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Abstract: Real-time data about various traffic events and conditions—offences, accidents, dangerous
driving, or dangerous road conditions—is crucial for safe and efficient transportation. Unlike roadside
infrastructure data which are often limited in scope and quantity, crowdsensing approaches promise
much broader and comprehensive coverage of traffic events. However, to ensure safe and efficient
traffic operation, assessing trustworthiness of crowdsourced data is of crucial importance; this also
includes detection of intentional or unintentional manipulation, deception, and spamming. In this
paper, we design and demonstrate a road traffic event detection and source reputation assessment
system for unreliable data sources. Special care is taken to adapt the system for operation in
decentralized mode, using smart contracts on a Turing-complete blockchain platform, eliminating
single authority over such systems and increasing resilience to institutional data manipulation.
The proposed solution was evaluated using both a synthetic traffic event dataset and a dataset
gathered from real users, using a traffic event reporting mobile application in a professional driving
simulator used for driver training. The results show the proposed system can accurately detect a
range of manipulative and misreporting behaviors, and quickly converges to the final trust score
even in a resource-constrained environment of a blockchain platform virtual machine.

Keywords: truth discovery; road traffic; event detection; reputation assessment; blockchain;
smart contract

1. Introduction

Road transport is a cornerstone of modern society; despite many alternative modes of transport,
vehicular traffic remains prevalent for personal mobility. Recently, there have been huge advances in
the field of Intelligent Transport Systems (ITS) to make vehicular traffic safer, more efficient, and more
user-friendly; such systems rely heavily on up-to-date information about traffic and road conditions.

Currently, traffic and road information acquisition is based on two principal models. Firstly, it
can be sourced from roadside infrastructure (induction loops, surveillance cameras, speed cameras,
Radio Frequency Identification (RFID) tags, etc.); such sources typically produce small amounts of
high-quality data. Secondly, it can leverage crowdsensing, by pooling large quantities of lower-quality
data, and then applying statistical modeling techniques to clean such data. Many providers use this
approach, leveraging mobile terminals with Global Navigation Satellite System (GNSS) support and
mobile apps to submit anonymized or pseudonymized data points of people’s location.

Another trend in the making is that of semi-autonomous and autonomous vehicles, which will—at
least in the beginning—coexist side-by-side with manned vehicles [1]. In the future, it is expected that
autonomous vehicles will rely not only on their own sensed data, but also on the data gathered by other
vehicles and infrastructure. Data exchange between vehicles (Vehicle-to-Vehicle, V2V), infrastructure
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(V2I), and pedestrians (V2P) will become one of the key enablers of Cooperative Intelligent Transport
Systems (C-ITS) and an important driver for autonomous traffic. With the increasing number of
systems and users relying on such data, it will become of crucial importance to be able to assess its
trustworthiness and detect intentional or unintentional manipulation, deception, spamming, and
spoofing to ensure general safety and efficient operation. A robust event detection mechanism for
crowdsourced data is, thus, an essential element for providing the stability and reliability of all the
systems depending on it.

In mixed traffic systems, various data sources with different sensing capabilities and different
security and trust levels will coexist. On one hand, offences such as speeding or driving through a red
light are well defined, and these can already be detected within lowest margin of error using dedicated
traffic cameras and radars. As the next evolutionary step, the increasing number of sensor-equipped
connected cars will further extend the reach and increase the granularity of traffic event detection.
However, more complex events, such as dangerous or aggressive overtaking, mobile phone use, or
illegal parking, will still be difficult to detect reliably with sensors alone; people are currently the best
pattern recognizers and reporters of such situations—if properly incentivized.

Of course, properly incentivizing people to provide more high-quality data plays an extremely
important role in crowdsensing, where we face the data quality vs. data quantity dilemma [2]. This
has been an area of active research, and today, many reward mechanisms are known and used, based
either on monetary reward schemes, on users’ reputation, or a combination of both. However, in
today’s world, the concerns about people’s privacy are a strong counterforce to incentive mechanisms.

Today, millions of people already make their decisions based on the crowdsensed traffic data, e.g.,
when using navigation applications with real-time road and traffic condition updates. However, it
has been shown that even such applications are prone to attacks. Therefore, several mechanisms for
effective truth discovery in traffic systems have been designed to solve this [3–5]. Traffic events and
conditions can be classified into several categories, depending on measurement and sensing equipment
and their capabilities, and the purpose of data gathering. As defined in C-ITS Day 1 applications list,
the basic traffic event set consists of accidents, traffic jams, dangerous weather conditions, and obstacles
in the road. Additionally, driving through a red light, speeding, wrong way driving, and careless
driving are considered to be included in reporting application. Thus, truth discovery mechanisms will
differ based on the optimal balance needed between accuracy and computational complexity.

The concerns people have about privacy in centralized systems should be addressed without
compromising general system reliability and robustness. To overcome current limitations emerging
from centralized crowdsensing solutions, decentralized computing platforms could be used.

