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Abstract: In this paper, we propose a novel strep throat detection method using a smartphone with
an add-on gadget. Our smartphone-based strep throat detection method is based on the use of
camera and flashlight embedded in a smartphone. The proposed algorithm acquires throat image
using a smartphone with a gadget, processes the acquired images using color transformation and
color correction algorithms, and finally classifies streptococcal pharyngitis (or strep) throat from
healthy throat using machine learning techniques. Our developed gadget was designed to minimize
the reflection of light entering the camera sensor. The scope of this paper is confined to binary
classification between strep and healthy throats. Specifically, we adopted k-fold validation technique
for classification, which finds the best decision boundary from training and validation sets and applies
the acquired best decision boundary to the test sets. Experimental results show that our proposed
detection method detects strep throats with 93.75% accuracy, 88% specificity, and 87.5% sensitivity
on average.
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1. Introduction

According to the U.S. National Health Statistics Report, strep throat (streptococcal pharyngitis) is
one of the main reasons for patient visits to hospital emergency departments in the U.S. [1]. Strep throat
is an infection that is caused by bacteria [2]. Specifically, Group A beta-hemolytic streptococcus is the
main cause of streptococcal pharyngitis in children and adults [3,4]. One of the risks of late strep throat
diagnosis is rheumatic fever, which may lead to chronic rheumatic heart disease [5]. Rheumatic fever
is the cause of death for approximately 320,000 patients a year globally [6,7]. Hence, early diagnosis of
strep throat is crucial for preventing deaths related to rheumatic heart disease, especially in remote
areas with a medical shortage. Moreover, a false diagnosis of strep throat may cause inappropriate
treatment using antibiotics that would lead to bacterial resistance [8,9].

The common diagnosis method is the clinical decision utilizing the Centor score that is calculated
from a set of criteria which includes coughing, fever, etc. [2,3,5,7,8,10]. However, its accuracy is
less than 86% [10,11]. Throat culture is another clinical diagnosis method detecting streptococcal
pharyngitis [9,11–16], which adds a sample of cells from the throat to a substance to promote the growth
of the bacteria and diagnoses the disease. If bacteria grows (positive), it indicates that the patient has a
bacterial infection [15]. Otherwise, the patient does not have a bacterial infection. The accuracy of this
culture method for strep detection is 98% [15]. Strep throat was also diagnosed with the help of touch
spray ionization mass spectrometry [14]. However, these diagnosis methods need trained physicians
or specialists. Hence, timely and accessible diagnosis for all patients is still a challenge.
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There have been studies which use color intensity values to detect diseases like diabetes [17,18],
internal-organ diseases [19–21], or heart and kidney diseases [17,18,22–29]. These color intensity
value-based methods have been combined with machine learning techniques such as naive Bayes, Bayes
net, and sequential minimal optimization (SMO) [30–32]. In these studies, 21 properties were extracted
from tongue color intensity values to diagnose 23 different types of diseases. Despite the capability
of diagnosing different diseases using tongue color features, there exist some limitations identifying
syndromes, distinguishing color features, and classifying the diseases [17,22–24]. For example,
Zhang and Kim et al., concluded that different light conditions, color spaces, and devices can make the
fore-mentioned methods to be less reliable in diagnosing corresponding diseases [17,33,34]. Even though
there have been studies on smartphone-based tongue color analysis for medical diagnosis [34,35] as
mentioned above, to the best of the authors’ knowledge, there has been no research on smartphone-based
strep throat detection using color analysis.

In this paper, we propose a novel and robust throat color analysis technique using YCbCr color
space and least square estimation-based color correction method with images obtained from the
smartphone camera to detect strep throat. Our proposed method uses an add-on gadget which helps
to acquire throat images in an accurate manner. The YCbCr color space separates the luminance factor
from the color space and makes it independent of luminance changes to detect the region of interest
(ROI). The novel color correction method copes with different sensors and chroma variations to provide
a unified color space. For classification, the k-NN classifier was adopted to distinguish healthy and
diseased throat. As a result, the proposed method provides detection of strep throat with the images
captured by the smartphone camera. The rest of this paper is organized as follows: Section 2 describes
data collection and feature extraction. Section 3 describes the results from our proposed method, and
finally Section 4 concludes the paper.

