.63 0.89
18 0.41 0.61 0.93
19 0.36 0.58 0.93
20 0.47 0.49 0.90

Mean(17–20) 0.57 0.58 0.91

Mean(2–20) 0.89 0.57 0.86
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4. Discussions and Conclusions

PPG sensors have been widely used in wearable health tracking, from the early HR monitoring
to the present BP and SpO2 monitoring. However, the accuracy of PPG sensors during exercise is
unsatisfactory due to the motion artifact. At present, many studies have proposed methods to improve
the accuracy of HR monitoring, which ignore the morphological recovery of the PPG signal. It limits
the application of PPG sensors. In this paper, a novel method is proposed for PPG MA removal during
intensive exercise. On the one hand, an LMS-Newton-based cascaded ANC and unique HRF estimation
scheme are applied to increase the accuracy of HR calculation. The mean AAE of HR during intensive
exercise is improved from 11.47 bpm to 0.92 bpm, which verified preliminary on a widely-used open
source data set of 12 subjects. On the other hand, the notch filters are employed here to recover the PPG
components with the calculated HRF, which maintaining the morphological characteristics of PPG
signals during intensive exercise. In the practical experiment, the proposed method achieves mean
AAE result of 0.89 bpm, which shows the stability and strength of the proposed method for accurate
HR calculation during intensive exercise. At the same time, the average correlation coefficient between
recovered PPG signal and reference PPG signal reaching 0.86. The main features of PPG signal are
restored, which is helpful to the future study of PPG sensors, such as wearable BP monitoring based
on PPG. In addition, the proposed method has the advantage of real-time performance. It only costs
an average of 0.83 ms to process the PPG signal with 25 Hz sampling rate. The proposed method
provides a good basis for the improvement of the wearable PPG sensors.
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