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Abstract: The navigation accuracy of a star sensor depends on the estimation accuracy of its optical
parameters, and so, the parameters should be updated in real time to obtain the best performance.
Current on-orbit calibration methods for star sensors mainly rely on the angular distance between
stars, and few studies have been devoted to seeking new calibration references. In this paper,
an on-orbit calibration method using singular values as the calibration reference is introduced and
studied. Firstly, the camera model of the star sensor is presented. Then, on the basis of the invariance
of the singular values under coordinate transformation, an on-orbit calibration method based on
the singular-value decomposition (SVD) method is proposed. By means of observability analysis,
an optimal model of the star combinations for calibration is explored. According to the physical
interpretation of the singular-value decomposition of the star vector matrix, the singular-value
selection for calibration is discussed. Finally, to demonstrate the performance of the SVD method,
simulation calibrations are conducted by both the SVD method and the conventional angular
distance-based method. The results show that the accuracy and convergence speed of both methods
are similar; however, the computational cost of the SVD method is heavily reduced. Furthermore,
a field experiment is conducted to verify the feasibility of the SVD method. Therefore, the SVD
method performs well in the calibration of star sensors, and in particular, it is suitable for star sensors
with limited computing resources.
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1. Introduction

A star sensor is a navigation system that obtains the attitude information of the carrier by the
observation of stars. They are the most accurate optical attitude sensors, at present [1]. Due to their
high navigation accuracy, strong autonomy, and lack of cumulative error, they are favored in the
aerospace industry [2,3]. As the “eyes” of the spacecraft, the accuracy of the star sensor determines the
performance of the spacecraft directly. The star sensor is an optical device whose accuracy depends on
the imaging quality and the accuracy of the optical parameters, including focal length, principal point,
and distortion [4,5]. Therefore, calibration is one of the key technologies for a star sensor.

The calibration methods of star sensors can be divided into two categories: ground-based
calibration and on-orbit calibration. Generally, multi-frame observations should be accumulated for
the ground-based calibration method; hence, this method often relies on a fixed platform and complex
experimental installations [6,7], and the cost of ground-based calibration is high. Additionally, as the
working environment of a star sensor is different from the calibration environment, the parameters
may change in orbit [8,9]. In most cases, on-orbit calibration is carried out with observed data during
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operation, such that the parameters can be updated in real time and the accuracy of the star sensor can
be maintained.

The on-orbit calibration for star sensors was first studied by Junkins and his research group from
Texas A&M University in 2001. According to the fact that the angular distance between stars is constant
under the rotation transformation, Samaan [10] proposed an on-orbit calibration method based on
the cosine residuals of the angular distances, and the detailed on-orbit calibration procedure was
presented. Further studies were carried out by other members of the team; Singla [11] evaluated
the performance of the calibration method based on angular distances; Griffith [12] explored
approaches for the on-orbit calibration of higher order focal plane distorting effects; Woodbury [13]
proposed an on-orbit calibration method based on the sine of angular distance, instead of the
cosine; Liu [14] and Shen [15] concentrated on the improvement of the sequential estimation method;
and Enright [16,17] suggested using the angular distances directly and adopting a new camera model
for calibration. Although considerable studies have been done for the on-orbit calibration of star
sensors, almost all of these were related to angular distances.

The singular-value decomposition (SVD) method was originally used for the attitude
determination in a star sensor by Markley [18]. The invariant singular values of stars were applied
for star identification in star sensors by Juang [19]. More characteristics of the SVD for star sensors
were studied by Yin [20,21]. On the basis of these works, we find that the invariant singular value is an
appropriate reference for the on-orbit calibration of star sensors, and an on-orbit calibration method
based on the singular-value decomposition is proposed in this paper.

The remainder of this paper is organized as follows. The camera model to be calibrated in this
paper is introduced in Section 2. In Section 3, the principle of the invariant singular values of star
sensors is presented, and an SVD on-orbit calibration method with the extended Kalman filter (EKF) is
proposed. Furthermore, taking observability as the criterion, further studies on the star combination
models and the performance of different singular values are discussed. In Section 4, both simulation
and field experiments are conducted to evaluate and verify the performance of the proposed calibration
method. Finally, some conclusions are drawn.