2. Materials and Methods

Strep throat symptoms are inflammations, red spots on the back of the throat, and enlarged
tonsils, which are shown in Figure 1b [36]. In this paper, we propose a smartphone-based strep throat
detection method, which classifies strep throats from healthy throats using the image features shown
in Figure 1. The classification of our proposed method is confined to binary classification between
strep and healthy throats. Data acquisition required for testing the proposed method is explained
in Section 2.1 while the proposed strep detection method consisting of (1) preprocessing, (2) feature
extraction, and (3) classification is described in Sections 2.2–2.4, respectively.
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2.1. Data Acquisition

We recruited 56 subjects following the Texas Tech University Institutional Review Board (IRB)
(IRB#: IRB 2018-701). The subjects (56) consisted of 28 healthy and 28 strep throat-diagnosed subjects
whose ages were in the range of 20 to 38 years old. Among 56 subjects, 31 were male and 25 were
female. Subjects were asked to sit in a relaxed position without any movement and instructed to
open their mouths widely. At that moment, experimenters captured subjects’ throat images using a
smartphone camera. We used the iPhone X rear camera and set the resolution of the camera to its
maximum resolution at 12-megapixels (4032 x 3024 pixels). We used the autofocus function of the
iPhone X and turned the light emitted diode (LED) flashlight on during the image acquisition.

Figure 2 shows our developed add-on gadget and its usage with the iPhone X. We designed and
manufactured this add-on gadget customized to iPhone X using a 3-D printer. This gadget made the
smartphone’s flashlight shine on the throat in a bright and uniform way. Moreover, it eliminated the
effect of ambient light, minimized tongue movement, and prevented the tongue from blocking the
throat, Figure 2.
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Figure 2. Our developed add-on gadget and its usage for data acquisition. (a) Add-on gadget designed
and manufactured by 3D printing, and (b) image acquisition setup using the iPhone X with the
add-on gadget.

2.2. Preprocessing

The preprocessing step is needed for accurate and effective feature extraction in throat images.
Two main parts of the preprocessing steps are (1) color correction and (2) image segmentation.
Color correction is required to derive the output image independent from the color space since each
smartphone camera has its own color space parameters [37]. On the other hand, image segmentation
is required to extract a region of interest (ROI) from the input raw image since images taken by the
smartphone camera may include other parts of the inner mouth (soft palate and teeth, lips, etc.).

2.2.1. Color Correction

For color correction, we adopted the least square estimation-based color correction method [38],
which calculates color correction matrix A based on least-square estimation toward the reference color.
We generated the color chart having 100 color patches (10 × 10 color patches) using MATLAB as shown
in Figure 3 [39], and took a picture of the color chart using a smartphone. The two-dimensional original
image and its processed image are represented by O and P matrices, respectively, which are i × 3
matrices where i is the number of patches and 3 comes from the number of color channels containing
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R, G, B (red, green, blue) color channels (see Equation (1) below). Here, each patch consists of m rows
(height) × n columns (width) pixels as shown in Figure 3.

O =


O1R O1G O1B

O2R
...

O2G
...

O2B
...

OiR OiG OiB

, P =


P1R P1G P1B

P2R
...

P2G
...

P2B
...

PiR PiG PiB

. (1)

Here, the individual terms in the i × 3 image matrices O and P are denoted by Oxy and Pxy,
respectively, where x varies in the range from 1 to i and y may be R, G, or B. OxR, OxG, and OxB are the
red, green, and blue intensities of the xth original image patches, and PxR, PxG, and PxB are the red,
green, and blue intensities of the processed image patches, respectively.
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patch inside the color chart is an image with m × n pixels. Each patch is presented in its R, G, B color
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Denoting by A the color correction matrix, O can be expressed by A and P as follows:

O =


O1R O1G O1B

O2R
...

O2G
...

O2B
...

OiR OiG OiB

 =
[

1 P
]
A =


1 P1R P1G P1B

1 P2R P2G P2B
...

...
...

...
1 PiR PiG PiB




A11 A12 A13
A21 A22 A23
A31
A41

A32
A42

A33
A43

, (2)
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where 1 denotes the column vector consisting of i rows of 1s. By adding column 1 to P, a DC offset is
added. Due to the appended 1 column vector with the matrix P, A11, A12, and A13 were added in A to
determine the optimal color offset. The product of xth row of the processed image (1, PxR, PxG, PxB)

and the first column of matrix A (A11, A21, A31, A41) becomes OxR. Similarly, OxB (or OxG) is can be
expressed by the product of xth row of matrix P and the second (or the third column) of matrix A. Color
correction matrix A is calculated using the following equation [38]:

A =
([

1 P
]T[

1 P
])−1[

1 P
]T

O, (3)

where [·]T stands for the transpose of a matrix. The color correction of 10 patches are presented in
Figure 4. In Figure 4, (·,·) below each tick label on the x-axis indicates the location of the patch. e.g., (1,2)
indicates the patch located at the 1st row and 2nd column. The corrected color values (gray bar) from
the iPhone X color value (orange bar) became similar to the reference values (blue bar) after the color
correction step as shown in Figure 4. The output examples obtained by this color correction step of our
proposed method are shown in Figure 5.
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throat image.