In this paper, we focus on a mechanism for detection of traffic events from user- or
machine-originated crowdsourced data. Special care is taken to adapt the system for operation
in decentralized mode on a Turing-complete blockchain platform, eliminating single authority over
such systems and increasing resilience to institutional data manipulation. In addition, we aimed to also
respect the privacy of the users, which is especially important when using public ledger technology
with all data in plain sight. Special attention was given to the evaluation of a proposed solution,
using both a synthetic traffic event dataset and a dataset gathered from real users, using a traffic event
reporting mobile application in a professional driving simulator.

The rest of the paper is organized as follows. Related work is described in Section 2. In Section 3,
system design, event detection, and source reputation assessment mechanisms are presented.
Section 4 describes solution verification setup, followed by details about centralized and decentralized
implementation. In Section 5 we provide a conclusion and also introduce our future work.

2. Related Work

Today, crowdsensing systems often act as an intermediate system between users that provide
data, and data consumers on the other side. Including people in such systems increases the probability
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of spoofing, malicious user behavior [6]. Therefore, assessing the trustworthiness of users can prevent
potential malicious behavior of such users, or at least lower the consequences.

Distributed systems have gained attention in communications, especially in vehicular networks,
where Vehicular Ad-Hoc Networks (VANETs) have been at the core of research during the last decade.
Even though such systems operate in a distributed manner, data collection and processing are still
mainly done in centralized data processing centres [7].

A centralized approach is in stark contrast to the real picture, where, considering the traffic as
individual vehicles and other participants, entities in vehicular traffic form a heavily distributed system.
Connecting to the internet or to mobile ad-hoc networks (MANET), entities in reality form a dynamic
distributed Cyber-Physical System (CPS) [8], which remains the same for Cyber-Physical-Social Systems
(CPSS) where people and devices are part of the same system and operate side-by-side [9,10]. On the
other hand, distributed operation of such dynamic systems has been difficult to achieve until this last
decade, when concepts such as fog and edge computing emerged. While communication problems
have been successfully addressed, there are still open problems yet to be solved on computational
layers [11]. In addition to synchronization and distributed computation issues, open-up environments
where everybody can participate revealed trust-related problems that have to be addressed.

Apart from distributed databases and data storage, implementation of Distributed Ledger
Technologies (DLT) provides platforms for distributed consensus. DLT technologies, with blockchain as
the most prominent form, show that consensus can be achieved among entities that do not necessarily
trust each other, even in a highly distributed system [12]. Incorporating cryptographic functions
into decentralized peer-to-peer networks, in a way that peers can achieve consensus, is providing
a platform for decentralized applications that require trust, without relying on a trustable third
party organizations [13]. Moreover, blockchain is currently the only mature-enough technology that
leverages trustless and persmissionless operation of distributed systems, while at the same time
provides resistance to censorship [14].

Besides mechanisms for achieving consensus, tamper-proof storage, and higher resilience due to
distributed operation, blockchain platforms can also leverage public key identification. In the real world,
governmental services require government-issued identities, while web applications can, for example,
rely on social network identities or personal email addresses. In the blockchain world, public addresses
or identities derived from addresses are used for identification purposes—e.g., Ethereum users are
identified via their public addresses, derived from the private part of private-public cryptographic key
pair. Identity management frameworks and platforms are crucial for smart city applications [15], where
interconnection of people, devices, and services is crucial for effective and reliable city operations.
Researchers in [16] proposed a secure pseudo-identity based identification service for smart cities.
Moreover, blockchain can be used for both identification and authentication purposes, as shown in [17].
Despite such contributions that provide us platforms for device identification management, they do
not extend to human participants that provide the foundation and the reason for the existence of smart
cities [18,19].

Additionally, traffic infrastructure research projects such as C-roads [20] already propose
interoperability processes based on hierarchical public key infrastructure for vehicle identity and
message signing. This has the advantage of total vehicle traceability, which is a solid foundation for
governmental registration. However, such a central authority system would make it extremely hard
and time-consuming to provide a seamless and extensible layer of identities for other devices, managed
by the owner. Meanwhile, our proposed approach can span across government-issued identities,
as well as self-issued identities, in a decentralized manner.

Smart contracts (SC)—applications running in a decentralized manner on the DLT Virtual Machine,
provided by a DLT platform—can be seen as autonomous agents responding to messages sent by
other users in the network. Decentralized execution on multiple nodes across a DLT network
provides resilience to attacks, while on the other hand, it lowers the efficiency and execution speed of
such distributed systems [13,21,22]. Adding people to device-only Internet of Things (IoT) systems
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potentially adds non-trustworthy entities. In such environments, reaching consensus in a decentralized
way is crucial for many emerging applications. Relying on SCs [23], not only distributed data storage
and trustless operation can be established, but the system can at least be partially automated.