2. Camera Model

It is generally accepted that a conventional camera model includes three parts: extrinsic
parameters, intrinsic parameters, and distortion parameters [22,23]. Notably, a star sensor is mainly
used to calculate the attitude or the rigid rotation between the camera coordinate and the inertial
coordinate, so there is no need to solve for the extrinsic parameters in the calibration. Neglecting the
extrinsic parameters, the coupling effect between intrinsic and extrinsic parameters can be avoided
to improve the calibration accuracy. Therefore, in this paper, the camera model of a star sensor only
consists of intrinsic and distortion parameters.

The reference frames of the camera model involve three coordinate frames: the camera frame,
the physical image frame, and the image frame, as shown in Figure 1. Figure 1a shows the relationship
between the camera frame and the physical image frame, and Figure 1b shows the relationship between
the physical image frame and the image frame. These reference frames are defined based on the pinhole
camera model, where O-XYZ is the camera reference frame, the origin O of the camera frame is the
projection center, and the Z-axis is the optical axis. The physical image frame o’-th u’v’ is related to the
detector plane. This frame is parallel to the XOY plane of the camera frame; the intersection of this
plane and the optical axis is the principal point o’; and the u’- and v’-axes are parallel to the X- and
Y-axes of the camera frame, respectively. The distance between these two planes along the optical axis
is the focal length f . The u- and v-axes of the image reference frame o-uv (in Figure 1b) are parallel
to the u’- and v’-axes of the physical image frame, respectively, and the origin of the image reference
frame is located in the top left of the image; so, the coordinates of the principal point in the image
frame are [u0, v0]

T .
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Figure 1. Reference frames. (a) Camera frame and physical image frame; and (b) physical image frame
and image frame.

Let w = [X, Y, Z]T be an arbitrary unit star vector [16] with respect to the camera reference frame,
and its projection on the image frame is p = [u, v]T . The perspective projection relationship between
w and p can be represented as [22,24]:u

v
1

 =
1
z

 fu 0 u0

0 fv v0

0 0 1


X

Y
Z

 , (1)

where [u, v, 1]T are the homogeneous coordinates of the point p, and fu and fv are:

fu =
f

Du
, (2)

fv =
f

Dv
, (3)

where f is the focal length and Du and Dv are the horizontal and vertical pixel sizes, respectively.
The relationship between the factors Du and Dv is:

Dv = sDu, (4)

where s is the aspect ratio (the height of a pixel compared to the width of that pixel) [22]. Normally,
the reference values of Du and Dv are given in the datasheet of the camera. From Equations (2)–(4),
fu and fv are linearly dependent on the parameters s and f , and so, u0, v0, s, and f are the intrinsic
parameters to be calibrated.

As a result of the imperfection of the camera lenses, distortion should be considered in the camera
model. Lens distortion is usually expressed as:{

ud = u + δu(u, v)

vd = v + δv(u, v)
, (5)

where u and v are the distortion-free coordinates in Equation (5), ud and vd are the corresponding
coordinates with distortion, and δu(u, v) and δv(u, v) are the distortions in the u and v directions,
respectively. It has been shown that higher order distortions may cause numerical instability [25],
so here, we consider only the first- and second-order radial distortion:{

δu(u, v) = u(k1r2 + k2r4)

δv(u, v) = v(k1r2 + k2r4)
, (6)

where k1 and k2 are the distortion coefficients of the radial distortion, and r2 is defined as [24]:
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r2 =
(u− u0)

2

f 2
u

+
(v− v0)

2

f 2
v

. (7)

With the model above, given the position of the observed star centroid in the image frame
pd = [ud, vd]

T , we can calculate the corresponding unit star vector in the camera frame w = [X, Y, Z]T .
We express the relationship as:

w = F(s, f , u0, v0, k1, k2, pd), (8)

where F(·) is the back-projection function with distortion.