2.2.2. Image Segmentation

In the throat images acquired by the smartphone, there were five regions: (1) tongue, (2) palate,
(3) lip, (4) teeth, and (5) throat tissue of the inner mouth. The image segmentation step is aimed at
acquiring only the throat tissue region, which is the ROI in this paper, among the five regions in the
input image. Since the color of the ROI was different from the other regions, we used the color intensity
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thresholding algorithm to find the ROI [40]. Specifically, we converted a raw RGB image obtained from
the smartphone into a YCbCr image. Next, we extracted Y, Cb, and Cr channels, and finally, applied
threshold values into each channel to find the ROI. Figure 6 shows the flowchart of the proposed color
intensity thresholding algorithm to extract the ROI. The color intensity values of Y, Cb, and Cr channels
were extracted from the color corrected image obtained in Section 2.2.1. We set the color intensity
threshold values of Y, Cb, and Cr channels considering the ranges of color intensity values of ROI’s
Y, Cb, and Cr channels. Specifically, the minimum and the maximum values of ROI’s Y, Cb, and Cr
color intensity values were extracted to determine the corresponding threshold values of each channel.
Denoting by Ylow, Cblow, and Crlow low threshold values of ROI’s Y, Cb, and Cr channels and denoting
by Yhigh, Cbhigh, and Crhigh high threshold ones, the pixels which satisfied the following conditions are
considered to constitute the ROI. Otherwise, the other pixels were considered to constitute non-ROI
region as shown in Figure 6.

Ra(r, c) =

{
Rb(r, c) if Ylow < Y < Yhigh, Cblow < Cb < Cbhigh, Crlow < Cr < Crhigh

0 otherwise,
, (4)

where Rb(r, c) and Ra(r, c) are color intensity values at the pixel location at rth row and cth column
before and after the image segmentation step, respectively. Figure 7b shows an example of the ROI
selection obtained by the image segmentation step of our proposed method on the throat image of
Figure 7a.
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(a) Original image, and (b) the ROI extracted from the original image in (a).

2.3. Feature Extraction

Strep throat symptoms include red spots on the roof of the mouth, red and swollen tonsils, and
white and yellow dots on the tonsils and the back of the mouth. These symptoms are the indications
of bacterial inflammation. Hence, our proposed method extracts these features to detect strep throat
symptoms [12,13,41]. Our method was designed and implemented to only distinguish strep throats
from healthy ones. We first introduced throat color gamut and throat color features. We then used
these color features to distinguish the strep throat images from healthy ones. All possible colors
representing the throat surface are mainly distributed in the red and blue boundaries of Figure 8 [42].
The blue one provides the tighter boundary which covers almost 98% of the points of the throat surface.
The colors that exist inside the blue boundary are the colors in the YCbCr range of the ROI mentioned
in Section 2.2.
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2.4. Classification

We applied the k-NN classifier to distinguish strep throats from healthy throats since it is widely
used in various fields such as medical imaging for brain tissue segmentation, MRI (magnetic resonance
imaging) image classification, skin and breast cancer cell classification, and tongue image classifications
due to its accuracy, fastness, and simplicity [43–46]. The k-NN classifier has also been shown to be
compatible with running on smartphones [47]. We divided 56 data sets into 40 training and 16 test
sets. This division was done in a random way to avoid bias [48,49]. Forty training sets consisted of
20 healthy subject images and 20 strep throat images. For the validation step, we adopted a k-fold
cross-validation technique to prevent over-fitting. Specifically, we adopted 10-fold cross-validation
which divided the data set into ten subsets and iteratively trained the algorithm on 9 folds while using
the remaining fold as the validation set. Hence, the algorithm was trained on 9 folds (36 subjects)
and the remaining set (four subjects) was left out for validation. This step was repeated for 10 turns
(iterations) as shown in Figure 9. As a result of the 10-fold validation, we found the optimal parameter
value k of the k-NN classification algorithm. As mentioned, 16 subjects (eight from healthy class
and eight from diseased class) were left out for the test data set. We applied the decision boundary
determined by this optimal parameter to the 16-test data set shown in Figure 9.
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Figure 9. 10-fold cross-validation technique used in our proposed method. The original data set was
split into training (71%) and testing (29%). We applied 10-fold cross-validation to the training data
set by dividing it into 10 folds (each fold contained four subjects). Specifically, 9 folds were used for
training and the remaining 1-fold was used for validation. The cross-validation step was repeated
10 turns, rotating the training and validation folds.