Relying on the above-mentioned properties of DLT, crowdsourcing and crowdsensing solutions
have emerged. The most well-known applications running on DLT platforms today are cryptocurrencies.
Platforms like Ethereum support custom tokens, which have also led to crowdsourcing platform
projects. Regardless of openness of such solutions, monetary incentivizing mechanisms [24] are a
natural fit for blockchain platforms. Even though blockchain platforms are based on verifiable chained
data blocks that are visible to everyone in the network, privacy-oriented solutions have emerged
in vehicular technology field [25]. Researchers in [26] proposed an incentive mechanism that uses
a blockchain-based cryptocurrency as a secure way for user incentivization. Another interesting
blockchain-based crowdsourcing framework is presented in [27], solving the requester–worker
relationship by requiring the workers to make a time-locked deposit as a guarantee for their behavior.

Even though trust is expected to be of a greater concern in mixed human-device systems, only a
few implementations currently address problems outside the device-only IoT environments [14,28].
However, blockchain, and especially SC-based solutions, currently present a promising technology for
security- and privacy-related problems, both in device-only and mixed environments [29,30].

Especially in mobile and traffic crowdsensing, data quality also heavily depends on the location
data quality. While smartphones and in-vehicle technology can provide sufficiently high accuracy
location data, this also lowers users” location privacy. The accuracy-privacy trade-off problem is
addressed in [24], which proposed a coalition strategy that provides a single identity data collection,
while at the same time sharing the payoff between multiple involved users. Revealing location data,
one can gather a comprehensive insight into one’s daily behavior by combining multiple data sources.

In addition to users’ privacy requirements, CPSs and CPSSs have to provide support for trustable
operation of such systems. While trust between devices has already been addressed by many
researchers, it is still a complex problem yet to be solved. Mimicking human-like relationships, social
IoT addresses trust-related problems in device-only IoT environments [31,32]. However, in terms of
crowdsensing and sensed data gathering and analysis, source reputation assessment plays an important
role. Especially in open-up systems, where people and devices are not a priori verified, every data
source can potentially disrupt the system by providing noisy or intentionally corrupted data [33].

Therefore, truth discovery cannot be based solely on crowdsourced data. Most prevalent techniques
for truth discovery from crowded data are based on statistical inference. In traffic crowdsensing,
Bayesian inference, expectation maximization, and majority voting are among the most popular [4].

Bayesian inference obtains the answer by computing posterior probability based on a priori
known distribution. Results obtained using expectation maximization, which relies on the assumption
that links users’ reliability and probability of the true result, are calculated iteratively. There is the
major drawback for extensive usage in real situations. Using majority voting, the answer with the
most votes is considered as computed truth. Besides them, mechanisms based on Gompartz function
and fuzzy logic models are also widely used.

To the best of our knowledge, existing solutions mostly cover trust management in device-only
IoT and CPS environments. Vehicular traffic event detection solutions are mostly limited to the
implicitly collected user location data and data from road operators. Moreover, crowdsensing-focused
solutions are generally centralized, which lowers the user privacy. We address these challenges in the
following chapters.

3. Proposed Solution

3.1. Assumptions and System Design

We propose a smart-contract-based mechanism for truth discovery in a traffic event-reporting
scheme. One of the requirements for the proposed solution is the support for heterogeneous data
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sources—vehicles and road infrastructure, as well as people using various reporting applications.
Support for various data sources is crucial, since it increases the amount and the scope of the collected
data. Thus, supporting multiple data sources can provide contextual data and allow the system to be
extended with different types and grades of sensors. Thus, collected data will, in the next stage, be
used for event detection, truth discovery, and iterative source reputation assessment.

Generally, the proposed solution is based on the inclusion of people and their perception of traffic
events around them. Even similar events can be perceived differently, depending on the location,
time, current traffic situation, and peoples’ current state and previous experience. In general, we
cannot consider crowdsourced traffic reports as objective, but must take into account also the reporter’s
perception of the events. Moreover, we should not expect that people will report all perceived events.
In fact, not all events are even detected by people. Thus, when developing the event detection
scheme, we tried to take into account also the reporting preferences and subjective event perception.
Additionally, subjective perception is an important factor for source reputation assessment; thus, noisy
reports should have much less negative impact on user reputation than misreporting.

The main goal was to design a robust event detection system, which can discover the truth from
user-generated reports of traffic events, while at the same time preserve their privacy. Detected event
data has to be open and auditable, thus they can be reused in other systems—e.g., traffic notification
and alerting systems.

The system was designed for event detection on a set of reports from various sources. Due to
different sensing capabilities that depend on source type, we aimed to keep the data requirements low.
This resulted in a simplified data model, which supports event reporting from vehicles, infrastructure,
and users via their own smart phones. All reports have to carry essential data, such as a timestamp,
source type, and source identification if it cannot be obtained from the device ID, location data, or
event type. Perceived consequences or the severity of the event is not a mandatory attribute, due to the
fact that certain types of events cannot be sensed by all source types. Moreover, as mentioned above,
events are perceived; therefore, their consequences or severity cannot be objectively measured.