3. Calibration Model Based on Singular-Value Decomposition

3.1. Calibration Reference: Singular Values

This calibration method is based on the invariant characteristic of the singular-value
decomposition of the star sensor. The principle is presented as follows [19].

3.1.1. Singular-Value Decomposition of the Star Sensor

Define wi as an observed star vector in the camera frame and vi as a guide star vector in the
inertial frame. The transformation between these two frames is:

W = CV , (9)

where W and V are the column vector matrices:

W =
[
w1 w2 . . . wN

]
3×N

, (10)

V =
[
v1 v2 . . . vN

]
3×N

, (11)

and C is the direct cosine matrix (DCM), which indicates the transformation from the inertial frame to
the camera frame. Hence, C is an orthogonal matrix.

The SVD is a general decomposition method for matrices. With the SVD, the matrices W and V
can be decomposed into:

W = PwΣwQT
w =

3

∑
i=1

pwiσwiqT
wi, and (12)

V = PvΣvQT
v =

3

∑
i=1

pviσviqT
vi, (13)

where Pw and Pv are 3× 3 orthogonal matrices of left singular vectors pwi and pvi (i = 1,2,3), Qw and
Qv are N × N orthogonal matrices of right singular vectors qwi and qvi (i=1,2,. . . , N), and Σw and Σv

are 3× N diagonal matrices where the diagonal elements are the singular values σwi and σvi (i=1,2,3) of
W and V , respectively. For no less than three stars in the field of view (FOV), there are three non-zero
singular values, and the SVD is unique. The singular values have the following property.

3.1.2. Invariant Singular Values

Post-multiplying Equation (9) by W T , we obtain:

WW T = CVV TCT . (14)

Substituting Equations (12) and (13) into Equation (14) yields:
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WW T = PwΣwQT
wQwΣT

wPT
w = PwSwPT

w

= CVV TCT = CPvΣvQT
v QvΣT

v PT
v CT = CPvSvPT

v CT , (15)

or:

PwSwPT
w = CPvSvPT

v CT , (16)

where Sw and Sv are diagonal matrices with eigenvalues σ2
wi and σ2

vi (i=1,2,3) of WW T and VV T ,
respectively. As C is an orthogonal matrix, Equation (14) is a similarity transformation. Thus,
the eigenvalues of the WW T and VV T are equal; namely,

σ2
wi = σ2

vi, i = 1, 2, 3. (17)

Meanwhile, the positive singular values of W and V are equal:

σwi = σvi, i = 1, 2, 3. (18)

Therefore, we can conclude that the singular values of the star vectors remain constant under
coordinate transformation.

3.2. On-Orbit Calibration Method Based on Singular-Value Decomposition

The singular values can be calculated using the data obtained by the star sensor itself, and the
invariance of the singular values provides a new way to calibrate the optical parameters of star sensors
in orbit.

Supposing that SV(·) indicates the singular value-solving operator, Equation (18) can be
presented as:

σvi = SV(V) = σwi = SV(W), i = 1, 2, 3. (19)

Substituting Equation (8) into Equation (19) yields:

σvi = σwi = SV(V) = SV(F(s, f , u0, v0, k1, k2, Pd)), i = 1, 2, 3, (20)

where Pd = [Pd1, Pd2 . . . PdN ] is the collection of observed star coordinates in the image frame.
After star identification, the observed star coordinates Pd and the corresponding star vectors V in

the star catalog are matched with each other. Thus, according to Equation (20), the singular values can
be obtained by the star vectors V , and they, also, can be calculated by the camera parameters and the
observed star coordinates Pd. The accuracy of the star catalog is very high, and the singular values
calculated by V have good precision. Obviously, Equation (20) is suitable for the measurement equation.