3. Results

We evaluated the performance of our proposed smartphone-based strep throat detection method
by calculating accuracy, sensitivity, and specificity when the detection algorithm was applied to throat
images of 56 subjects. We derived the color gamut of the throat area where three color features Y, Cb
and Cr were extracted. The histograms of Y, Cb and Cr components values of healthy and strep throats
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are shown in Figure 10a,b, respectively. The mean values of the color components (channels) for the
healthy throat and strep throats were derived and represented in Table 1. Figure 11 shows the color
distribution of the Y, Cb, and Cr color channels. The distribution of Y-Cb color channels is shown in
Figure 11a while the color distribution of the Cb-Cr channels is shown in Figure 11b. As shown in
Table 1 and Figure 11, Cb values are similar between healthy and strep throats while Y and Cr values
were noticeably different between healthy and strep throats.
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Figure 10. Histograms of Y, Cb and Cr color features of the acquired images. (a) Healthy throat color
component histograms, and (b) diseased throat color component histograms. Here, the x-axis shows
the intensity value of each color channel while the y-axis shows the number of pixels.

Table 1. Mean, standard deviation, and the range of the color intensity values of healthy and
strep throats.

Color Channel Y Cb Cr

Healthy (Mean ± STD) 133.5 ± 12 127 ± 5 168.5 ± 11
Diseased (Mean ± STD) 97 ± 5 137 ± 6 141 ± 8

Healthy (range) 122–145 112–142 155–185
Diseased (range) 92–103 118–132 135–147
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Figure 11. Color distribution of different color channels in healthy and diseased throats: (a) Y and Cr
color intensity distribution of healthy and strep throats, and (b) Cb and Cr intensity distribution of
healthy and strep throats.

Figure 12 shows an example of the strep detection procedure. The acquired RGB image is shown in
Figure 12a. Figure 12b shows the YCbCr image converted from RGB image in Figure 12a. Figure 12c,d
show the infected tissue detected in Figure 12b and in white colors, respectively. The colors that we
were seeking as symptoms of the strep throat have been in Figure 12. The strep tissue are indicated by
A, B, C, and D symbols in Figure 12 and the color intensity values of the infected tissue have been
represented in Table 2. A paired-t test was performed to compare the average Y, Cb, and Cr values of
healthy and diseased throats. The significant difference test was performed on the parameter value
YCbCravg= Y+Cb+Cr

3 which has been proven to be effective in distinguishing healthy and diseased
tissue with bacterial infection [17,32,34]. The paired-t test indicated that the YCbCravg= Y+Cb+Cr

3 from
the healthy throat (mean = 146.3, STD = 6.8) was significantly higher than diseased ones (mean = 124.4,
STD = 5.1) with p=0.04. Specifically, the values of mean difference and standard deviation of difference
were 21.9 and 5.6, respectively.
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Figure 12. Strep detection procedure based on YCbCr components of a throat image: (a) Original RGB
image, (b) YCbCr image converted from the RGB image in (a), (c) infected tissue detected in (b), and
(d) infected tissue marked in white color.

Table 2. Mean and standard deviation of YCbCravg values in the A, B, C, and D regions from all healthy
and diseased throats.

Strep Throat Symptoms Healthy YCbCravg
(Mean ± STD)

Disease YCbCravg
(Mean ± STD)

A in Figure 12 154 ± 6.8 141 ± 4.3
B in Figure 12 165 ± 7.6 143 ± 5.1
C in Figure 12 136.2 ± 4.4 152.6 ± 6.7
D in Figure 12 151.2 ± 6.6 134.6 ± 5.4

We divided the data (56 subjects) into a training and validation set (40 subjects), and a test set
(16 subjects). Here, for the training and validation set (40 subjects), 20 healthy and 20 strep subjects
were randomly chosen from the total 56 subject data to avoid biasing [48]. As a result of 10-fold
validation, we found the optimal k value for the k-NN classifier is 13 since it gives the highest accuracy
as shown in Figure 13. We applied the decision boundary determined by this optimal k value (k = 13)
to the test data set (16 subjects).
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Figure 13. Cross-validation accuracy for varying k values of the k-NN classifier from 1 to 30. As k
value increases, the accuracy value of cross validation increases while the processing takes more time.
The optimal k value was achieved at k = 13 in terms of cross validation accuracy and processing time.
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As performance metrics, we considered accuracy, sensitivity, and specificity which were calculated
using true positive (TP), true negative (TN), false positive (FP), and false negative (FN) values as follows:

Sensitivity =
TP

TP + FN
× 100%, (5)