The architecture of the proposed reporting and truth discovery system is modular, consisting of
event aggregation, event detection, and source reputation modules as seen in Figure 1. Additionally,
output from the event detection module can also serve as an input to external event notification and
broadcasting services.
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3.2. Data Model

Proposed solution is based on a simplified data gathering process, where users and devices
provide traffic event observations to the event aggregation and detection system. Following the aims
to design an open system in which data sources can freely contribute their observations, we aimed
to eliminate the need for source management in terms of registration or a priori source verification.
Therefore, source identification data is either attached to every event report or is gathered from report
metadata, depending on implementation.

To keep bandwidth and storage requirements low, data sources have to provide only essential
data—event timestamp, detected event type, and location. Depending on implementation, observed
event timestamp can also be obtained from the report metadata. However, it is recommended to
include timestamp at the time when the event is detected, or at the time when the event report is being
constructed and sent to the aggregation system (Figure 2). Location data is expected to be in the form
of latitude and longitude value pairs. Depending on the reporting source, different location accuracy is
expected and allowed—i.e., location of roadside equipment is well-defined—while vehicles and users’
smartphones report their location with a margin of error. As roadside equipment is considered as most
trustworthy, their location is used as a reference for events reported by them and other sources nearby.

Sensors 2019, 19, x FOR PEER REVIEW 6 of 17 

 

infrastructure, and users via their own smart phones. All reports have to carry essential data, such as 
a timestamp, source type, and source identification if it cannot be obtained from the device ID, 
location data, or event type. Perceived consequences or the severity of the event is not a mandatory 
attribute, due to the fact that certain types of events cannot be sensed by all source types. Moreover, 
as mentioned above, events are perceived; therefore, their consequences or severity cannot be 
objectively measured. 

The architecture of the proposed reporting and truth discovery system is modular, consisting of 
event aggregation, event detection, and source reputation modules as seen in Figure 1. Additionally, 
output from the event detection module can also serve as an input to external event notification and 
broadcasting services. 

3.2. Data Model 

Proposed solution is based on a simplified data gathering process, where users and devices 
provide traffic event observations to the event aggregation and detection system. Following the aims 
to design an open system in which data sources can freely contribute their observations, we aimed to 
eliminate the need for source management in terms of registration or a priori source verification. 
Therefore, source identification data is either attached to every event report or is gathered from report 
metadata, depending on implementation. 

 
Figure 2. Event reporting and detection, and source reputation assessment data model. 

To keep bandwidth and storage requirements low, data sources have to provide only essential 
data—event timestamp, detected event type, and location. Depending on implementation, observed 
event timestamp can also be obtained from the report metadata. However, it is recommended to 
include timestamp at the time when the event is detected, or at the time when the event report is 
being constructed and sent to the aggregation system (Figure 2Error! Reference source not found.). 
Location data is expected to be in the form of latitude and longitude value pairs. Depending on the 
reporting source, different location accuracy is expected and allowed—i.e., location of roadside 
equipment is well-defined—while vehicles and users’ smartphones report their location with a 
margin of error. As roadside equipment is considered as most trustworthy, their location is used as 
a reference for events reported by them and other sources nearby. 

The event detection module operates over the limited set of reports, which consist of data 
representing the same event. Source identification data is not directly used in that phase—it is only 
used to acquire source reputation values that later serve as a weight in the event detection phase. 
  

Figure 2. Event reporting and detection, and source reputation assessment data model.

The event detection module operates over the limited set of reports, which consist of data
representing the same event. Source identification data is not directly used in that phase—it is only
used to acquire source reputation values that later serve as a weight in the event detection phase.

3.3. Event Detection and Source Reputation

We aimed to construct an event detection scheme that could run in a decentralized manner on
a blockchain platform, which dictated several constraints. Smart contracts (SC)—applications that
run on a DLT platform—have to be deterministic. That way, we can guarantee that execution of SC
will return the same results, regardless of the node on which the contract is processed. For example,
solidity, the de-facto programming language for SCs on the Ethereum platform, only supports
deterministic functions.

Event reports are first grouped by location and timestamp. As reports are user- or device-generated
and not sensed at the exact time the event occurs, location and timestamp may vary to some degree;
thus, time and location windows are used to group reports for the same event. Reports belonging to
the same event are then used for event detection.
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Initially, all source types are considered as fair sources with high event reporting accuracy. These
parameters are represented as a single metric—source reputation. Depending on source type, source
reputation can be recalculated. Governmental and roadside equipment—mostly consisting of traffic
cameras, speed cameras, traffic density detectors, and traffic lights sensors—have to be calibrated, and
are typically maintained on a regular basis. Therefore, these types of data sources are considered as
accurate, and are given a higher source reputation value. User reports, on the other side, are prone
to mistakes and misreporting due to the human nature of perceiving events, instead of objectively
observing them. Therefore, the users’ source reputation value is iteratively recalculated after every
event report. The source reputation value consists of the number of reports and the ratio of correct
reports. Combining these two parameters, the impact of sources with a lower number of reports
is limited.