The measurement equation is non-linear, and thus, we estimate the camera parameters based on
the extended Kalman filter (EKF) [26]. The state transition and measurement models are:

xk = I6×6 · xk−1 and (21)

zk = h(xk) + nc, i = 1, 2, 3, (22)

where xk = [s, f , u0, v0, k1, k2]
T , and xk and xk−1 are the state parameters of the star images marked

k and k-1, respectively. Suppose that the camera parameters are constant, and let I6×6 be an identity
matrix. Then, zk = [σ1, σ2, σ3]

T can be calculated by the guide star vectors V ; h(xk) is a simplified
representation of SV(F(s, f , u0, v0, k1, k2, Pd)); and nc represents the measurement error caused by the
noise. Starting with initial estimates of the noise covariance P0 and the parameters x0, which may
be obtained from the ground calibration, we process the calibration frame-by-frame. For the kth star
image, the EKF prediction equations are:



Sensors 2019, 19, 3301 6 of 16

x−k = xk−1 and (23)

P−k = Pk−1 + Q, (24)

where Q is the covariance matrix of the prior estimation error. In this model, the parameters are
constant, and so, the theoretical Q is a null matrix. However, if this is so, the estimator is just a
sequential least squaresestimator, and the artificial process noise is a common technique for forgetting
old measurements.

The EKF update equations are:

Kk = P−k HT
k (HkP−k HT

k + R)−1, (25)

xk = x−k + Kk(zk − h(x−k )), (26)

Pk = (I − Kk Hk)P
−
k , (27)

where R is the covariance matrix of measurement noise and Hk is the Jacobian matrix of
the measurement

Hk =
∂h
∂x

∣∣∣∣
x−k

. (28)

The model of the h is complex, so we adopt numerical differentiation to calculate the
Jacobian matrix.

3.3. Further Study on the SVD Calibration Model

Concerning Equation (28), if all the stars in the FOV are used to calculate the singular values,
it is easy to find that there are only three rows in the Jacobian matrix Hk. The order of Hk is less than
the number of the state parameters, so the observability of the estimator is bad. In order to solve this
problem, the stars should be put into several groups, such that the order of Hk can satisfy the estimator.
There are many different combinations of the stars, however; how to choose the proper combination is
discussed below.

3.3.1. Observability Analysis

Observability is an indicator to evaluate the feasibility of the system; namely, with different
models, the same input derivation may cause different output derivations. If the magnitude of the
output derivation is bigger, then the observability is better and the system is more feasible, and vice
versa. In this section, we define the observability as the infimum of the output derivation [27].

According to the definition of the observability, we can obtain:

δzk = HkWδx, (29)

where δx is the input derivation vector with the same derivation for all the parameters, δzk is the
output derivation, and Hk is the Jacobian matrix. As the precision of different parameters varies
considerably in practice, this means δx cannot represent the actual derivation of different parameters.
Thus, δx should be weighted according to the magnitudes of different precision, where W is the
diagonal weighting matrix whose elements are the typical precision of the parameters (see Table 1),
according to the star sensor in the field experiment. Hence, the observability matrix is:

H ′k = HkW . (30)

Here, the SVD is used again. With the SVD of the observability matrix, Equation (29) can be
represented as:
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δzk = PkΣkQkδx, (31)

where Pk and Qk are orthogonal matrices of left singular vectors and right singular vectors, respectively.
To make sure that H ′k is observable, Σk is defined as a 6× N diagonal matrix where the diagonal
elements are the non-zero singular values σi (i=1∼6).

As Pk and Qk are orthogonal matrices, we can calculate:

‖δzk‖2
2 =

6

∑
i=1

σ2
i ‖δx‖2

2 , (32)

where ‖δx‖2 and ‖δzk‖2 are the two-norms of δx and δzk, respectively.
The infimum of the output derivation is:

‖δzk‖2
2 ≥ 6σ2

min ‖δx‖2
2 , (33)

where σmin is the minimum singular value (MSV) of the observability matrix. It is obvious that,
with larger σmin, the infimum of the output derivation is bigger and the observability is better.
Therefore, we adopt σmin as the indicator to evaluate the performance of the system and find a
suitable calibration model.

Table 1. The nominal values and precision of the parameters.