Speci f icity =
TN

TN + FN
× 100%, (6)

Accuracy =
TP + TN

TP + TN + FP + FN
× 100%, (7)

where TP, FP, TN, and FN were counted in terms of the number of images. Since the scope of this paper
was confined to binary classification between strep and healthy throats as mentioned in Section 2, TP,
FP, TN, and FN were calculated considering this binary classification. That is, TP is the number of
images which were correctly determined to be strep given that they are strep, and FP is the number
of images which were incorrectly determined to be strep given that they are healthy. On the other
hand, TN is the number of images which were correctly determined to be healthy given that they are
healthy, and FN is the number of images which were incorrectly determined to be healthy given that
they are strep.

The average accuracy of the 10-fold cross-validation was calculated by averaging the accuracy
values of all turns (iterations) of the cross-validation. Table 3 shows the average accuracy, sensitivity,
and specificity values of the proposed algorithm. The average and standard deviation value of the
cross-validation accuracy was 97.8% ± 0.014% as shown in Table 3. We applied the decision boundary
obtained from this 10-fold cross-validation into the test data set (8 healthy and 8 strep throat images).
As a result, we obtained 93.75% accuracy, 87.5% sensitivity, and 88% specificity, for the test dataset as
shown in Table 3.

Table 3. Average accuracy, sensitivity, and specificity values of the proposed method.

Cross Validation Accuracy
(Mean± STD)

Average Test
Accuracy

Average Test
Sensitivity

Average Test
Specificity

0.978 ± 0.014 0.9375 0.875 0.88

Figure 14 shows example outputs of our proposed method on one healthy throat and one strep
throat. Figure 14a is the original image from the healthy throat and Figure 14b is the result of our
method on the healthy throat. Figure 14c is the original image from strep throat and Figure 14d is the
result of our method on the strep throat. Infected tissue are detected in the strep throat as shown in
Figure 14d while those are not detected in the healthy throat as shown in Figure 14b.
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Figure 14. Detection of strep throat tissue using the proposed method. (a) Original image of a healthy
throat, (b) the throat in (a) is diagnosed to be healthy (no infected tissue is detected in the image),
(c) original image of a diseased throat, and (d) the throat in (c) is diagnosed to be infected (infected
tissue is marked in bright color).

4. Conclusion and Discussion

In this paper, we have investigated the plausibility of using a smartphone to detect strep throat
by evaluating our developed smartphone-based strep throat detection method on subjects’ throat
images taken by a smartphone camera. We recruited 56 subjects consisting of 28 strep and 28 healthy
subjects, acquired subjects’ throat images using an iPhone X, and tested our method on them. The aim
of the proposed method was to find symptoms (color features) that indicate the signs of streptococcal
pharyngitis in the throat. To improve the performance of our proposed method, we designed and
manufactured an add-on gadget to control the lighting conditions and avoid ambient light and
reflection. We proposed the use of color intensity thresholding techniques to segment throat tissue
from a throat image. In this paper, a novel least square color correction method and YCbCr color
space that is luminance-independent (by extracting Y channel) has been proposed. The color intensity
thresholding technique has been applied and evaluated in detecting tongue color as well [50]. However,
they had different approaches in evaluating their color intensity-based techniques. For example,
a support vector machine (SVM) was adopted as a classifier to distinguish diseased subjects from
healthy ones in Refs. [17,31–34,44]. We adopted a k-NN classifier as in Refs. [31,44] and evaluated
the performance using k-fold validation approach as in Refs. [17,32–34]. The experimental results
have shown that the proposed color intensity thresholding system could segment throat image tissue
in a throat image. We have simplified the categories of throat images into strep and healthy throats
since the scope of this paper was not the multiclass classification of different degrees of strep (or
streptococcal pharyngitis) but was confined to binary classification between strep and healthy throats.
Cross-validation was performed to prevent overfitting. Here, 10-fold cross-validation was specifically
adopted. After running 10-fold cross-validation on a range k from 1 to 30 for the k-NN classifier,
the highest validation accuracy 97.8% was achieved at k = 13. The experimental results have shown that
the proposed method detects strep throat with 97.8% average accuracy (validation score) for the 10-fold
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cross-validation training data set. Using the k-NN classifier, the proposed strep detection method
can detect strep from the throat tissue with 93.75% accuracy, 87.5% sensitivity, and 88% specificity
for the testing dataset. This method can be implemented using any smartphone, including iOS or
Android phones with an appropriate add-on gadget using a retargetable application platform [51].
Extending this result into classifying different degrees of strep throat and differentiating bacterial from
viral infections can be considered in future work.
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