Events are detected using the weighted majority voting mechanism (Figure 3), where source
reputation values are used as weights. As all reports have to include the observed event type, reports
are a priori classified into several categories—accidents, traffic jam, dangerous weather conditions, and
obstacles on the road, as defined in C-ITS Day 1 services. Additionally, driving through a red light,
speeding, wrong way driving, and careless driving are considered to be included in the reporting
application. End users are encouraged to select the appropriate traffic event from the list, which helps
to minimize the granularity of reports, as well as to provide better user experience. Reports per event
are grouped and counted by reported event type. An event is successfully detected when the count of
event type with most reports is greater than the threshold, currently set to two thirds of the number of
all reports per event, but can be adjusted according to reporting accuracy of users. In general, for m
misreports, n ≥ 2m + 1 reports are needed to provide resilience to such misreports.
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In cases where reports do not converge towards the common event type, we cannot achieve
the consensus. To reduce the number of such cases, we limited the number of possible event types
from which the users choose when reporting the observed event. If reports still do not converge
to the common value, which means that the event cannot be successfully detected, the source
reputation assessment phase is skipped. Reports can be stored for future analysis or discarded to save
storage capacity.
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For driver alerting and notification purposes, only detected events are returned, without the data
about event reporters. We aimed to keep the privacy of data sources as high as possible by such limited
revealing of information.

4. Implementation and Verification

The proposed event detection mechanisms were tested on a set of well-defined simulated test
cases, as well as data obtained from users. We constructed an initial set of traffic events that represent
a number of possible traffic scenarios. Further, as we aimed to detect events from user reports, we built
an event report generator.

The implemented system can be divided into two main components (Figure 4). The first is used
for event report generation. Traffic observers, vehicular and infrastructure data sources, and the initial
event set are stored into static tables and serve as a source for the event generator module. According
to scenarios, non-deterministic generated traffic event reports are stored in the MySQL relational
database. These reports then stay unchanged for both relational database implementation, as well as
for distributed implementation using SC.Sensors 2019, 19, x FOR PEER REVIEW 9 of 17 
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The proposed event detection and source reputation assessment mechanism was first implemented
using a relational database as a centralized solution. Centralized system architecture supports event
report gathering and aggregation, and centralized event report storage. Stored events from relational
database are then processed in the event detection module. All acquired data is stored, analyzed, and
managed centrally.

The deterministic event detection mechanism is implemented using Python programming
language on data acquired from the MySQL database. The event aggregation module acquires event
reports from a relational database, and groups reports for the same events according to proposed
schema—by comparing their timestamps and location. Aggregated reports are sent to the event
detection module. Knowing the number of events, reported event types, and source type for every
report, the truth discovery mechanism is applied to detect the event types that has most likely happened.
Sources that reported (voted) for the event type that has been detected as most likely are given a rise
in their reputation factor. Similarly, other sources’ reputation factors are lowered. Detected events,
with accompanied probability that the detected event type is real, are stored in the relational database.
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Assessed source reputation values are stored and used as weights in future event detections. These
results can be compared with the initial set of events.

4.1. Blockchain Implementation

The whole event detection and source reputation assessment system was also implemented in a
distributed manner. We constructed the SC-based solution on the Ethereum platform, which provides
additional robustness to the solution.

Compiled and deployed SCs are assigned unique public addresses that act as an interface for
interaction with other entities on the network (Figure 5). As transactions are public, everyone can
observe traffic between end users (data sources) and SCs in a way that reveals only pairs of nodes
that communicate with each other. Data exchanged via transactions are encrypted, thus observers
cannot access the content. However, observing transaction traffic, one can construct the network of
interactions, which can lead to lowering user or device privacy.

Algorithm 1: Pseudocode of blockchain implementation

reports = [list of traffic reports made by users, vehicles and infrastructure]
events = [dictionary of reports belonging to the same event]
reputation_weights = [dictionary of reputation values for each data source]

function aggregate_reports(reports):
for each reporti in reports:

for each eventj in events:
if (reporti.time <= eventj.time + max_delta_t) and abs(reporti.location - eventj.location) <=

max_distance):
add reporti to eventj

if no match:
create new event and add reporti to it

if count of reports for eventj == 5:
detected_type = detect_event_type(eventj)
if detected_type:

store detected_type
reputation_weight = assess_reputation(eventj, detected_type)
store reputation_weight

function detect_event_type(event):
get reputation_weights for all reports in event based on reporting data source
detected_event_types = []
for each reporti in event.reports:

detected_event_types.push(reporti.event_type * reporti.source.reputation_weight)

if max(detected_event_types) > threshold:
return max(detected_event_types)

function assess_reputation(event, detected_event_type):
for each reporti in event.reports:

if reporti.event_type == detected_event_type:
increase reputation_weight

else:
decrease reputation_weight

aggregate_reports(reports)
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The proposed event detection mechanism was implemented using the Truffle framework [34] on
Ganache [35]—a local Ethereum-like blockchain platform. Using a local blockchain, we can observe
and examine all transactions in the SC lifecycle, from deployment to operation state. Additionally, we
can determine SC execution costs in “gas”, which is used as fees for mining nodes.