Parameters s f (mm) u0 (pixel) v0 (pixel) k1 k2

nominal values 1 16 970 550 −0.5 0.5
precision 10−5 10−4 1 1 10−2 10−1

3.3.2. Star Combination Models

With regards to no less than three stars, there are three non-zero singular values, and so,
the combination can be formed by three stars, four stars, and so on. If all the combinations are used to
constitute the measurement models, the computational cost is huge. In addition, the combinations are
not independent, and the information for calibration does not increase linearly with the number
of combinations. Here, we discuss several models based on the different number of stars in
the combination.

Supposing there are N stars in the FOV, we set up four models, as follows.
Model-1: As shown in Figure 2a, a combination is constituted by three stars, such as 1-2-3, 2-3-4,

3-4-5, . . . .
Model-2: As shown in Figure 2b, a combination is constituted by bN/2c stars (where bc represents

rounding down).
Model-3: As shown in Figure 2c, a combination is constituted by N-1 stars.
Model-4: As shown in Figure 2d, differing from the other models, this model is constituted by

various numbers of star combinations, such as 1-2-3, 1-2-3-4, 1-2-3-4-5, . . . .
The observability analysis of these models is shown in Figure 3, where the MSVs of the Jacobian

matrix of each model are calculated frame-by-frame. The MSVs of Model-1, Model-2, and Model-3
interweave with each other, and thus, we suspect that, for different star images, combinations of
different star numbers have different observabilities. The MSVs of Model-4 are bigger, in most cases,
which means that the observability of Model-4 is better than the others (this may be because Model-4
combines the advantages of various star-number combinations), and so, we take Model-4 as the
optimal combination model. This is only a rough discussion of the combination models; further studies
on this problem are still underway.
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(a) (b)

(c) (d)

Figure 2. The schematic diagram of the combination models. (a) Model-1, (b) Model-2, (c) Model-3,
and (d) Model-4.
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Figure 3. Observability analysis of the models.

3.3.3. Singular Value Selection

During the research, one unanticipated finding was that the sensitivities of the three singular
values were quite different, as shown in Figure 4: σ1, σ2, and σ3 are three singular values with
descending order, and the observability of σ1 is worse than σ2 and σ3. Thus, we should consider
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whether all three singular values are suitable for the estimation of the camera parameters, and we
discuss this question with respect to the physical interpretation of the SVD of the star vector matrix W
(see Figure 5).

Frame Number
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m
in
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0

0.2

0.4
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1

1.2
1

2

3

Figure 4. Observability analysis of the three singular values.

Figure 5. Physical interpretation of the SVD of the matrix W.

The black vector depicts the star vector wi. According to the definition of the SVD, the left singular
vectors pwi (i = 1, 2, 3) are unit vectors, so the square of the maximum singular value of W is:

σ2
1 = max

‖pmax‖=1

∥∥∥WW T pmax

∥∥∥ = max
‖pmax‖=1

∥∥∥∥∥ N

∑
i=1

wiwT
i pmax

∥∥∥∥∥ , (34)

where pmax represents the left singular vector associated with the maximum singular value σ1.
Equation (34) illustrates that pmax is the vector that maximizes the sum of projections of each star

vector wi onto pmax. In the same way, pmin, associated with the minimum singular value σ3, is the
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vector that minimizes the sum of projections of each star vector wi onto pmin. Then, pmiddle, which is
associated with the intermediate singular value, is perpendicular to the plane generated by pmax and
pmin. An illustration of pmax, pmiddle, and pmin is shown in Figure 5.

As pmax and wi are unit vectors, Equation (34) can be rewritten as:

σ2
1 = max

N

∑
i=1
‖cos αi‖ , (35)

where αi is the angle between wi and pmax, which represents the projection of the star vector wi onto
pmax. Therefore, the derivation of σ1 is the magnitude of sin αi. As the plane generated by pmiddle
and pmin is perpendicular to pmax, σ2 and σ3 are proportional to sin αi, and the derivations of σ2 and
σ3 are on the magnitude of cos αi. With regards to a small FOV, sin αi is smaller than cos αi, and so,
the derivation of σ1 is smaller than σ2 and σ3, which is in line with the observability analysis. As a
result, in order to reduce the calculation, we can employ σ2 and σ3 for the measurements. As shown
in Figure 5, the status of σ2 and σ3 is similar. The values of σ2 and σ3 are the sum of the projections
of sin αi onto the pmiddle and pmin axes, respectively. Depending on the position of the two axes,
the observabilities of σ2 or σ3 may be large or small, resulting in an unstable effect when using σ2 or
σ3 alone.