Implementation-wise, we developed the SCs in the Solidity language. Relatively simple validation
was done using the built-in Ethereum accounts simulation. That way we were able to interact with
the SCs was similar to the interactions to be expected in real-life implementation on public Ethereum
blockchain. Due to the limitations of Ganache, we were not able to analyze transaction times; however,
SC execution cost monitoring was supported, thus enabling us to analyze the SC operation.

The system was already designed to be modular and deterministic, which helped us separate
event aggregation from detection. As events can be reported sporadically, as is expected due to human
mobility and differences in observations and responding times, only aggregated event reports are sent
to the detection module, which bring down the time needed for event detection phase.

While blockchain SC guarantees tamper-proof operation, publicly shared data could potentially
lower user data privacy. Taking this into account, data management and variable scope has to be
carefully decided. Limiting access to functions to only SC owner, and limiting functions visibility
and scope, can greatly reduce potential data exposure. Following good practices, the system was
split into aggregation, event detection, and reputation assessment modules, which, in distributed
implementation on Ethereum, were implemented in separated smart contracts.

The proposed solution consisted of two main phases—event aggregation and event detection with
reputation assessment. We aimed to provide robust event detection, while at the same time protecting
the identity of the users. Thus, probably the most straightforward solution, in which user reports are
stored on the blockchain and later processed, has to be discarded as it reveals user data. Moreover,
storing event reports directly on the blockchain is relatively expensive, as it results in blockchain state
changes that have to be verified by miners. Therefore, event reports are processed in-memory by the
SC. While lowering execution and storage costs, it can also lower execution time. Only results of the
weighted majority voting and source reputation are permanently stored on the blockchain.

Reports received by SC are stored as report objects in a structure similar to a hash table, with
timestamps and source identificator combined used as keys to access the data. Due to limitations of
blockchain platforms, transaction timestamps are likely to be unique; thus, we do not expect consequent
or duplicated values. Separate arrays are used to keep the list of observers and indexes of stored
reports, to allow us to access the reports. In the aggregation phase, as described in Algorithm 1, we loop
through reports and group them by timestamp and location. Another auxiliary index is used to keep
the record of reports belonging to the same event. That way, we keep the stored data untouched, which
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minimizes state changes, thus significantly lowering the computational expenses. Custom garbage
collectors are used to clean-up auxiliary index arrays to prevent the uncontrolled growth that could lead
to higher execution costs. Source reputation values are stored in key-value storage and are accessed
using Ethereum platform-provided addresses. Thus, low probability for key duplication is expected.
As all modules—event aggregation, event detection, and reputation assessment—work on in-memory
data, only the main SC serves as a central manager to persistent data storage as shown in Figure 6.
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The proposed mechanism is, thus, implemented separately, which provides us with a higher
level of data privacy. In the event aggregation module, user identities can also be pseudonymized.
As pseudonymized data is sent to the event detection module, less user data is revealed. In the event
detection module, only reports that belong to the same event are processed, thus, no correlation
between reports of the same user can be discovered. On the other hand, this limits the options for more
sophisticated malicious behavior detection. However, modular implementation provides us options
for further application upgrades.

4.2. Verification and Results

People involved in traffic are not just the observers of traffic and traffic events. They are a part of
traffic, and their reactions to events and the environment around them can affect other people nearby.
Thus, we cannot expect that they will objectively sense events around them. In fact, perception of
traffic heavily depends on their personality, previous experience, their current mood, weather, the
reason they are on the road, etc. In order to simulate and verify event detection from events reported
by users and other sources, some assumptions were made.

The proposed solution was evaluated on set of artificially generated traffic events and reports
related to them, as well as on user reports gathered from a web-based event reporting application.
As the proposed solution was designed for event detection from various sources—infrastructure,
vehicles, and users—we constructed an event report generator to build a static event report database
that was used for evaluation. Roadside infrastructure reports are considered as accurate, however,
with limited sensing capabilities; these reports are limited to red light and speeding offence detection.
Vehicles are initially assigned an apparent accuracy ratio of 0.8. The user, as last source, cannot
be considered as a fair and completely accurate source; therefore, we pay more attention to user
reporting modeling.
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The synthetic traffic event dataset was constructed with attention to covering all event types
defined in proposed solution. In addition to events representing accidents, based on Slovenian Traffic
Safety Agency reports, congestions and traffic jams, and dangerous and aggressive driving scenarios
were also considered. Several events were strategically placed near schools and kindergartens, while
others near arterial roads, on regional roads and highways. These locations serve as an input for event
report generation.

We built an initial set of personas to model user sensing and reporting behavior. This set of
personas serves as an input for the event reports generator. However, realistic user reporting models
are hard to obtain without extensive user studies. Instead, we limited the number of possible event
types that users can report. This is beneficial both for event detection system modeling, as well as for
usability and user experience of end-user smartphone application. For every persona from the initial
set, we constructed a scenario, which defines which events the selected user could detect.

To improve artificially generated personas, eight interviews were performed to obtain user’
reporting preferences. Moreover, their reporting behavior was evaluated in a driving simulator as seen
in Figure 7. Five persons agreed with evaluation in driving simulator. All of them were tested on the
same scenario, consisting of an initial few minutes of free drive and the driving on a looped road with
various traffic events—broken down vehicle, animals at the side of the road, congestion due to one
lane closing, and bad weather conditions—occurring at predefined locations. All users were asked to
use a simple web-based traffic event and road conditions reporting application on their smartphones.
Eye-tracking devices were used to monitor their reporting behavior (event types they were reporting,
delay between event occurrence and report) in various traffic conditions and environments. Obtained
data, combined with data gathered from questionnaires and interviews, were used to improve the
artificially generated initial set of personas.
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The rather small initial set of personas was expanded to the final set of 100 artificial users, and
reporting parameters/preferences for every data source were varied. According to every persona’s
event reporting ratio and apparent accuracy ratio (Table 1), simulated crowdsourced event reports were
generated. Apparent accuracy is a combined metric that represents both user honesty and accuracy in
event reporting ratio.
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Table 1. Excerpt from the sources/personas table.

ID Source Type Reporting Ratio Apparent Accuracy Aatio Notes

34 Vehicle 0.8 1
140 User 0.8 1 Reporting near school
156 User 0.5 0.8 Reporting dangerous situations
446 Vehicle 0.5 1
461 Government 1 1 Police
510 User 0.7 0.8 Sometimes wrong reports
527 User 0.6 0.0 Misreporter

According to studies of human mobility, events and source mobility scenarios are roughly
distributed during the week and time of the day to ensure that the number of event reports could follow
the same patterns. In general, scenarios represent traffic events in dense and sparse traffic, during the
day and night time, in city environments as well as on regional roads and highways. Event reports
are stored in a relational database and are later used for verification purposes of both approaches.
Additional sources are created to represent a wide range of users, ranging from totally trustworthy
users that report every event they observe in a completely objective way, to malicious users that
misreport every event they observe. Scenarios for personas are constructed in a way to distribute
reports from all personas included between all events. Otherwise, voting groups—a group of users
traveling along the same path at the same time—could occur. This could lead to wrong event detection,
if a group of misreporting users is formed. Malicious users remain an important issue to be resolved.
To some extent, malicious users are penalized by lowering their reputation value. However, some
more advanced fraud detection techniques could possibly be implemented via external services. Both
the initial set of events, as well as table of personas, are used to verify the proposed event detection
mechanism and source reputation mechanism.

Implementing proposed event detection mechanisms, both traditionally using relational database,
and in a decentralized manner on the Ethereum blockchain platform, gives us interesting insights
about usability and real-life operation of such services. While computational complexity of event
detection using weighted majority voting stays the same for both implementations, computational
time and memory usage greatly differs between them.

The proposed solution was evaluated on the same set of event reports. In more traditional
implementation using a relational database, we did not observe any limitations or lower performance.
Otherwise, to implement proposed solution on the Ethereum platform, we needed to design and
implement a customized storage solution from scratch. In the verification phase, this was identified as
the biggest limitation, and also the part of the system that caused the most running costs.

The proposed solution was tested by continuously pushing event reports to the event detection
and reputation system. Based on 400 events, 2524 reports were constructed using 100 infrastructure,
100 vehicular, and 100 smartphone user sources. Reported event timestamps were included in the
report messages. We observed longer processing times for decentralized implementation using
SCs. However, computational times cannot be considered realistic due to the simulated blockchain
environment provided by Ganache. On the other hand, events were pushed continuously, even though
they represent a simulated period of one month. A limit of a minimum of five reports per event was set
to ensure that we obtain a sufficient number of reports to perform an event detection using weighted
majority voting. Artificially generated delays in event reporting timestamps were used to represent
more a realistic nature of the system (Table 2). On the other hand, such delays cause longer delays in
the event detection phase.
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Table 2. Example of event reports, and the detected event.

Event
Timestamp Event Type Location

4.09.2018 22:42 Careless Driving 46.0645718, 14.5066889

Reports

Timestamp Reported event type Location Source type
4.09.2018 22:42 careless driving 46.0678532, 14.5088111 user
4.09.2018 22:43 careless driving 46.0679797, 14.5086931 user
4.09.2018 22:44 careless driving 46.0677266, 14.508618 user
4.09.2018 22:42 red light 46.0673842, 14.5086394 user
4.09.2018 22:42 speeding 46.0665059, 14.5077382 vehicle

Detected event
Timestamp Event type Location Certainty

4.09.2018 22:42 careless driving 46.067490, 14.508500 0.6

Infrastructure sources were given the constant reputation (weight) of 1, as they are expected to be
frequently calibrated. The initial set of vehicles was designed with 80% of correct reporting. Users were
categorized into three categories—50% of users were totally honest and accurate, 20% were designed
to be misreporters, and the remaining 30% were assigned an initial accuracy ratio of 0.8. The average
correctness rate was obtained using weighted majority voting, which uses source reputation values as
weights of 0.76.