4. Results and Discussion

The simulation experiment and field experiments were conducted to verify and analyze the SVD
on-orbit calibration method.

4.1. Simulation Experiments

Star data were simulated, with a 19.14◦ × 11.18◦ FOV, for a 1920× 1080 pixel-array star sensor
at a 2-Hz update rate. The other simulation parameters are listed in Table 1. The simulation data
consisted of three datasets: a set of 3D star vectors in the inertial frame S3D, a set of corresponding 2D
star coordinates in the image frame S2D, and the set of 2D star coordinates with normally-distributed
noise (with a standard deviation of 0.5 pixel), which is referred to as S′2D. For each experiment, S3D,
S2D, and S′2D of 2500 images were simulated. These images were divided into two groups, where
the first 2400 images were used for calibration (according to the experiment, we found that 2400
images could ensure the convergence of calibration), and the last 100 images were used to evaluate the
performance of the calibration. The calibration programs were written in MATLAB and run on an Intel
Core i5-8300H CPU.

In order to evaluate the calibration method fully, the evaluation criteria are presented as follows.
As the residual of a singular value cannot directly reflect the influence of calibration on the star sensor,
the residual of angular distance between stars, which is normally used to evaluate the performance of
on-orbit calibration, is adopted in this paper. Thus, two criteria to evaluate the calibration methods
were employed:

Criterion A: This criterion is based on the simulation data without errors. With the estimation
of camera parameters, S2D can be back-projected to the camera frame, and the angular distances
between them are calculated. The residual errors are obtained by these angular distances and the
corresponding angular distances calculated by S3D. Then, the root-mean-squared error (RMSE) of
the angular distances (A|δRMSE) in each star image is calculated. The mean value (A|µδRMSE ) and the
standard deviation (A|σδRMSE ) of A|δRMSE in the last 100 images are used as the evaluation indices of
Criterion A.

Criterion B: The difference between this criterion and Criterion A is that this model uses the noisy
2D simulation data S′2D to calculate the RMSE of the angular distances (B|δRMSE) in each star image.
The evaluation indexes of Criterion B are presented as the mean value (B|µδRMSE ) and the standard
deviation (B|σδRMSE ) of B|δRMSE in the last 100 images.
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Therefore, A|µδRMSE and A|σδRMSE are only related to the estimation errors of camera parameters,
and these evaluation indexes can only be used in the simulation. Furthermore, B|µδRMSE and B|σδRMSE

are related to both the estimation errors of camera parameters and the centroid noise.

Test 1. Performance of different models:
The aim of this simulation test was to evaluate the performance of the star combination models

presented in Section 3.3.2. A star catalog was formed by taking stars, up to a visual magnitude of
5.5, from the Tycho-2 catalog. The initial values were set as s= 1, f = 15.5 mm, u0= 960, v0= 540, k1= 0,
and k2= 0. The calibration results are listed in Table 2.

Table 2. Calibration results by different models.