Assessing sources’ reputation is crucial for more effective event detection and cleaning-up of
misreporters’ data. Despite the quite simple mechanism that was used, we were able to detect all
of of the users that were meant to misreport on every event they observed. Infrastructure sources,
on the other hand, were given a constant reputation value that cannot be changed. Most data sources
(vehicles and users) fall in-between the two extremes. Assessed reputation value for more than 90%
(163) of the remaining data sources lies in the two 10%-bins surrounding the initial reporting accuracy
ratio value as seen in Table 3.

Table 3. Source reputation value assessment correctness.

Data Source Infrastructure
Users

Vehicles
Misreporting Accurate In-between

Number of sources 100 20 50 30 100
Initial accuracy ratio 1 0 1 0.8 0.8
Assessed reputation

correctness Not assessed 100% >90% of sources in range [0.7,0.9]

The same application that was used in the driving simulator for persona verification was used
to gather real-life traffic reports from users. The obtained data set consisted mostly of congestion
and roadworks reports. Due to heavy traffic during holidays and roadworks, some congestions and
traffic jams were several kilometers long. As our solution mostly focuses on events like accidents and
dangerous driving conditions, the location-based aggregation module groups events in a rather small
radius. Thus, a long-lasting traffic jam can be detected as several separate events. Moreover, some
users report both roadworks and traffic congestion, the latter being caused by the former.

5. Conclusions and Future Work

The proposed event detection and source reputation assessment mechanism was designed
with decentralized implementation in mind. By implementing it using a centralized relational
database-based system and in a decentralized manner on the Ethereum blockchain, we showed that
the proposed solution is equally viable in both environments.

Even though we did not provide a full crowdsourcing solution with included incentivizing
mechanisms, the source reputation score recalculated after every report and can be directly used as
a base for rewarding the users. Therefore, various incentivizing mechanisms (social, monetary, and
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token based) and rewarding schemes (uniform, variable, and lottery) can be implemented on top of the
proposed solution. The Ethereum ecosystem also provides an environment for issuing tokens, which is
a good fit for incentivizing and rewarding schemes.

Despite addressing the trust issues related to closed and centralized systems, blockchain
implementation also exhibits several drawbacks. The first, and probably the most important one, is the
required determinism of algorithms used, if implementing the whole event detection system using SCs.
Regarding data storage and options, both the relational database- and blockchain-based implementation
offer temporary, as well as permanent, storage. Considering storage expenses on the blockchain,
local scope memory storage is preferred to the more expensive permanent storage. Therefore, during
processing, data is stored in a temporary SC memory storage, while results are permanently stored
on the blockchain. Even though relying on SC logic adds complexity and computational delays to
the event detection process, the choice of not permanently storing event reports provides numerous
advantages over the most straightforward choice; that is, storing event reports on the blockchain and
outsourcing the analysis to the oracles or services outside of the blockchain.

The blockchain also guarantees consensus between entities that do not necessarily trust each
other. However, malicious users can organize in misreporting groups to intentionally attack the system.
To counter that, fraud detection mechanisms can be used, regardless of implementation. Moreover,
in case of non-deterministic or computationally expensive methods, fraud detection and analysis can
also be implemented using off-chain oracles—external service or data providers.

Due to human mobility, some exceptionally large time differences between the first and the fifth
reports were observed in sparse traffic scenarios. Streaming-like processing mechanisms should be
implemented to overcome this problem in real-life implementation. While the Boyer-Moore majority
voting algorithm can be implemented in such a way in centralized approach, it could cause huge rises
of storage and computational costs in blockchain-based systems due to more frequent state changes.

Instead, local off-chain event detection and reputation assessment processing could be implemented
in relatively long-lived vehicular social networks that occur inside convoys and fleets of vehicles
travelling the same direction. This will lower computational and storage costs and minimize processing
times, while at the same time maintain the globally accessible event and reputation database.

As various kinds of traffic events and offences are not objectively measurable, the proposed
solution was designed to support participatory mobile crowdsensing data gathering. Relying on
users, in addition to infrastructure- and vehicle-originating traffic event reports, we add some degree
of uncertainty into the system. Depending on the environment, observers’ personality, previous
experiences with and in traffic, their current mood, the reason they are on the road, etc., the perception
of a traffic event can differ greatly from person to person. These human characteristics provide some
level of uncertainty at the very beginning of the crowdsensing system.

As pointed out in real-life experiments, in case of traffic jams caused by roadworks, users report
both kinds of events. In the future, similar and consequential events should be treated accordingly—e.g.,
using a probability matrix to model user reporting behavior and event causality. In the future, we
plan to improve the event detection mechanism by incorporating a user-reporting model. In addition
to already presented personas, we plan to model the typical user reporting preferences. As such
experiments cannot be done in real-life situations, a simulation environment such as one used in this
study will be used.
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