Model-1 Model-2 Model-3 Model-4

∆s (%) −0.0032 0.0005 −0.0012 0.0024
∆ f (%) 0.0044 0.0044 0.0050 0.0044
∆u0 (%) −2.6354 0.1126 −0.0599 −0.2159
∆v0 (%) 0.9508 −0.1315 0.0940 −0.6011
∆k1 (%) −0.4379 1.1205 0.8043 1.0729
∆k2 (%) −47.4027 32.7026 15.7377 25.0508

A|µδRMSE (") 0.852 1.106 4.392 0.465
A|σδRMSE (") 0.029 0.060 0.022 0.038

The derivation of the parameters shown in Table 2 is expressed as fractional changes, due to the
different scales of the parameters. The results showed that the parameters s, u0, v0, and k2 obtained by
Model-2 and Model-3 had better accuracy than Model-1; f obtained by Model-1 and Model-2 had
better accuracy than Model-3; and k1 obtained by Model-1 had better accuracy than Model-2 and
Model-3. On the basis of these results, we conclude that, for different parameters, each of the first
three models had advantages and disadvantages. However, the precision of the parameters calibrated
by Model-4 was always at an intermediate level, which means that Model-4 combined the properties
of the other combination models. With regard to the error evaluation Criterion A, the performance of
Model-4 was better than the others. This is consistent with the analysis in Section 3.3.2, so we used
Model-4 for the other experiments.

Test 2. Performance of different singular values:
The simulation conditions were the same as in Test 1. In this test, all combinations of the singular

values were used to construct the Jacobian matrix, and the calibration results are as follows.
According to the results in Table 3, the three best combinations were {σ1, σ2, σ3}, {σ2, σ3},

and {σ2}. This result indicates a good agreement with the analysis in Section 3.3.3; namely,
the observabilities of σ2 and σ3 were better than that of σ1. Particularly, in this test, the observability
of the Jacobian matrix related to σ2 was better than σ3, so the calibration results achieved only by
σ2 were good enough. Through several experiments, however, we found that the performance of
{σ2} was unstable, and in this experiment, the relatively high standard deviation A|σδRMSE gave
some indication of the stability problem. This may be due to some information in σ1 and σ3 that
could help with calibration, and so, the combinations {σ1, σ2, σ3} and {σ2, σ3} are recommended.
The calibration precisions of {σ1, σ2, σ3} and {σ2, σ3} were similar, yet the average calibration time per
frame of {σ2, σ3} was shorter than that of {σ1, σ2, σ3}, which means that the computation of {σ2, σ3}
was smaller than {σ1, σ2, σ3}. Thus, the combination {σ2, σ3} was adopted for the following tests.
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Table 3. Calibration results by different singular value combinations.

{σ1, σ2, σ3} {σ2, σ3} {σ1, σ2} {σ1, σ3} {σ1} {σ2} {σ3}
A|µδRMSE (") 0.472 0.465 0.701 2.127 3.383 0.384 2.246
A|σδRMSE (") 0.029 0.038 0.028 0.066 0.096 0.058 0.065

time (ms/frame) 8.28 6.88 6.92 6.88 5.8 5.88 5.76

Test 3. Comparison with the calibration method based on the angular distance:
The calibration method based on the angular distance (AD) method is widely used for the

on-orbit calibration of star sensors, so we further evaluated the performance of the proposed method
by comparing it with the AD method.

We set up three experiment groups, where the difference of the groups was the limiting visual
magnitude of the star sensor, which led to different numbers of stars in the FOV. The average numbers
of stars in the groups were 31.4, 19.1, and 7.7 with the limiting visual magnitudes of 6, 5.5, and 4.6,
respectively. The results are listed in Table 4.

Table 4. Calibration results of the comparison experiment. AD, angular distance.

Group 1 Group 2 Group 3Number of Stars 31.4 19.1 7.7

Method AD SVD AD SVD AD SVD

A|µδRMSE (”) 0.535 0.436 0.419 0.465 0.344 0.244
A|σδRMSE (”) 0.293 0.039 0.073 0.038 0.004 0.003
B|µδRMSE (”) 10.824 10.854 10.608 10.630 10.611 10.612
B|σδRMSE (”) 0.879 0.888 1.295 1.304 2.569 2.565

time (ms/frame) 260.12 14.36 31.12 6.88 4.68 2.76

It is interesting that, under Criterion A, the performance of the SVD method was close to, or even
better than, the AD method, and the SVD method was more stable. However, under Criterion B,
the performance of the SVD method was always worse than the AD method. This phenomenon
occurred because the AD method uses the angular distance as the object of optimization estimation,
so the comprehensive calibration results, considering both the camera parameters and the centroid
noise, were better. It must also be mentioned that the estimation of the attitude of the star sensor
was based on the star vector itself, rather than the angular distance, such that the accuracy of the
camera parameters was more important; namely, Criterion A could better reflect the calibration
effect than Criterion B. Therefore, the accuracy of the SVD method was as good as the AD method.
The convergence rates of the two methods were also similar; as shown in Figure 6, the RMSE was
calculated between the nominal angular distances and the angular distances that were obtained by the
back-projection with calibrated parameters, which was the result of Group 2. Nevertheless, the elapsed
time of the SVD method was significantly shorter than the AD method, especially for the case with a
large number of stars in the FOV. Concerning Group 1, the calculation speed of the SVD method was
improved by 94.48%, compared to the AD method.



Sensors 2019, 19, 3301 13 of 16

Frame Number
0 500 1000 1500 2000 2500

A
|
R
M
S
E
(")

0

20

40

60

80

100
AD Method
SVD Method

(a)

Frame Number
500 1000 1500 2000 2500

B
|
R
M
S
E
(")

0

20

40

60

80
Angular Distance Method
SVD Method

(b)

Figure 6. Residual errors of two calibration methods for Group 2. (a) Residual errors based on Criterion
A and (b) residual errors based on Criterion B.

4.2. Field Experiment

The SVD method is a novel on-orbit calibration method for star sensors, and therefore, it is
necessary to verify the feasibility of this method by a field experiment. We tested the proposed on-orbit
calibration method on the ground; the experiment platform of the field experiment is shown in Figure 7.
A motorized zoom lens was adopted; the focal length was adjusted to about 16 mm; the FOV was
about 19.14◦× 11.18◦. The resolution of the CCD is 1920× 1080 and the pixel size was 2.9 µm× 2.9 µm.
The experiment was carried out at the update rate of 2 Hz. To avoid the influence of the atmospheric
refraction, the star sensor was placed perpendicular to the ground. The average number of observed
stars in the FOV was 14.7. As the nominal centroid coordinates of observed stars were unknown,
we could only use Criterion B to evaluate the performance of the field calibration experiment.

Figure 7. Experiment platform.

The initial values of the parameters were the same as in the simulation. The estimation results
of the parameters are shown in Figure 8, where the arrows in the images represent the points of
convergence, and the order of the convergence of the parameters was f , k2, k1, u0, u0, and then s.
With about 2200 images, the whole estimation was convergent; B|µδRMSE was 8.33”, and B|σδRMSE was
0.803”. We found that the performance in the field experiment was better than the simulation. This
was because Criterion B employed the noisy simulation data, and this noise might affect the results;
namely, it means the centroid errors in the field experiment were smaller than the assumption in the
simulation. Therefore, the SVD method can perform well in the on-orbit calibration of a star sensor.
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Figure 8. Estimation results of the parameters.(a)s (b)f (c)u0 (d)v0 (e)k1 (f)k2.

5. Conclusions

In this study, we proposed an on-orbit calibration method for star sensors by considering the
fact that the singular values of the star vectors remain constant under coordinate transformation.
The camera model and the principle of the SVD calibration method were presented. Using an
observability analysis, the optimal calibration models for the star combinations and the singular
value selection were discussed. The results of simulation with different calibration models were in
accordance with our analysis, showing that the calibration model we recommended is an optimal
model. Compared with the conventional AD method, the SVD method had similar accuracy; the
convergence speed (the average calibration time per frame) of the SVD method, however, was
significantly shorter than that of the AD method. This means the computational cost of the SVD method
was smaller than the conventional methods, and so, the proposed method was more appropriate for
star sensors with limited resources. Additionally, a field experiment showed that the SVD method can
meet the requirements of on-orbit calibration in star sensors. Although the SVD method performed
well, more tests in different situations should be conducted and further studies should be carried out,
in order to learn more about this calibration method, as this is the first time it has been used for star
sensor calibration.
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